freebsd-skq/contrib/apr-util/crypto/apr_crypto.c

530 lines
18 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <stdio.h>
#include "apu_config.h"
#include "apu.h"
#include "apr_pools.h"
#include "apr_dso.h"
#include "apr_strings.h"
#include "apr_hash.h"
#include "apr_thread_mutex.h"
#include "apr_lib.h"
#if APU_HAVE_CRYPTO
#include "apu_internal.h"
#include "apr_crypto_internal.h"
#include "apr_crypto.h"
#include "apu_version.h"
static apr_hash_t *drivers = NULL;
#define ERROR_SIZE 1024
#define CLEANUP_CAST (apr_status_t (*)(void*))
#define APR_TYPEDEF_STRUCT(type, incompletion) \
struct type { \
incompletion \
void *unk[]; \
};
APR_TYPEDEF_STRUCT(apr_crypto_t,
apr_pool_t *pool;
apr_crypto_driver_t *provider;
)
APR_TYPEDEF_STRUCT(apr_crypto_key_t,
apr_pool_t *pool;
apr_crypto_driver_t *provider;
const apr_crypto_t *f;
)
APR_TYPEDEF_STRUCT(apr_crypto_block_t,
apr_pool_t *pool;
apr_crypto_driver_t *provider;
const apr_crypto_t *f;
)
typedef struct apr_crypto_clear_t {
void *buffer;
apr_size_t size;
} apr_crypto_clear_t;
#if !APU_DSO_BUILD
#define DRIVER_LOAD(name,driver_name,pool,params,rv,result) \
{ \
extern const apr_crypto_driver_t driver_name; \
apr_hash_set(drivers,name,APR_HASH_KEY_STRING,&driver_name); \
if (driver_name.init) { \
rv = driver_name.init(pool, params, result); \
} \
*driver = &driver_name; \
}
#endif
static apr_status_t apr_crypto_term(void *ptr)
{
/* set drivers to NULL so init can work again */
drivers = NULL;
/* Everything else we need is handled by cleanups registered
* when we created mutexes and loaded DSOs
*/
return APR_SUCCESS;
}
APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool)
{
apr_status_t ret = APR_SUCCESS;
apr_pool_t *parent;
if (drivers != NULL) {
return APR_SUCCESS;
}
/* Top level pool scope, need process-scope lifetime */
for (parent = apr_pool_parent_get(pool);
parent && parent != pool;
parent = apr_pool_parent_get(pool))
pool = parent;
#if APU_DSO_BUILD
/* deprecate in 2.0 - permit implicit initialization */
apu_dso_init(pool);
#endif
drivers = apr_hash_make(pool);
apr_pool_cleanup_register(pool, NULL, apr_crypto_term,
apr_pool_cleanup_null);
return ret;
}
static apr_status_t crypto_clear(void *ptr)
{
apr_crypto_clear_t *clear = (apr_crypto_clear_t *)ptr;
memset(clear->buffer, 0, clear->size);
clear->buffer = NULL;
clear->size = 0;
return APR_SUCCESS;
}
APU_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool,
void *buffer, apr_size_t size)
{
apr_crypto_clear_t *clear = apr_palloc(pool, sizeof(apr_crypto_clear_t));
clear->buffer = buffer;
clear->size = size;
apr_pool_cleanup_register(pool, clear, crypto_clear,
apr_pool_cleanup_null);
return APR_SUCCESS;
}
APU_DECLARE(apr_status_t) apr_crypto_get_driver(
const apr_crypto_driver_t **driver, const char *name,
const char *params, const apu_err_t **result, apr_pool_t *pool)
{
#if APU_DSO_BUILD
char modname[32];
char symname[34];
apr_dso_handle_t *dso;
apr_dso_handle_sym_t symbol;
#endif
apr_status_t rv;
if (result) {
*result = NULL; /* until further notice */
}
#if APU_DSO_BUILD
rv = apu_dso_mutex_lock();
if (rv) {
return rv;
}
#endif
*driver = apr_hash_get(drivers, name, APR_HASH_KEY_STRING);
if (*driver) {
#if APU_DSO_BUILD
apu_dso_mutex_unlock();
#endif
return APR_SUCCESS;
}
#if APU_DSO_BUILD
/* The driver DSO must have exactly the same lifetime as the
* drivers hash table; ignore the passed-in pool */
pool = apr_hash_pool_get(drivers);
#if defined(NETWARE)
apr_snprintf(modname, sizeof(modname), "crypto%s.nlm", name);
#elif defined(WIN32) || defined(__CYGWIN__)
apr_snprintf(modname, sizeof(modname),
"apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".dll", name);
#else
apr_snprintf(modname, sizeof(modname),
"apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".so", name);
#endif
apr_snprintf(symname, sizeof(symname), "apr_crypto_%s_driver", name);
rv = apu_dso_load(&dso, &symbol, modname, symname, pool);
if (rv == APR_SUCCESS || rv == APR_EINIT) { /* previously loaded?!? */
*driver = symbol;
name = apr_pstrdup(pool, name);
apr_hash_set(drivers, name, APR_HASH_KEY_STRING, *driver);
rv = APR_SUCCESS;
if ((*driver)->init) {
rv = (*driver)->init(pool, params, result);
}
}
apu_dso_mutex_unlock();
if (APR_SUCCESS != rv && result && !*result) {
char *buffer = apr_pcalloc(pool, ERROR_SIZE);
apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t));
if (err && buffer) {
apr_dso_error(dso, buffer, ERROR_SIZE - 1);
err->msg = buffer;
err->reason = apr_pstrdup(pool, modname);
*result = err;
}
}
#else /* not builtin and !APR_HAS_DSO => not implemented */
rv = APR_ENOTIMPL;
/* Load statically-linked drivers: */
#if APU_HAVE_OPENSSL
if (name[0] == 'o' && !strcmp(name, "openssl")) {
