freebsd-skq/usr.sbin/pmcstat/pmcpl_calltree.c
fabient 489a0be28c - Support inlined location in calltree output.
In case of multiple level of inlining all the locations are flattened.
  Require recent binutils/addr2line (head works or binutils from ports
  with the right $PATH order).
- Multiple fixes in the calltree output (recursion case, ...)
- Fix the calltree top view that previously hide some shared nodes.

Tested with Kcachegrind(kdesdk4)/qcachegrind(head).

Sponsored by: NETASQ
2012-03-28 16:23:40 +00:00

1198 lines
27 KiB
C

/*-
* Copyright (c) 2012, Fabien Thomas
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Process hwpmc(4) samples as calltree.
*
* Output file format compatible with Kcachegrind (kdesdk).
* Handle top mode with a sorted tree display.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/queue.h>
#include <assert.h>
#include <curses.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <pmc.h>
#include <pmclog.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sysexits.h>
#include "pmcstat.h"
#include "pmcstat_log.h"
#include "pmcstat_top.h"
#include "pmcpl_calltree.h"
#define PMCPL_CT_GROWSIZE 4
static int pmcstat_skiplink = 0;
struct pmcpl_ct_node;
/* Get the sample value for PMC a. */
#define PMCPL_CT_SAMPLE(a, b) \
((a) < (b)->npmcs ? (b)->sb[a] : 0)
/* Get the sample value in percent related to rsamples. */
#define PMCPL_CT_SAMPLEP(a, b) \
(PMCPL_CT_SAMPLE(a, b) * 100.0 / rsamples->sb[a])
struct pmcpl_ct_sample {
int npmcs; /* Max pmc index available. */
unsigned *sb; /* Sample buffer for 0..npmcs. */
};
struct pmcpl_ct_arc {
struct pmcpl_ct_sample pcta_samples;
struct pmcpl_ct_sample pcta_callid;
unsigned pcta_call;
struct pmcpl_ct_node *pcta_child;
};
struct pmcpl_ct_instr {
uintfptr_t pctf_func;
struct pmcpl_ct_sample pctf_samples;
};
/*
* Each calltree node is tracked by a pmcpl_ct_node struct.
*/
struct pmcpl_ct_node {
struct pmcstat_image *pct_image;
uintfptr_t pct_func;
struct pmcstat_symbol *pct_sym;
pmcstat_interned_string pct_ifl;
pmcstat_interned_string pct_ifn;
struct pmcpl_ct_sample pct_samples;
int pct_narc;
int pct_arc_c;
struct pmcpl_ct_arc *pct_arc;
/* TODO: optimize for large number of items. */
int pct_ninstr;
int pct_instr_c;
struct pmcpl_ct_instr *pct_instr;
#define PMCPL_PCT_ADDR 0
#define PMCPL_PCT_NAME 1
char pct_type;
#define PMCPL_PCT_WHITE 0
#define PMCPL_PCT_GREY 1
#define PMCPL_PCT_BLACK 2
char pct_color;
};
struct pmcpl_ct_node_hash {
struct pmcpl_ct_node *pch_ctnode;
STAILQ_ENTRY(pmcpl_ct_node_hash) pch_next;
};
struct pmcpl_ct_sample pmcpl_ct_callid;
#define PMCPL_CT_MAXCOL PMC_CALLCHAIN_DEPTH_MAX
#define PMCPL_CT_MAXLINE 1024 /* TODO: dynamic. */
struct pmcpl_ct_line {
unsigned ln_sum;
unsigned ln_index;
};
struct pmcpl_ct_line pmcpl_ct_topmax[PMCPL_CT_MAXLINE+1];
struct pmcpl_ct_node
*pmcpl_ct_topscreen[PMCPL_CT_MAXCOL+1][PMCPL_CT_MAXLINE+1];
/*
* All nodes indexed by function/image name are placed in a hash table.
*/
static STAILQ_HEAD(,pmcpl_ct_node_hash) pmcpl_ct_node_hash[PMCSTAT_NHASH];
/*
* Root node for the graph.
*/
static struct pmcpl_ct_node *pmcpl_ct_root;
/*
* Prototypes
*/
/*
* Initialize a samples.
*/
static void
pmcpl_ct_samples_init(struct pmcpl_ct_sample *samples)
{
samples->npmcs = 0;
samples->sb = NULL;
}
/*
* Free a samples.
*/
static void
pmcpl_ct_samples_free(struct pmcpl_ct_sample *samples)
{
samples->npmcs = 0;
free(samples->sb);
samples->sb = NULL;
}
/*
* Grow a sample block to store pmcstat_npmcs PMCs.
