freebsd-skq/crypto/openssh/sshd.8
Kris Kennaway c2d3a5594b Resolve conflicts and update for OpenSSH 2.2.0
Reviewed by:	gshapiro, peter, green
2000-09-10 09:35:38 +00:00

1115 lines
34 KiB
Groff

.\" -*- nroff -*-
.\"
.\" Author: Tatu Ylonen <ylo@cs.hut.fi>
.\" Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
.\" All rights reserved
.\"
.\" As far as I am concerned, the code I have written for this software
.\" can be used freely for any purpose. Any derived versions of this
.\" software must be clearly marked as such, and if the derived work is
.\" incompatible with the protocol description in the RFC file, it must be
.\" called by a name other than "ssh" or "Secure Shell".
.\"
.\" Copyright (c) 1999,2000 Markus Friedl. All rights reserved.
.\" Copyright (c) 1999 Aaron Campbell. All rights reserved.
.\" Copyright (c) 1999 Theo de Raadt. All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
.\"
.\" $FreeBSD$
.\"
.Dd September 25, 1999
.Dt SSHD 8
.Os
.Sh NAME
.Nm sshd
.Nd secure shell daemon
.Sh SYNOPSIS
.Nm sshd
.Op Fl diqQ46
.Op Fl b Ar bits
.Op Fl f Ar config_file
.Op Fl g Ar login_grace_time
.Op Fl h Ar host_key_file
.Op Fl k Ar key_gen_time
.Op Fl p Ar port
.Op Fl u Ar len
.Op Fl V Ar client_protocol_id
.Sh DESCRIPTION
.Nm
(Secure Shell Daemon) is the daemon program for
.Xr ssh 1 .
Together these programs replace rlogin and rsh, and
provide secure encrypted communications between two untrusted hosts
over an insecure network.
The programs are intended to be as easy to
install and use as possible.
.Pp
.Nm
is the daemon that listens for connections from clients.
It is normally started at boot from
.Pa /etc/rc.network .
It forks a new
daemon for each incoming connection.
The forked daemons handle
key exchange, encryption, authentication, command execution,
and data exchange.
This implementation of
.Nm
supports both SSH protocol version 1 and 2 simultaneously.
.Nm
works as follows.
.Pp
.Ss SSH protocol version 1
.Pp
Each host has a host-specific RSA key
(normally 1024 bits) used to identify the host.
Additionally, when
the daemon starts, it generates a server RSA key (normally 768 bits).
This key is normally regenerated every hour if it has been used, and
is never stored on disk.
.Pp
Whenever a client connects the daemon responds with its public
host and server keys.
The client compares the
RSA host key against its own database to verify that it has not changed.
The client then generates a 256 bit random number.
It encrypts this
random number using both the host key and the server key, and sends
the encrypted number to the server.
Both sides then use this
random number as a session key which is used to encrypt all further
communications in the session.
The rest of the session is encrypted
using a conventional cipher, currently Blowfish or 3DES, with 3DES
being used by default.
The client selects the encryption algorithm
to use from those offered by the server.
.Pp
Next, the server and the client enter an authentication dialog.
The client tries to authenticate itself using
.Pa .rhosts
authentication,
.Pa .rhosts
authentication combined with RSA host
authentication, RSA challenge-response authentication, or password
based authentication.
.Pp
Rhosts authentication is normally disabled
because it is fundamentally insecure, but can be enabled in the server
configuration file if desired.
System security is not improved unless
.Xr rshd 8 ,
.Xr rlogind 8 ,
.Xr rexecd 8 ,
and
.Xr rexd 8
are disabled (thus completely disabling
.Xr rlogin 1
and
.Xr rsh 1
into the machine).
.Pp
.Ss SSH protocol version 2
.Pp
Version 2 works similarly:
Each host has a host-specific DSA key used to identify the host.
However, when the daemon starts, it does not generate a server key.
Forward security is provided through a Diffie-Hellman key agreement.
This key agreement results in a shared session key.
The rest of the session is encrypted
using a symmetric cipher, currently
Blowfish, 3DES or CAST128 in CBC mode or Arcfour.
The client selects the encryption algorithm
to use from those offered by the server.