DRIVER_LOAD("openssl", apr_crypto_openssl_driver, pool, params, rv, result);
}
#endif
#if APU_HAVE_NSS
if (name[0] == 'n' && !strcmp(name, "nss")) {
DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result);
}
#endif
#if APU_HAVE_MSCAPI
if (name[0] == 'm' && !strcmp(name, "mscapi")) {
DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result);
}
#endif
#if APU_HAVE_MSCNG
if (name[0] == 'm' && !strcmp(name, "mscng")) {
DRIVER_LOAD("mscng", apr_crypto_mscng_driver, pool, params, rv, result);
}
#endif
#endif
return rv;
}
/**
* @brief Return the name of the driver.
*
* @param driver - The driver in use.
* @return The name of the driver.
*/
APU_DECLARE(const char *)apr_crypto_driver_name (
const apr_crypto_driver_t *driver)
{
return driver->name;
}
/**
* @brief Get the result of the last operation on a context. If the result
* is NULL, the operation was successful.
* @param result - the result structure
* @param f - context pointer
* @return APR_SUCCESS for success
*/
APU_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result,
const apr_crypto_t *f)
{
return f->provider->error(result, f);
}
/**
* @brief Create a context for supporting encryption. Keys, certificates,
* algorithms and other parameters will be set per context. More than
* one context can be created at one time. A cleanup will be automatically
* registered with the given pool to guarantee a graceful shutdown.
* @param f - context pointer will be written here
* @param driver - driver to use
* @param params - array of key parameters
* @param pool - process pool
* @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
* if the engine cannot be initialised.
* @remarks NSS: currently no params are supported.
* @remarks OpenSSL: the params can have "engine" as a key, followed by an equal
* sign and a value.
*/
APU_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f,
const apr_crypto_driver_t *driver, const char *params, apr_pool_t *pool)
{
return driver->make(f, driver, params, pool);
}
/**
* @brief Get a hash table of key types, keyed by the name of the type against
* an integer pointer constant.
*
* @param types - hashtable of key types keyed to constants.
* @param f - encryption context
* @return APR_SUCCESS for success
*/
APU_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types,
const apr_crypto_t *f)
{
return f->provider->get_block_key_types(types, f);
}
/**
* @brief Get a hash table of key modes, keyed by the name of the mode against
* an integer pointer constant.
*
* @param modes - hashtable of key modes keyed to constants.
* @param f - encryption context
* @return APR_SUCCESS for success
*/
APU_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes,
const apr_crypto_t *f)
{
return f->provider->get_block_key_modes(modes, f);
}
/**
* @brief Create a key from the given passphrase. By default, the PBKDF2
* algorithm is used to generate the key from the passphrase. It is expected
* that the same pass phrase will generate the same key, regardless of the
* backend crypto platform used. The key is cleaned up when the context
* is cleaned, and may be reused with multiple encryption or decryption
* operations.
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
* *key is not NULL, *key must point at a previously created structure.
* @param key The key returned, see note.
* @param ivSize The size of the initialisation vector will be returned, based
* on whether an IV is relevant for this type of crypto.
* @param pass The passphrase to use.
* @param passLen The passphrase length in bytes
* @param salt The salt to use.
* @param saltLen The salt length in bytes
* @param type 3DES_192, AES_128, AES_192, AES_256.
* @param mode Electronic Code Book / Cipher Block Chaining.
* @param doPad Pad if necessary.
* @param iterations Number of iterations to use in algorithm
* @param f The context to use.
* @param p The pool to use.
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
* not known. APR_EPADDING if padding was requested but is not supported.
* APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key,
apr_size_t *ivSize, const char *pass, apr_size_t passLen,
const unsigned char * salt, apr_size_t saltLen,
const apr_crypto_block_key_type_e type,
const apr_crypto_block_key_mode_e mode, const int doPad,
const int iterations, const apr_crypto_t *f, apr_pool_t *p)
{
return f->provider->passphrase(key, ivSize, pass, passLen, salt, saltLen,
type, mode, doPad, iterations, f, p);
}
/**
* @brief Initialise a context for encrypting arbitrary data using the given key.
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
* *ctx is not NULL, *ctx must point at a previously created structure.