*/
static void
pmcpl_ct_samples_grow(struct pmcpl_ct_sample *samples)
{
int npmcs;
/* Enough storage. */
if (pmcstat_npmcs <= samples->npmcs)
return;
npmcs = samples->npmcs +
max(pmcstat_npmcs - samples->npmcs, PMCPL_CT_GROWSIZE);
samples->sb = realloc(samples->sb, npmcs * sizeof(unsigned));
if (samples->sb == NULL)
errx(EX_SOFTWARE, "ERROR: out of memory");
bzero((char *)samples->sb + samples->npmcs * sizeof(unsigned),
(npmcs - samples->npmcs) * sizeof(unsigned));
samples->npmcs = npmcs;
}
/*
* Compute the sum of all root arcs.
*/
static void
pmcpl_ct_samples_root(struct pmcpl_ct_sample *samples)
{
int i, pmcin;
pmcpl_ct_samples_init(samples);
pmcpl_ct_samples_grow(samples);
for (i = 0; i < pmcpl_ct_root->pct_narc; i++)
for (pmcin = 0; pmcin < pmcstat_npmcs; pmcin++)
samples->sb[pmcin] += PMCPL_CT_SAMPLE(pmcin,
&pmcpl_ct_root->pct_arc[i].pcta_samples);
}
/*
* Grow the arc table.
*/
static void
pmcpl_ct_arc_grow(int cursize, int *maxsize, struct pmcpl_ct_arc **items)
{
int nmaxsize;
if (cursize < *maxsize)
return;
nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
*items = realloc(*items, nmaxsize * sizeof(struct pmcpl_ct_arc));
if (*items == NULL)
errx(EX_SOFTWARE, "ERROR: out of memory");
bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_arc),
(nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_arc));
*maxsize = nmaxsize;
}
/*
* Grow the instr table.
*/
static void
pmcpl_ct_instr_grow(int cursize, int *maxsize, struct pmcpl_ct_instr **items)
{
int nmaxsize;
if (cursize < *maxsize)
return;
nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
*items = realloc(*items, nmaxsize * sizeof(struct pmcpl_ct_instr));
if (*items == NULL)
errx(EX_SOFTWARE, "ERROR: out of memory");
bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_instr),
(nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_instr));
*maxsize = nmaxsize;
}
/*
* Add a new instruction sample to given node.
*/
static void
pmcpl_ct_instr_add(struct pmcpl_ct_node *ct, int pmcin,
uintfptr_t pc, unsigned v)
{
int i;
struct pmcpl_ct_instr *in;
for (i = 0; i<ct->pct_ninstr; i++) {
if (ct->pct_instr[i].pctf_func == pc) {
in = &ct->pct_instr[i];
pmcpl_ct_samples_grow(&in->pctf_samples);
in->pctf_samples.sb[pmcin] += v;
return;
}
}
pmcpl_ct_instr_grow(ct->pct_ninstr, &ct->pct_instr_c, &ct->pct_instr);
in = &ct->pct_instr[ct->pct_ninstr];
in->pctf_func = pc;
pmcpl_ct_samples_init(&in->pctf_samples);
pmcpl_ct_samples_grow(&in->pctf_samples);
in->pctf_samples.sb[pmcin] = v;
ct->pct_ninstr++;
}
/*
* Allocate a new node.
*/
static struct pmcpl_ct_node *
pmcpl_ct_node_allocate(void)
{
struct pmcpl_ct_node *ct;
if ((ct = malloc(sizeof(*ct))) == NULL)
err(EX_OSERR, "ERROR: Cannot allocate callgraph node");
pmcpl_ct_samples_init(&ct->pct_samples);
ct->pct_sym = NULL;
ct->pct_image = NULL;
ct->pct_func = 0;
ct->pct_narc = 0;
ct->pct_arc_c = 0;
ct->pct_arc = NULL;
ct->pct_ninstr = 0;
ct->pct_instr_c = 0;
ct->pct_instr = NULL;
ct->pct_color = PMCPL_PCT_WHITE;
return (ct);
}
/*
* Free a node.
*/
static void
pmcpl_ct_node_free(struct pmcpl_ct_node *ct)
{
int i;
for (i = 0; i < ct->pct_narc; i++) {
pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_samples);
pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_callid);
}
pmcpl_ct_samples_free(&ct->pct_samples);
free(ct->pct_arc);
free(ct->pct_instr);
free(ct);
}
/*
* Clear the graph tag on each node.