Additionally, session integrity is provided
through a cryptographic message authentication code
(hmac-sha1 or hmac-md5).
.Pp
Protocol version 2 provides a public key based
user authentication method (DSAAuthentication)
and conventional password authentication.
.Pp
.Ss Command execution and data forwarding
.Pp
If the client successfully authenticates itself, a dialog for
preparing the session is entered.
At this time the client may request
things like allocating a pseudo-tty, forwarding X11 connections,
forwarding TCP/IP connections, or forwarding the authentication agent
connection over the secure channel.
.Pp
Finally, the client either requests a shell or execution of a command.
The sides then enter session mode.
In this mode, either side may send
data at any time, and such data is forwarded to/from the shell or
command on the server side, and the user terminal in the client side.
.Pp
When the user program terminates and all forwarded X11 and other
connections have been closed, the server sends command exit status to
the client, and both sides exit.
.Pp
.Nm
can be configured using command-line options or a configuration
file.
Command-line options override values specified in the
configuration file.
.Pp
.Nm
rereads its configuration file when it receives a hangup signal,
.Dv SIGHUP .
.Pp
The options are as follows:
.Bl -tag -width Ds
.It Fl b Ar bits
Specifies the number of bits in the server key (default 768).
.Pp
.It Fl d
Debug mode.
The server sends verbose debug output to the system
log, and does not put itself in the background.
The server also will not fork and will only process one connection.
This option is only intended for debugging for the server.
.It Fl f Ar configuration_file
Specifies the name of the configuration file.
The default is
.Pa /etc/ssh/sshd_config .
.Nm
refuses to start if there is no configuration file.
.It Fl g Ar login_grace_time
Gives the grace time for clients to authenticate themselves (default
300 seconds).
If the client fails to authenticate the user within
this many seconds, the server disconnects and exits.
A value of zero indicates no limit.
.It Fl h Ar host_key_file
Specifies the file from which the RSA host key is read (default
.Pa /etc/ssh/ssh_host_key ) .
This option must be given if
.Nm
is not run as root (as the normal
host file is normally not readable by anyone but root).
.It Fl i
Specifies that
.Nm
is being run from inetd.
.Nm
is normally not run
from inetd because it needs to generate the server key before it can
respond to the client, and this may take tens of seconds.
Clients would have to wait too long if the key was regenerated every time.
However, with small key sizes (e.g., 512) using
.Nm
from inetd may
be feasible.
.It Fl k Ar key_gen_time
Specifies how often the server key is regenerated (default 3600
seconds, or one hour).
The motivation for regenerating the key fairly
often is that the key is not stored anywhere, and after about an hour,
it becomes impossible to recover the key for decrypting intercepted
communications even if the machine is cracked into or physically
seized.
A value of zero indicates that the key will never be regenerated.
.It Fl p Ar port
Specifies the port on which the server listens for connections
(default 22).
.It Fl q
Quiet mode.
Nothing is sent to the system log.
Normally the beginning,
authentication, and termination of each connection is logged.
.It Fl u Ar len
This option is used to specify the size of the field
in the
.Li utmp
structure that holds the remote host name.
If the resolved host name is longer than
.Ar len ,
the dotted decimal value will be used instead.
This allows hosts with very long host names that
overflow this field to still be uniquely identified.
Specifying
.Fl u0
indicates that only dotted decimal addresses
should be put into the
.Pa utmp
file.
.It Fl Q
Do not print an error message if RSA support is missing.
.It Fl V Ar client_protocol_id
SSH2 compatibility mode.
When this option is specified
.Nm
assumes the client has sent the supplied version string
and skips the
Protocol Version Identification Exchange.
.It Fl 4
Forces
.Nm
to use IPv4 addresses only.
.It Fl 6
Forces
.Nm
to use IPv6 addresses only.
.El
.Sh CONFIGURATION FILE
.Nm
reads configuration data from
.Pa /etc/ssh/sshd_config
(or the file specified with
.Fl f
on the command line).
The file contains keyword-value pairs, one per line.
Lines starting with
.Ql #
and empty lines are interpreted as comments.
.Pp
The following keywords are possible.