* @param ctx The block context returned, see note.
* @param iv Optional initialisation vector. If the buffer pointed to is NULL,
* an IV will be created at random, in space allocated from the pool.
* If the buffer pointed to is not NULL, the IV in the buffer will be
* used.
* @param key The key structure to use.
* @param blockSize The block size of the cipher.
* @param p The pool to use.
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
* Returns APR_EINIT if the backend failed to initialise the context. Returns
* APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init(
apr_crypto_block_t **ctx, const unsigned char **iv,
const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p)
{
return key->provider->block_encrypt_init(ctx, iv, key, blockSize, p);
}
/**
* @brief Encrypt data provided by in, write it to out.
* @note The number of bytes written will be written to outlen. If
* out is NULL, outlen will contain the maximum size of the
* buffer needed to hold the data, including any data
* generated by apr_crypto_block_encrypt_finish below. If *out points
* to NULL, a buffer sufficiently large will be created from
* the pool provided. If *out points to a not-NULL value, this
* value will be used as a buffer instead.
* @param out Address of a buffer to which data will be written,
* see note.
* @param outlen Length of the output will be written here.
* @param in Address of the buffer to read.
* @param inlen Length of the buffer to read.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
* not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out,
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
apr_crypto_block_t *ctx)
{
return ctx->provider->block_encrypt(out, outlen, in, inlen, ctx);
}
/**
* @brief Encrypt final data block, write it to out.
* @note If necessary the final block will be written out after being
* padded. Typically the final block will be written to the
* same buffer used by apr_crypto_block_encrypt, offset by the
* number of bytes returned as actually written by the
* apr_crypto_block_encrypt() call. After this call, the context
* is cleaned and can be reused by apr_crypto_block_encrypt_init().
* @param out Address of a buffer to which data will be written. This
* buffer must already exist, and is usually the same
* buffer used by apr_evp_crypt(). See note.
* @param outlen Length of the output will be written here.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred.
* @return APR_EPADDING if padding was enabled and the block was incorrectly
* formatted.
* @return APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out,
apr_size_t *outlen, apr_crypto_block_t *ctx)
{
return ctx->provider->block_encrypt_finish(out, outlen, ctx);
}
/**
* @brief Initialise a context for decrypting arbitrary data using the given key.
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
* *ctx is not NULL, *ctx must point at a previously created structure.
* @param ctx The block context returned, see note.
* @param blockSize The block size of the cipher.
* @param iv Optional initialisation vector.
* @param key The key structure to use.
* @param p The pool to use.
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
* Returns APR_EINIT if the backend failed to initialise the context. Returns
* APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init(
apr_crypto_block_t **ctx, apr_size_t *blockSize,
const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p)
{
return key->provider->block_decrypt_init(ctx, blockSize, iv, key, p);
}
/**
* @brief Decrypt data provided by in, write it to out.
* @note The number of bytes written will be written to outlen. If
* out is NULL, outlen will contain the maximum size of the
* buffer needed to hold the data, including any data
* generated by apr_crypto_block_decrypt_finish below. If *out points
* to NULL, a buffer sufficiently large will be created from
* the pool provided. If *out points to a not-NULL value, this
* value will be used as a buffer instead.
* @param out Address of a buffer to which data will be written,
* see note.
* @param outlen Length of the output will be written here.
* @param in Address of the buffer to read.
* @param inlen Length of the buffer to read.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
* not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out,
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
apr_crypto_block_t *ctx)
{
return ctx->provider->block_decrypt(out, outlen, in, inlen, ctx);
}
/**
* @brief Decrypt final data block, write it to out.
* @note If necessary the final block will be written out after being
* padded. Typically the final block will be written to the
* same buffer used by apr_crypto_block_decrypt, offset by the
* number of bytes returned as actually written by the
* apr_crypto_block_decrypt() call. After this call, the context
* is cleaned and can be reused by apr_crypto_block_decrypt_init().
* @param out Address of a buffer to which data will be written. This
* buffer must already exist, and is usually the same
* buffer used by apr_evp_crypt(). See note.
* @param outlen Length of the output will be written here.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred.
* @return APR_EPADDING if padding was enabled and the block was incorrectly
* formatted.
* @return APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out,
apr_size_t *outlen, apr_crypto_block_t *ctx)
{
return ctx->provider->block_decrypt_finish(out, outlen, ctx);
}
/**
* @brief Clean encryption / decryption context.
* @note After cleanup, a context is free to be reused if necessary.
* @param ctx The block context to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx)
{
return ctx->provider->block_cleanup(ctx);
}
/**
* @brief Clean encryption / decryption context.
* @note After cleanup, a context is free to be reused if necessary.
* @param f The context to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f)
{
return f->provider->cleanup(f);
}
/**
* @brief Shutdown the crypto library.
* @note After shutdown, it is expected that the init function can be called again.
* @param driver - driver to use
* @return Returns APR_ENOTIMPL if not supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver)
{
return driver->shutdown();
}
#endif /* APU_HAVE_CRYPTO */