*/
static void
pmcpl_ct_node_cleartag(void)
{
int i;
struct pmcpl_ct_node_hash *pch;
for (i = 0; i < PMCSTAT_NHASH; i++)
STAILQ_FOREACH(pch, &pmcpl_ct_node_hash[i], pch_next)
pch->pch_ctnode->pct_color = PMCPL_PCT_WHITE;
pmcpl_ct_root->pct_color = PMCPL_PCT_WHITE;
}
/*
* Print the callchain line by line with maximum cost at top.
*/
static int
pmcpl_ct_node_dumptop(int pmcin, struct pmcpl_ct_node *ct,
struct pmcpl_ct_sample *rsamples, int x, int *y)
{
int i, terminal;
struct pmcpl_ct_arc *arc;
if (ct->pct_color == PMCPL_PCT_GREY)
return 0;
if (x >= PMCPL_CT_MAXCOL) {
pmcpl_ct_topscreen[x][*y] = NULL;
return 1;
}
pmcpl_ct_topscreen[x][*y] = ct;
/*
* Check if this is a terminal node.
* We need to check that some samples exist
* for at least one arc for that PMC.
*/
terminal = 1;
for (i = 0; i < ct->pct_narc; i++) {
arc = &ct->pct_arc[i];
if (arc->pcta_child->pct_color != PMCPL_PCT_GREY &&
PMCPL_CT_SAMPLE(pmcin,
&arc->pcta_samples) != 0 &&
PMCPL_CT_SAMPLEP(pmcin,
&arc->pcta_samples) > pmcstat_threshold) {
terminal = 0;
break;
}
}
if (ct->pct_narc == 0 || terminal) {
pmcpl_ct_topscreen[x+1][*y] = NULL;
if (*y >= PMCPL_CT_MAXLINE)
return 1;
*y = *y + 1;
for (i=0; i < x; i++)
pmcpl_ct_topscreen[i][*y] =
pmcpl_ct_topscreen[i][*y - 1];
return 0;
}
ct->pct_color = PMCPL_PCT_GREY;
for (i = 0; i < ct->pct_narc; i++) {
if (PMCPL_CT_SAMPLE(pmcin,
&ct->pct_arc[i].pcta_samples) == 0)
continue;
if (PMCPL_CT_SAMPLEP(pmcin,
&ct->pct_arc[i].pcta_samples) > pmcstat_threshold) {
if (pmcpl_ct_node_dumptop(pmcin,
ct->pct_arc[i].pcta_child,
rsamples, x+1, y)) {
ct->pct_color = PMCPL_PCT_BLACK;
return 1;
}
}
}
ct->pct_color = PMCPL_PCT_BLACK;
return 0;
}
/*
* Compare two top line by sum.
*/
static int
pmcpl_ct_line_compare(const void *a, const void *b)
{
const struct pmcpl_ct_line *ct1, *ct2;
ct1 = (const struct pmcpl_ct_line *) a;
ct2 = (const struct pmcpl_ct_line *) b;
/* Sort in reverse order */
if (ct1->ln_sum < ct2->ln_sum)
return (1);
if (ct1->ln_sum > ct2->ln_sum)
return (-1);
return (0);
}
/*
* Format and display given PMC index.
*/
static void
pmcpl_ct_node_printtop(struct pmcpl_ct_sample *rsamples, int pmcin, int maxy)
{
#undef TS
#undef TSI
#define TS(x, y) (pmcpl_ct_topscreen[x][y])
#define TSI(x, y) (pmcpl_ct_topscreen[x][pmcpl_ct_topmax[y].ln_index])
int v_attrs, ns_len, vs_len, is_len, width, indentwidth, x, y;
float v;
char ns[30], vs[10], is[20];
struct pmcpl_ct_node *ct;
const char *space = " ";
/*
* Sort by line cost.