.Bl -tag -width Ds
.It Cm AFSTokenPassing
Specifies whether an AFS token may be forwarded to the server.
Default is
.Dq yes .
.It Cm AllowGroups
This keyword can be followed by a number of group names, separated
by spaces.
If specified, login is allowed only for users whose primary
group matches one of the patterns.
.Ql \&*
and
.Ql ?
can be used as
wildcards in the patterns.
Only group names are valid; a numerical group ID isn't recognized.
By default login is allowed regardless of the primary group.
.Pp
.It Cm AllowUsers
This keyword can be followed by a number of user names, separated
by spaces.
If specified, login is allowed only for users names that
match one of the patterns.
.Ql \&*
and
.Ql ?
can be used as
wildcards in the patterns.
Only user names are valid; a numerical user ID isn't recognized.
By default login is allowed regardless of the user name.
.Pp
.It Cm Ciphers
Specifies the ciphers allowed for protocol version 2.
Multiple ciphers must be comma-separated.
The default is
.Dq 3des-cbc,blowfish-cbc,arcfour,cast128-cbc .
.It Cm CheckMail
Specifies whether
.Nm
should check for new mail for interactive logins.
The default is
.Dq yes .
.It Cm ConnectionsPerPeriod
This keyword allows for rate-limiting of connections, and
is followed by two numbers in the format
.Dq n/s ,
where
.Ar n
is the number of connections from a certain address group
accepted per period of
.Ar s
seconds. Any connection after the number
.Ar n
connection in the period of
.Ar s
seconds will be dropped, and an informational message will be logged.
A connection will belong to a certain group, of which there are 13
by default, according to its IP address.
The default for this keyword is
.Dq 0/0 ,
and rate-limiting can be explicitly turned off by using an
.Ar n
parameter of
.Ql 0
and any
.Ar s
parameter.
.It Cm DenyGroups
This keyword can be followed by a number of group names, separated
by spaces.
Users whose primary group matches one of the patterns
aren't allowed to log in.
.Ql \&*
and
.Ql ?
can be used as
wildcards in the patterns.
Only group names are valid; a numerical group ID isn't recognized.
By default login is allowed regardless of the primary group.
.Pp
.It Cm DenyUsers
This keyword can be followed by a number of user names, separated
by spaces.
Login is disallowed for user names that match one of the patterns.
.Ql \&*
and
.Ql ?
can be used as wildcards in the patterns.
Only user names are valid; a numerical user ID isn't recognized.
By default login is allowed regardless of the user name.
.It Cm DSAAuthentication
Specifies whether DSA authentication is allowed.
The default is
.Dq yes .
Note that this option applies to protocol version 2 only.
.It Cm GatewayPorts
Specifies whether remote hosts are allowed to connect to ports
forwarded for the client.
The argument must be
.Dq yes
or
.Dq no .
The default is
.Dq no .
.It Cm HostDSAKey
Specifies the file containing the private DSA host key (default
.Pa /etc/ssh/ssh_host_dsa_key )
used by SSH protocol 2.0.
Note that
.Nm
disables protocol 2.0 if this file is group/world-accessible.
.It Cm HostKey
Specifies the file containing the private RSA host key (default
.Pa /etc/ssh/ssh_host_key )
used by SSH protocols 1.3 and 1.5.
Note that
.Nm
disables protocols 1.3 and 1.5 if this file is group/world-accessible.
.It Cm IgnoreRhosts
Specifies that
.Pa .rhosts
and
.Pa .shosts
files will not be used in authentication.
.Pa /etc/hosts.equiv
and
.Pa /etc/ssh/shosts.equiv
are still used.
The default is
.Dq yes .
.It Cm IgnoreUserKnownHosts
Specifies whether
.Nm
should ignore the user's
.Pa $HOME/.ssh/known_hosts
during
.Cm RhostsRSAAuthentication .
The default is
.Dq no .
.It Cm KeepAlive
Specifies whether the system should send keepalive messages to the
other side.
If they are sent, death of the connection or crash of one
of the machines will be properly noticed.
However, this means that
connections will die if the route is down temporarily, and some people
find it annoying.
On the other hand, if keepalives are not sent,
sessions may hang indefinitely on the server, leaving
.Dq ghost
users and consuming server resources.
.Pp
The default is
.Dq yes
(to send keepalives), and the server will notice
if the network goes down or the client host reboots.
This avoids infinitely hanging sessions.
.Pp
To disable keepalives, the value should be set to
.Dq no
in both the server and the client configuration files.
.It Cm KerberosAuthentication
Specifies whether Kerberos authentication is allowed.
This can be in the form of a Kerberos ticket, or if
.Cm PasswordAuthentication
is yes, the password provided by the user will be validated through
the Kerberos KDC. To use this option, the server needs a
Kerberos servtab which allows the verification of the KDC's identity.
Default is
.Dq yes .
.It Cm KerberosOrLocalPasswd
If set then if password authentication through Kerberos fails then
the password will be validated via any additional local mechanism
such as
.Pa /etc/passwd
or SecurID.
Default is
.Dq yes .
.It Cm KerberosTgtPassing
Specifies whether a Kerberos TGT may be forwarded to the server.
Default is
.Dq no ,
as this only works when the Kerberos KDC is actually an AFS kaserver.
.It Cm KerberosTicketCleanup
Specifies whether to automatically destroy the user's ticket cache
file on logout.
Default is
.Dq yes .
.It Cm KeyRegenerationInterval
The server key is automatically regenerated after this many seconds
(if it has been used).
The purpose of regeneration is to prevent
decrypting captured sessions by later breaking into the machine and
stealing the keys.
The key is never stored anywhere.
If the value is 0, the key is never regenerated.
The default is 3600 (seconds).
.It Cm ListenAddress
Specifies what local address
.Nm
should listen on.
The default is to listen to all local addresses.
Multiple options of this type are permitted.
Additionally, the
.Cm Ports
options must precede this option.
.It Cm LoginGraceTime
The server disconnects after this time if the user has not
successfully logged in.
If the value is 0, there is no time limit.
The default is 120 (seconds).
.It Cm LogLevel
Gives the verbosity level that is used when logging messages from
.Nm sshd .
The possible values are:
QUIET, FATAL, ERROR, INFO, VERBOSE and DEBUG.
The default is INFO.
Logging with level DEBUG violates the privacy of users
and is not recommended.
.It Cm MaxStartups
Specifies the maximum number of concurrent unauthenticated connections to the
.Nm
daemon.
Additional connections will be dropped until authentication succeeds or the
.Cm LoginGraceTime
expires for a connection.
The default is 10.
.Pp
Alternatively, random early drop can be enabled by specifying
the three colon separated values
.Dq start:rate:full
(e.g. "10:30:60").
.Nm
will refuse connection attempts with a probabillity of
.Dq rate/100
(30%)
if there are currently
.Dq start
(10)
unauthenticated connections.
The probabillity increases linearly and all connection attempts
are refused if the number of unauthenticated connections reaches
.Dq full
(60).
.It Cm PasswordAuthentication
Specifies whether password authentication is allowed.
The default is
.Dq yes .
Note that this option applies to both protocol versions 1 and 2.
.It Cm PermitEmptyPasswords
When password authentication is allowed, it specifies whether the
server allows login to accounts with empty password strings.
The default is
.Dq no .
.It Cm PermitRootLogin
Specifies whether the root can log in using
.Xr ssh 1 .
The argument must be
.Dq yes ,
.Dq without-password
or
.Dq no .
The default is
.Dq no .
If this options is set to
.Dq without-password
only password authentication is disabled for root.
.Pp
Root login with RSA authentication when the
.Ar command
option has been
specified will be allowed regardless of the value of this setting
(which may be useful for taking remote backups even if root login is
normally not allowed).
.It Cm PidFile
Specifies the file that contains the process identifier of the
.Nm
daemon.
The default is
.Pa /var/run/sshd.pid .
.It Cm Port
Specifies the port number that
.Nm
listens on.
The default is 22.
Multiple options of this type are permitted.
.It Cm PrintMotd
Specifies whether
.Nm
should print
.Pa /etc/motd
when a user logs in interactively.
(On some systems it is also printed by the shell,
.Pa /etc/profile ,
or equivalent.)
The default is
.Dq yes .