*/
for (y = 0; ; y++) {
ct = TS(1, y);
if (ct == NULL)
break;
pmcpl_ct_topmax[y].ln_sum = 0;
pmcpl_ct_topmax[y].ln_index = y;
for (x = 1; TS(x, y) != NULL; x++) {
pmcpl_ct_topmax[y].ln_sum +=
PMCPL_CT_SAMPLE(pmcin, &TS(x, y)->pct_samples);
}
}
qsort(pmcpl_ct_topmax, y, sizeof(pmcpl_ct_topmax[0]),
pmcpl_ct_line_compare);
pmcpl_ct_topmax[y].ln_index = y;
for (y = 0; y < maxy; y++) {
ct = TSI(1, y);
if (ct == NULL)
break;
if (y > 0)
PMCSTAT_PRINTW("\n");
/* Output sum. */
v = pmcpl_ct_topmax[y].ln_sum * 100.0 /
rsamples->sb[pmcin];
snprintf(vs, sizeof(vs), "%.1f", v);
v_attrs = PMCSTAT_ATTRPERCENT(v);
PMCSTAT_ATTRON(v_attrs);
PMCSTAT_PRINTW("%5.5s ", vs);
PMCSTAT_ATTROFF(v_attrs);
width = indentwidth = 5 + 1;
for (x = 1; (ct = TSI(x, y)) != NULL; x++) {
vs[0] = '\0'; vs_len = 0;
is[0] = '\0'; is_len = 0;
/* Format value. */
v = PMCPL_CT_SAMPLEP(pmcin, &ct->pct_samples);
if (v > pmcstat_threshold)
vs_len = snprintf(vs, sizeof(vs),
"(%.1f%%)", v);
v_attrs = PMCSTAT_ATTRPERCENT(v);
if (pmcstat_skiplink && v <= pmcstat_threshold) {
strlcpy(ns, ".", sizeof(ns));
ns_len = 1;
} else {
if (ct->pct_sym != NULL) {
ns_len = snprintf(ns, sizeof(ns), "%s",
pmcstat_string_unintern(ct->pct_sym->ps_name));
} else
ns_len = snprintf(ns, sizeof(ns), "%p",
(void *)ct->pct_func);
/* Format image. */
if (x == 1 ||
TSI(x-1, y)->pct_image != ct->pct_image)
is_len = snprintf(is, sizeof(is), "@%s",
pmcstat_string_unintern(ct->pct_image->pi_name));
/* Check for line wrap. */
width += ns_len + is_len + vs_len + 1;
}
if (width >= pmcstat_displaywidth) {
maxy--;
if (y >= maxy)
break;
PMCSTAT_PRINTW("\n%*s", indentwidth, space);
width = indentwidth + ns_len + is_len + vs_len;
}
PMCSTAT_ATTRON(v_attrs);
PMCSTAT_PRINTW("%s%s%s ", ns, is, vs);
PMCSTAT_ATTROFF(v_attrs);
}
}
}
/*
* Output top mode snapshot.
*/
void
pmcpl_ct_topdisplay(void)
{
int y;
struct pmcpl_ct_sample r, *rsamples;
rsamples = &r;
pmcpl_ct_samples_root(rsamples);
pmcpl_ct_node_cleartag();
PMCSTAT_PRINTW("%5.5s %s\n", "%SAMP", "CALLTREE");
y = 0;
if (pmcpl_ct_node_dumptop(pmcstat_pmcinfilter,
pmcpl_ct_root, rsamples, 0, &y))
PMCSTAT_PRINTW("...\n");
pmcpl_ct_topscreen[1][y] = NULL;
pmcpl_ct_node_printtop(rsamples,
pmcstat_pmcinfilter, pmcstat_displayheight - 2);
pmcpl_ct_samples_free(rsamples);
}
/*
* Handle top mode keypress.
*/
int
pmcpl_ct_topkeypress(int c, WINDOW *w)
{
switch (c) {
case 'f':
pmcstat_skiplink = !pmcstat_skiplink;
wprintw(w, "skip empty link %s",
pmcstat_skiplink ? "on" : "off");
break;
}
return 0;
}
/*
* Look for a callgraph node associated with pmc `pmcid' in the global
* hash table that corresponds to the given `pc' value in the process map
* `ppm'.
*/
static void
pmcpl_ct_node_update(struct pmcpl_ct_node *parent,
struct pmcpl_ct_node *child, int pmcin, unsigned v, int cd)
{
struct pmcpl_ct_arc *arc;
int i;
assert(parent != NULL);
/*
* Find related arc in parent node and
* increment the sample count.
*/
for (i = 0; i < parent->pct_narc; i++) {
if (parent->pct_arc[i].pcta_child == child) {
arc = &parent->pct_arc[i];
pmcpl_ct_samples_grow(&arc->pcta_samples);
arc->pcta_samples.sb[pmcin] += v;
/* Estimate call count. */
if (cd) {
pmcpl_ct_samples_grow(&arc->pcta_callid);
if (pmcpl_ct_callid.sb[pmcin] -
arc->pcta_callid.sb[pmcin] > 1)
arc->pcta_call++;
arc->pcta_callid.sb[pmcin] =
pmcpl_ct_callid.sb[pmcin];
}
return;
}
}
/*
* No arc found for us, add ourself to the parent.
*/
pmcpl_ct_arc_grow(parent->pct_narc,
&parent->pct_arc_c, &parent->pct_arc);
arc = &parent->pct_arc[parent->pct_narc];
pmcpl_ct_samples_grow(&arc->pcta_samples);
arc->pcta_samples.sb[pmcin] = v;
arc->pcta_call = 1;
if (cd) {
pmcpl_ct_samples_grow(&arc->pcta_callid);
arc->pcta_callid.sb[pmcin] = pmcpl_ct_callid.sb[pmcin];
}
arc->pcta_child = child;
parent->pct_narc++;
}
/*
* Lookup by image/pc.
*/
static struct pmcpl_ct_node *
pmcpl_ct_node_hash_lookup(struct pmcstat_image *image, uintfptr_t pc,
struct pmcstat_symbol *sym, char *fl, char *fn)
{
int i;
unsigned int hash;
struct pmcpl_ct_node *ct;
struct pmcpl_ct_node_hash *h;
pmcstat_interned_string ifl, ifn;
if (fn != NULL) {
ifl = pmcstat_string_intern(fl);
ifn = pmcstat_string_intern(fn);
} else {
ifl = 0;
ifn = 0;
}
for (hash = i = 0; i < (int)sizeof(uintfptr_t); i++)
hash += (pc >> i) & 0xFF;
hash &= PMCSTAT_HASH_MASK;
STAILQ_FOREACH(h, &pmcpl_ct_node_hash[hash], pch_next) {
ct = h->pch_ctnode;
assert(ct != NULL);
if (ct->pct_image == image && ct->pct_func == pc) {
if (fn == NULL)
return (ct);
if (ct->pct_type == PMCPL_PCT_NAME &&
ct->pct_ifl == ifl && ct->pct_ifn == ifn)
return (ct);
}
}
/*
* We haven't seen this (pmcid, pc) tuple yet, so allocate a
* new callgraph node and a new hash table entry for it.
*/
ct = pmcpl_ct_node_allocate();
if ((h = malloc(sizeof(*h))) == NULL)
err(EX_OSERR, "ERROR: Could not allocate callgraph node");
if (fn != NULL) {
ct->pct_type = PMCPL_PCT_NAME;
ct->pct_ifl = ifl;
ct->pct_ifn = ifn;
} else
ct->pct_type = PMCPL_PCT_ADDR;
ct->pct_image = image;
ct->pct_func = pc;
ct->pct_sym = sym;
h->pch_ctnode = ct;
STAILQ_INSERT_HEAD(&pmcpl_ct_node_hash[hash], h, pch_next);
return (ct);
}
/*
* Record a callchain.
*/
void
pmcpl_ct_process(struct pmcstat_process *pp, struct pmcstat_pmcrecord *pmcr,
uint32_t nsamples, uintfptr_t *cc, int usermode, uint32_t cpu)
{
int i, n, pmcin;
uintfptr_t pc, loadaddress;
struct pmcstat_image *image;
struct pmcstat_symbol *sym;
struct pmcstat_pcmap *ppm[PMC_CALLCHAIN_DEPTH_MAX];
struct pmcstat_process *km;
struct pmcpl_ct_node *ct;
struct pmcpl_ct_node *ctl[PMC_CALLCHAIN_DEPTH_MAX+1];
(void) cpu;
assert(nsamples>0 && nsamples<=PMC_CALLCHAIN_DEPTH_MAX);
/* Get the PMC index. */
pmcin = pmcr->pr_pmcin;
/*
* Validate mapping for the callchain.
* Go from bottom to first invalid entry.
*/
km = pmcstat_kernproc;
for (n = 0; n < (int)nsamples; n++) {
ppm[n] = pmcstat_process_find_map(usermode ?
pp : km, cc[n]);
if (ppm[n] == NULL) {
/* Detect full frame capture (kernel + user). */
if (!usermode) {
ppm[n] = pmcstat_process_find_map(pp, cc[n]);
if (ppm[n] != NULL)
km = pp;
}
}
if (ppm[n] == NULL)
break;
}
if (n-- == 0) {
pmcstat_stats.ps_callchain_dubious_frames++;
pmcr->pr_dubious_frames++;
return;
}
/* Increase the call generation counter. */
pmcpl_ct_samples_grow(&pmcpl_ct_callid);
pmcpl_ct_callid.sb[pmcin]++;
/*
* Build node list.
*/
ctl[0] = pmcpl_ct_root;
for (i = 1; n >= 0; n--) {
image = ppm[n]->ppm_image;
loadaddress = ppm[n]->ppm_lowpc +
image->pi_vaddr - image->pi_start;
/* Convert to an offset in the image. */
pc = cc[n] - loadaddress;
/*
* Try determine the function at this offset. If we can't
* find a function round leave the `pc' value alone.