.It Cm Protocol
Specifies the protocol versions
.Nm
should support.
The possible values are
.Dq 1
and
.Dq 2 .
Multiple versions must be comma-separated.
The default is
.Dq 1 .
.It Cm RandomSeed
Obsolete - accepted and ignored with a warning.
Random number generation uses other techniques.
.It Cm RhostsAuthentication
Specifies whether authentication using rhosts or
.Pa /etc/hosts.equiv
files is sufficient.
Normally, this method should not be permitted because it is insecure.
.Cm RhostsRSAAuthentication
should be used
instead, because it performs RSA-based host authentication in addition
to normal rhosts or
.Pa /etc/hosts.equiv
authentication.
The default is
.Dq no .
.It Cm RhostsRSAAuthentication
Specifies whether rhosts or
.Pa /etc/hosts.equiv
authentication together
with successful RSA host authentication is allowed.
The default is
.Dq no .
.It Cm RSAAuthentication
Specifies whether pure RSA authentication is allowed.
The default is
.Dq yes .
Note that this option applies to protocol version 1 only.
.It Cm ServerKeyBits
Defines the number of bits in the server key.
The minimum value is 512, and the default is 768.
.It Cm SkeyAuthentication
Specifies whether
.Xr skey 1
authentication is allowed.
The default is
.Dq yes .
Note that OPIE authentication is enabled only if
.Cm PasswordAuthentication
is allowed, too.
.It Cm StrictModes
Specifies whether
.Nm
should check file modes and ownership of the
user's files and home directory before accepting login.
This is normally desirable because novices sometimes accidentally leave their
directory or files world-writable.
The default is
.Dq yes .
.It Cm Subsystem
Configures an external subsystem (e.g. file transfer daemon).
Arguments should be a subsystem name and a command to execute upon subsystem request.
The command
.Xr sftp-server 8
implements the
.Dq sftp
file transfer subsystem.
By default no subsystems are defined.
Note that this option applies to protocol version 2 only.
.It Cm SyslogFacility
Gives the facility code that is used when logging messages from
.Nm sshd .
The possible values are: DAEMON, USER, AUTH, LOCAL0, LOCAL1, LOCAL2,
LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7.
The default is AUTH.
.It Cm UseLogin
Specifies whether
.Xr login 1
is used for interactive login sessions.
Note that
.Xr login 1
is never used for remote command execution.
The default is
.Dq no .
.It Cm X11DisplayOffset
Specifies the first display number available for
.Nm sshd Ns 's
X11 forwarding.
This prevents
.Nm
from interfering with real X11 servers.
The default is 10.
.It Cm X11Forwarding
Specifies whether X11 forwarding is permitted.
The default is
.Dq no .
Note that disabling X11 forwarding does not improve security in any
way, as users can always install their own forwarders.
.It Cm XAuthLocation
Specifies the location of the
.Xr xauth 1
program.
The default is
.Pa /usr/X11R6/bin/xauth .
.El
.Sh LOGIN PROCESS
When a user successfully logs in,
.Nm
does the following:
.Bl -enum -offset indent
.It
If the login is on a tty, and no command has been specified,
prints last login time and
.Pa /etc/motd
(unless prevented in the configuration file or by
.Pa $HOME/.hushlogin ;
see the
.Sx FILES
section).
.It
If the login is on a tty, records login time.
.It
Checks
.Pa /etc/nologin and
.Pa /var/run/nologin ;
if one exists, it prints the contents and quits
(unless root).
.It
Changes to run with normal user privileges.
.It
Sets up basic environment.
.It
Reads
.Pa $HOME/.ssh/environment
if it exists.
.It
Changes to user's home directory.
.It
If
.Pa $HOME/.ssh/rc
exists, runs it; else if
.Pa /etc/ssh/sshrc
exists, runs
it; otherwise runs
.Xr xauth 1 .
The
.Dq rc
files are given the X11
authentication protocol and cookie (if applicable) in standard input.
.It
Runs user's shell or command.
.El
.Sh AUTHORIZED_KEYS FILE FORMAT
The
.Pa $HOME/.ssh/authorized_keys
file lists the RSA keys that are
permitted for RSA authentication in SSH protocols 1.3 and 1.5
Similarly, the
.Pa $HOME/.ssh/authorized_keys2
file lists the DSA keys that are
permitted for DSA authentication in SSH protocol 2.0.