*/
if ((sym = pmcstat_symbol_search(image, pc)) != NULL)
pc = sym->ps_start;
else
pmcstat_stats.ps_samples_unknown_function++;
ct = pmcpl_ct_node_hash_lookup(image, pc, sym, NULL, NULL);
if (ct == NULL) {
pmcstat_stats.ps_callchain_dubious_frames++;
continue;
}
ctl[i++] = ct;
}
/* No valid node found. */
if (i == 1)
return;
n = i;
ct = ctl[0];
for (i = 1; i < n; i++)
pmcpl_ct_node_update(ctl[i-1], ctl[i], pmcin, 1, 1);
/*
* Increment the sample count for this PMC.
*/
pmcpl_ct_samples_grow(&ctl[n-1]->pct_samples);
ctl[n-1]->pct_samples.sb[pmcin]++;
/* Update per instruction sample if required. */
if (args.pa_ctdumpinstr)
pmcpl_ct_instr_add(ctl[n-1], pmcin, cc[0] -
(ppm[0]->ppm_lowpc + ppm[0]->ppm_image->pi_vaddr -
ppm[0]->ppm_image->pi_start), 1);
}
/*
* Print node child cost.
*/
static void
pmcpl_ct_node_printchild(struct pmcpl_ct_node *ct, uintfptr_t paddr,
int pline)
{
int i, j, line;
uintfptr_t addr;
struct pmcpl_ct_node *child;
char sourcefile[PATH_MAX];
char funcname[PATH_MAX];
/*
* Child cost.
* TODO: attach child cost to the real position in the funtion.
* TODO: cfn=<fn> / call <ncall> addr(<fn>) / addr(call <fn>) <arccost>
*/
for (i=0 ; i<ct->pct_narc; i++) {
child = ct->pct_arc[i].pcta_child;
/* Object binary. */
fprintf(args.pa_graphfile, "cob=%s\n",
pmcstat_string_unintern(child->pct_image->pi_fullpath));
/* Child function name. */
addr = child->pct_image->pi_vaddr + child->pct_func;
line = 0;
/* Child function source file. */
if (child->pct_type == PMCPL_PCT_NAME) {
fprintf(args.pa_graphfile, "cfi=%s\ncfn=%s\n",
pmcstat_string_unintern(child->pct_ifl),
pmcstat_string_unintern(child->pct_ifn));
} else if (pmcstat_image_addr2line(child->pct_image, addr,
sourcefile, sizeof(sourcefile), &line,
funcname, sizeof(funcname))) {
fprintf(args.pa_graphfile, "cfi=%s\ncfn=%s\n",
sourcefile, funcname);
} else {
if (child->pct_sym != NULL)
fprintf(args.pa_graphfile,
"cfi=???\ncfn=%s\n",
pmcstat_string_unintern(
child->pct_sym->ps_name));
else
fprintf(args.pa_graphfile,
"cfi=???\ncfn=%p\n", (void *)addr);
}
/* Child function address, line and call count. */
fprintf(args.pa_graphfile, "calls=%u %p %u\n",
ct->pct_arc[i].pcta_call, (void *)addr, line);
/*
* Call address, line, sample.
* TODO: Associate call address to the right location.
*/
fprintf(args.pa_graphfile, "%p %u", (void *)paddr, pline);
for (j = 0; j<pmcstat_npmcs; j++)
fprintf(args.pa_graphfile, " %u",
PMCPL_CT_SAMPLE(j, &ct->pct_arc[i].pcta_samples));
fprintf(args.pa_graphfile, "\n");
}
}
/*
* Print node self cost.
*/
static void
pmcpl_ct_node_printself(struct pmcpl_ct_node *ct)
{
int i, j, fline, line;
uintfptr_t faddr, addr;
char sourcefile[PATH_MAX];
char funcname[PATH_MAX];
/*
* Object binary.
*/
fprintf(args.pa_graphfile, "ob=%s\n",
pmcstat_string_unintern(ct->pct_image->pi_fullpath));
/*
* Function name.
*/
faddr = ct->pct_image->pi_vaddr + ct->pct_func;
fline = 0;
if (ct->pct_type == PMCPL_PCT_NAME) {
fprintf(args.pa_graphfile, "fl=%s\nfn=%s\n",
pmcstat_string_unintern(ct->pct_ifl),
pmcstat_string_unintern(ct->pct_ifn));
} else if (pmcstat_image_addr2line(ct->pct_image, faddr,
sourcefile, sizeof(sourcefile), &fline,
funcname, sizeof(funcname))) {
fprintf(args.pa_graphfile, "fl=%s\nfn=%s\n",
sourcefile, funcname);
} else {
if (ct->pct_sym != NULL)
fprintf(args.pa_graphfile, "fl=???\nfn=%s\n",
pmcstat_string_unintern(ct->pct_sym->ps_name));
else
fprintf(args.pa_graphfile, "fl=???\nfn=%p\n",
(void *)(ct->pct_image->pi_vaddr + ct->pct_func));
}
/*
* Self cost.