Each line of the file contains one
key (empty lines and lines starting with a
.Ql #
are ignored as
comments).
Each line consists of the following fields, separated by
spaces: options, bits, exponent, modulus, comment.
The options field
is optional; its presence is determined by whether the line starts
with a number or not (the option field never starts with a number).
The bits, exponent, modulus and comment fields give the RSA key; the
comment field is not used for anything (but may be convenient for the
user to identify the key).
.Pp
Note that lines in this file are usually several hundred bytes long
(because of the size of the RSA key modulus).
You don't want to type them in; instead, copy the
.Pa identity.pub
file and edit it.
.Pp
The options (if present) consist of comma-separated option
specifications.
No spaces are permitted, except within double quotes.
The following option specifications are supported:
.Bl -tag -width Ds
.It Cm from="pattern-list"
Specifies that in addition to RSA authentication, the canonical name
of the remote host must be present in the comma-separated list of
patterns
.Pf ( Ql *
and
.Ql ?
serve as wildcards).
The list may also contain
patterns negated by prefixing them with
.Ql ! ;
if the canonical host name matches a negated pattern, the key is not accepted.
The purpose
of this option is to optionally increase security: RSA authentication
by itself does not trust the network or name servers or anything (but
the key); however, if somebody somehow steals the key, the key
permits an intruder to log in from anywhere in the world.
This additional option makes using a stolen key more difficult (name
servers and/or routers would have to be compromised in addition to
just the key).
.It Cm command="command"
Specifies that the command is executed whenever this key is used for
authentication.
The command supplied by the user (if any) is ignored.
The command is run on a pty if the connection requests a pty;
otherwise it is run without a tty.
A quote may be included in the command by quoting it with a backslash.
This option might be useful
to restrict certain RSA keys to perform just a specific operation.
An example might be a key that permits remote backups but nothing else.
Note that the client may specify TCP/IP and/or X11
forwarding unless they are explicitly prohibited.
.It Cm environment="NAME=value"
Specifies that the string is to be added to the environment when
logging in using this key.
Environment variables set this way
override other default environment values.
Multiple options of this type are permitted.
.It Cm no-port-forwarding
Forbids TCP/IP forwarding when this key is used for authentication.
Any port forward requests by the client will return an error.
This might be used, e.g., in connection with the
.Cm command
option.
.It Cm no-X11-forwarding
Forbids X11 forwarding when this key is used for authentication.
Any X11 forward requests by the client will return an error.
.It Cm no-agent-forwarding
Forbids authentication agent forwarding when this key is used for
authentication.
.It Cm no-pty
Prevents tty allocation (a request to allocate a pty will fail).
.El
.Ss Examples
.Bd -literal
1024 33 12121...312314325 ylo@foo.bar
from="*.niksula.hut.fi,!pc.niksula.hut.fi" 1024 35 23...2334 ylo@niksula
command="dump /home",no-pty,no-port-forwarding 1024 33 23...2323 backup.hut.fi
.Ed
.Sh SSH_KNOWN_HOSTS FILE FORMAT
The
.Pa /etc/ssh/ssh_known_hosts ,
.Pa /etc/ssh/ssh_known_hosts2 ,
.Pa $HOME/.ssh/known_hosts ,
and
.Pa $HOME/.ssh/known_hosts2
files contain host public keys for all known hosts.
The global file should
be prepared by the administrator (optional), and the per-user file is
maintained automatically: whenever the user connects from an unknown host
its key is added to the per-user file.
.Pp
Each line in these files contains the following fields: hostnames,
bits, exponent, modulus, comment.
The fields are separated by spaces.
.Pp
Hostnames is a comma-separated list of patterns ('*' and '?' act as
wildcards); each pattern in turn is matched against the canonical host
name (when authenticating a client) or against the user-supplied
name (when authenticating a server).
A pattern may also be preceded by
.Ql !
to indicate negation: if the host name matches a negated
pattern, it is not accepted (by that line) even if it matched another
pattern on the line.
.Pp
Bits, exponent, and modulus are taken directly from the RSA host key; they
can be obtained, e.g., from
.Pa /etc/ssh/ssh_host_key.pub .
The optional comment field continues to the end of the line, and is not used.
.Pp
Lines starting with
.Ql #
and empty lines are ignored as comments.
.Pp
When performing host authentication, authentication is accepted if any
matching line has the proper key.
It is thus permissible (but not
recommended) to have several lines or different host keys for the same
names.
This will inevitably happen when short forms of host names
from different domains are put in the file.
It is possible
that the files contain conflicting information; authentication is
accepted if valid information can be found from either file.
.Pp
Note that the lines in these files are typically hundreds of characters
long, and you definitely don't want to type in the host keys by hand.
Rather, generate them by a script
or by taking
.Pa /etc/ssh/ssh_host_key.pub
and adding the host names at the front.
.Ss Examples
.Bd -literal
closenet,closenet.hut.fi,...,130.233.208.41 1024 37 159...93 closenet.hut.fi
.Ed
.Sh FILES
.Bl -tag -width Ds
.It Pa /etc/ssh/sshd_config
Contains configuration data for
.Nm sshd .
This file should be writable by root only, but it is recommended
(though not necessary) that it be world-readable.
.It Pa /etc/ssh/ssh_host_key
Contains the private part of the host key.
This file should only be owned by root, readable only by root, and not
accessible to others.
Note that
.Nm
does not start if this file is group/world-accessible.
.It Pa /etc/ssh/ssh_host_key.pub
Contains the public part of the host key.
This file should be world-readable but writable only by
root.
Its contents should match the private part.
This file is not
really used for anything; it is only provided for the convenience of
the user so its contents can be copied to known hosts files.
These two files are created using
.Xr ssh-keygen 1 .
.It Pa /var/run/sshd.pid
Contains the process ID of the
.Nm
listening for connections (if there are several daemons running
concurrently for different ports, this contains the pid of the one
started last).
The content of this file is not sensitive; it can be world-readable.
.It Pa $HOME/.ssh/authorized_keys
Lists the RSA keys that can be used to log into the user's account.
This file must be readable by root (which may on some machines imply
it being world-readable if the user's home directory resides on an NFS
volume).
It is recommended that it not be accessible by others.
The format of this file is described above.
Users will place the contents of their
.Pa identity.pub
files into this file, as described in
.Xr ssh-keygen 1 .
.It Pa $HOME/.ssh/authorized_keys2
Lists the DSA keys that can be used to log into the user's account.
This file must be readable by root (which may on some machines imply
it being world-readable if the user's home directory resides on an NFS
volume).
It is recommended that it not be accessible by others.
The format of this file is described above.
Users will place the contents of their
.Pa id_dsa.pub
files into this file, as described in
.Xr ssh-keygen 1 .
.It Pa "/etc/ssh/ssh_known_hosts" and "$HOME/.ssh/known_hosts"
These files are consulted when using rhosts with RSA host
authentication to check the public key of the host.
The key must be listed in one of these files to be accepted.
The client uses the same files
to verify that the remote host is the one it intended to connect.
These files should be writable only by root/the owner.
.Pa /etc/ssh/ssh_known_hosts
should be world-readable, and
.Pa $HOME/.ssh/known_hosts
can but need not be world-readable.
.It Pa /etc/nologin
If this file exists,
.Nm
refuses to let anyone except root log in.
The contents of the file
are displayed to anyone trying to log in, and non-root connections are
refused.
The file should be world-readable.
.It Pa /etc/hosts.allow
If compiled with
.Sy LIBWRAP
support, tcp-wrappers access controls may be defined here as described in
.Xr hosts_access 5 .
.It Pa $HOME/.rhosts
This file contains host-username pairs, separated by a space, one per
line.
The given user on the corresponding host is permitted to log in
without password.
The same file is used by rlogind and rshd.
The file must
be writable only by the user; it is recommended that it not be
accessible by others.
.Pp
If is also possible to use netgroups in the file.
Either host or user
name may be of the form +@groupname to specify all hosts or all users
in the group.
.It Pa $HOME/.shosts
For ssh,
this file is exactly the same as for
.Pa .rhosts .