*/
if (ct->pct_ninstr > 0) {
/*
* Per location cost.
*/
for (i = 0; i < ct->pct_ninstr; i++) {
addr = ct->pct_image->pi_vaddr +
ct->pct_instr[i].pctf_func;
line = 0;
pmcstat_image_addr2line(ct->pct_image, addr,
sourcefile, sizeof(sourcefile), &line,
funcname, sizeof(funcname));
fprintf(args.pa_graphfile, "%p %u",
(void *)addr, line);
for (j = 0; j<pmcstat_npmcs; j++)
fprintf(args.pa_graphfile, " %u",
PMCPL_CT_SAMPLE(j,
&ct->pct_instr[i].pctf_samples));
fprintf(args.pa_graphfile, "\n");
}
} else {
/* Global cost function cost. */
fprintf(args.pa_graphfile, "%p %u", (void *)faddr, fline);
for (i = 0; i<pmcstat_npmcs ; i++)
fprintf(args.pa_graphfile, " %u",
PMCPL_CT_SAMPLE(i, &ct->pct_samples));
fprintf(args.pa_graphfile, "\n");
}
pmcpl_ct_node_printchild(ct, faddr, fline);
}
static void
pmcpl_ct_printnode(struct pmcpl_ct_node *ct)
{
int i;
if (ct == pmcpl_ct_root) {
fprintf(args.pa_graphfile, "fn=root\n");
fprintf(args.pa_graphfile, "0x0 1");
for (i = 0; i<pmcstat_npmcs ; i++)
fprintf(args.pa_graphfile, " 0");
fprintf(args.pa_graphfile, "\n");
pmcpl_ct_node_printchild(ct, 0, 0);
} else
pmcpl_ct_node_printself(ct);
}
/*
* Breadth first traversal.
*/
static void
pmcpl_ct_bfs(struct pmcpl_ct_node *ct)
{
int i;
struct pmcpl_ct_node_hash *pch, *pchc;
struct pmcpl_ct_node *child;
STAILQ_HEAD(,pmcpl_ct_node_hash) q;
STAILQ_INIT(&q);
if ((pch = malloc(sizeof(*pch))) == NULL)
err(EX_OSERR, "ERROR: Cannot allocate queue");
pch->pch_ctnode = ct;
STAILQ_INSERT_TAIL(&q, pch, pch_next);
ct->pct_color = PMCPL_PCT_BLACK;
while (!STAILQ_EMPTY(&q)) {
pch = STAILQ_FIRST(&q);
STAILQ_REMOVE_HEAD(&q, pch_next);
pmcpl_ct_printnode(pch->pch_ctnode);
for (i = 0; i<pch->pch_ctnode->pct_narc; i++) {
child = pch->pch_ctnode->pct_arc[i].pcta_child;
if (child->pct_color == PMCPL_PCT_WHITE) {
child->pct_color = PMCPL_PCT_BLACK;
if ((pchc = malloc(sizeof(*pchc))) == NULL)
err(EX_OSERR,
"ERROR: Cannot allocate queue");
pchc->pch_ctnode = child;
STAILQ_INSERT_TAIL(&q, pchc, pch_next);
}
}
free(pch);
}
}
/*
* Detect and fix inlined location.
*/
static void
_pmcpl_ct_expand_inline(struct pmcpl_ct_node *ct)
{
int i, j;
unsigned fline, line, v;
uintfptr_t faddr, addr, pc;
char sourcefile[PATH_MAX];
char ffuncname[PATH_MAX], funcname[PATH_MAX];
char buffer[PATH_MAX];
struct pmcpl_ct_node *child;
/*
* Resolve parent and compare to each instr location.
*/
faddr = ct->pct_image->pi_vaddr + ct->pct_func;
fline = 0;
if (!pmcstat_image_addr2line(ct->pct_image, faddr,
sourcefile, sizeof(sourcefile), &fline,
ffuncname, sizeof(ffuncname)))
return;
for (i = 0; i < ct->pct_ninstr; i++) {
addr = ct->pct_image->pi_vaddr +
ct->pct_instr[i].pctf_func;
line = 0;
if (!pmcstat_image_addr2line(ct->pct_image, addr,
sourcefile, sizeof(sourcefile), &line,
funcname, sizeof(funcname)))
continue;
if (strcmp(funcname, ffuncname) == 0)
continue;
/*
* - Lookup/create inline node by function name.