However, this file is
not used by rlogin and rshd, so using this permits access using SSH only.
.It Pa /etc/hosts.equiv
This file is used during
.Pa .rhosts
authentication.
In the simplest form, this file contains host names, one per line.
Users on
those hosts are permitted to log in without a password, provided they
have the same user name on both machines.
The host name may also be
followed by a user name; such users are permitted to log in as
.Em any
user on this machine (except root).
Additionally, the syntax
.Dq +@group
can be used to specify netgroups.
Negated entries start with
.Ql \&- .
.Pp
If the client host/user is successfully matched in this file, login is
automatically permitted provided the client and server user names are the
same.
Additionally, successful RSA host authentication is normally required.
This file must be writable only by root; it is recommended
that it be world-readable.
.Pp
.Sy "Warning: It is almost never a good idea to use user names in"
.Pa hosts.equiv .
Beware that it really means that the named user(s) can log in as
.Em anybody ,
which includes bin, daemon, adm, and other accounts that own critical
binaries and directories.
Using a user name practically grants the user root access.
The only valid use for user names that I can think
of is in negative entries.
.Pp
Note that this warning also applies to rsh/rlogin.
.It Pa /etc/ssh/shosts.equiv
This is processed exactly as
.Pa /etc/hosts.equiv .
However, this file may be useful in environments that want to run both
rsh/rlogin and ssh.
.It Pa $HOME/.ssh/environment
This file is read into the environment at login (if it exists).
It can only contain empty lines, comment lines (that start with
.Ql # ) ,
and assignment lines of the form name=value.
The file should be writable
only by the user; it need not be readable by anyone else.
.It Pa $HOME/.ssh/rc
If this file exists, it is run with
.Pa /bin/sh
after reading the
environment files but before starting the user's shell or command.
If X11 spoofing is in use, this will receive the "proto cookie" pair in
standard input (and
.Ev DISPLAY
in environment).
This must call
.Xr xauth 1
in that case.
.Pp
The primary purpose of this file is to run any initialization routines
which may be needed before the user's home directory becomes
accessible; AFS is a particular example of such an environment.
.Pp
This file will probably contain some initialization code followed by
something similar to:
.Bd -literal -offset indent
if [ -n "$DISPLAY" ] && read proto cookie; then
echo add $DISPLAY $proto $cookie | xauth -q -
fi
.Ed
.Pp
If this file does not exist,
.Pa /etc/ssh/sshrc
is run, and if that
does not exist either,
.Xr xauth 1
is used to store the cookie.
.Pp
This file should be writable only by the user, and need not be
readable by anyone else.
.It Pa /etc/ssh/sshrc
Like
.Pa $HOME/.ssh/rc .
This can be used to specify
machine-specific login-time initializations globally.
This file should be writable only by root, and should be world-readable.
.El
.Sh AUTHOR
OpenSSH
is a derivative of the original (free) ssh 1.2.12 release by Tatu Ylonen,
but with bugs removed and newer features re-added.
Rapidly after the
1.2.12 release, newer versions of the original ssh bore successively
more restrictive licenses, and thus demand for a free version was born.
.Pp
This version of OpenSSH
.Bl -bullet
.It
has all components of a restrictive nature (i.e., patents, see
.Xr ssl 8 )
directly removed from the source code; any licensed or patented components
are chosen from
external libraries.
.It
has been updated to support SSH protocol 1.5 and 2, making it compatible with
all other SSH clients and servers.
.It
contains added support for
.Xr kerberos 8
authentication and ticket passing.
.It
supports one-time password authentication with
.Xr skey 1 .
.El
.Pp
OpenSSH has been created by Aaron Campbell, Bob Beck, Markus Friedl,
Niels Provos, Theo de Raadt, and Dug Song.
.Pp
The support for SSH protocol 2 was written by Markus Friedl.
.Sh SEE ALSO
.Xr scp 1 ,
.Xr sftp-server 8 ,
.Xr ssh 1 ,
.Xr ssh-add 1 ,
.Xr ssh-agent 1 ,
.Xr ssh-keygen 1 ,
.Xr ssl 8 ,
.Xr rlogin 1 ,
.Xr rsh 1