* - Move instr PMCs to the inline node.
* - Link nodes.
* The lookup create a specific node per image/pc.
*/
if (args.pa_verbosity >= 2)
fprintf(args.pa_printfile,
"WARNING: inlined function at %p %s in %s\n",
(void *)addr, funcname, ffuncname);
snprintf(buffer, sizeof(buffer), "%s@%s",
funcname, ffuncname);
child = pmcpl_ct_node_hash_lookup(ct->pct_image,
ct->pct_func, ct->pct_sym, sourcefile, buffer);
assert(child != NULL);
pc = ct->pct_instr[i].pctf_func;
for (j = 0; j<pmcstat_npmcs; j++) {
v = PMCPL_CT_SAMPLE(j,
&ct->pct_instr[i].pctf_samples);
if (v == 0)
continue;
pmcpl_ct_instr_add(child, j, pc, v);
pmcpl_ct_node_update(ct, child, j, v, 0);
if (j < ct->pct_samples.npmcs)
ct->pct_samples.sb[j] -=
ct->pct_instr[i].pctf_samples.sb[j];
ct->pct_instr[i].pctf_samples.sb[j] = 0;
}
}
}
static void
pmcpl_ct_expand_inline(void)
{
int i;
struct pmcpl_ct_node_hash *pch;
if (!args.pa_ctdumpinstr)
return;
for (i = 0; i < PMCSTAT_NHASH; i++)
STAILQ_FOREACH(pch, &pmcpl_ct_node_hash[i], pch_next)
if (pch->pch_ctnode->pct_type == PMCPL_PCT_ADDR)
_pmcpl_ct_expand_inline(pch->pch_ctnode);
}
/*
* Clean the PMC name for Kcachegrind formula
*/
static void
pmcpl_ct_fixup_pmcname(char *s)
{
char *p;
for (p = s; *p; p++)
if (!isalnum(*p))
*p = '_';
}
/*
* Print a calltree (KCachegrind) for all PMCs.
*/
static void
pmcpl_ct_print(void)
{
int i;
char name[40];
struct pmcpl_ct_sample rsamples;
pmcpl_ct_samples_root(&rsamples);
pmcpl_ct_expand_inline();
fprintf(args.pa_graphfile,
"version: 1\n"
"creator: pmcstat\n"
"positions: instr line\n"
"events:");
for (i=0; i<pmcstat_npmcs; i++) {
snprintf(name, sizeof(name), "%s_%d",
pmcstat_pmcindex_to_name(i), i);
pmcpl_ct_fixup_pmcname(name);
fprintf(args.pa_graphfile, " %s", name);
}
fprintf(args.pa_graphfile, "\nsummary:");
for (i=0; i<pmcstat_npmcs ; i++)
fprintf(args.pa_graphfile, " %u",
PMCPL_CT_SAMPLE(i, &rsamples));
fprintf(args.pa_graphfile, "\n");
pmcpl_ct_bfs(pmcpl_ct_root);
pmcpl_ct_samples_free(&rsamples);
}
int
pmcpl_ct_configure(char *opt)
{
if (strncmp(opt, "skiplink=", 9) == 0) {
pmcstat_skiplink = atoi(opt+9);
} else
return (0);
return (1);
}
int
pmcpl_ct_init(void)
{
int i;
pmcpl_ct_root = pmcpl_ct_node_allocate();
for (i = 0; i < PMCSTAT_NHASH; i++)
STAILQ_INIT(&pmcpl_ct_node_hash[i]);
pmcpl_ct_samples_init(&pmcpl_ct_callid);
return (0);
}
void
pmcpl_ct_shutdown(FILE *mf)
{
int i;
struct pmcpl_ct_node_hash *pch, *pchtmp;
(void) mf;
if (args.pa_flags & FLAG_DO_CALLGRAPHS)
pmcpl_ct_print();
/*
* Free memory.
*/
for (i = 0; i < PMCSTAT_NHASH; i++) {
STAILQ_FOREACH_SAFE(pch, &pmcpl_ct_node_hash[i], pch_next,
pchtmp) {
pmcpl_ct_node_free(pch->pch_ctnode);
free(pch);
}
}
pmcpl_ct_node_free(pmcpl_ct_root);
pmcpl_ct_root = NULL;
pmcpl_ct_samples_free(&pmcpl_ct_callid);
}