110a8053d6
segments larger than INT_MAX.
376 lines
9.1 KiB
C
376 lines
9.1 KiB
C
/* $FreeBSD$ */
|
|
/* $NetBSD: kvm_alpha.c,v 1.7.2.1 1997/11/02 20:34:26 mellon Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1994, 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Chris G. Demetriou
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/elf64.h>
|
|
#include <sys/mman.h>
|
|
|
|
#ifndef CROSS_LIBKVM
|
|
#include <machine/atomic.h>
|
|
#include <machine/bootinfo.h>
|
|
#include <machine/elf.h>
|
|
#include <machine/pte.h>
|
|
#else
|
|
#include "../../sys/ia64/include/atomic.h"
|
|
#include "../../sys/ia64/include/bootinfo.h"
|
|
#include "../../sys/ia64/include/elf.h"
|
|
#include "../../sys/ia64/include/pte.h"
|
|
#endif
|
|
|
|
#include <kvm.h>
|
|
#include <limits.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
|
|
#include "kvm_private.h"
|
|
|
|
#define REGION_BASE(n) (((uint64_t)(n)) << 61)
|
|
#define REGION_ADDR(x) ((x) & ((1LL<<61)-1LL))
|
|
|
|
#define NKPTEPG(ps) ((ps) / sizeof(struct ia64_lpte))
|
|
#define NKPTEDIR(ps) ((ps) >> 3)
|
|
#define KPTE_PTE_INDEX(va,ps) (((va)/(ps)) % NKPTEPG(ps))
|
|
#define KPTE_DIR0_INDEX(va,ps) ((((va)/(ps)) / NKPTEPG(ps)) / NKPTEDIR(ps))
|
|
#define KPTE_DIR1_INDEX(va,ps) ((((va)/(ps)) / NKPTEPG(ps)) % NKPTEDIR(ps))
|
|
|
|
#define PBVM_BASE 0x9ffc000000000000UL
|
|
#define PBVM_PGSZ (64 * 1024)
|
|
|
|
typedef size_t (a2p_f)(kvm_t *, uint64_t, off_t *);
|
|
|
|
struct vmstate {
|
|
void *mmapbase;
|
|
size_t mmapsize;
|
|
size_t pagesize;
|
|
u_long kptdir;
|
|
u_long *pbvm_pgtbl;
|
|
u_int pbvm_pgtblsz;
|
|
a2p_f *kvatop;
|
|
};
|
|
|
|
/*
|
|
* Map the ELF headers into the process' address space. We do this in two
|
|
* steps: first the ELF header itself and using that information the whole
|
|
* set of headers.
|
|
*/
|
|
static int
|
|
ia64_maphdrs(kvm_t *kd, size_t sz)
|
|
{
|
|
struct vmstate *vm = kd->vmst;
|
|
|
|
/* munmap() previous mmap(). */
|
|
if (vm->mmapbase != NULL) {
|
|
munmap(vm->mmapbase, vm->mmapsize);
|
|
vm->mmapbase = NULL;
|
|
}
|
|
|
|
vm->mmapsize = sz;
|
|
vm->mmapbase = mmap(NULL, sz, PROT_READ, MAP_PRIVATE, kd->pmfd, 0);
|
|
if (vm->mmapbase == MAP_FAILED) {
|
|
_kvm_err(kd, kd->program, "cannot mmap corefile");
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Physical core support.
|
|
*/
|
|
|
|
static size_t
|
|
phys_addr2off(kvm_t *kd, uint64_t pa, off_t *ofs, size_t pgsz)
|
|
{
|
|
Elf64_Ehdr *e;
|
|
Elf64_Phdr *p;
|
|
int n;
|
|
|
|
if (pa != REGION_ADDR(pa))
|
|
goto fail;
|
|
|
|
e = (Elf64_Ehdr *)(kd->vmst->mmapbase);
|
|
n = e->e_phnum;
|
|
p = (Elf64_Phdr *)(void *)((uintptr_t)(void *)e + e->e_phoff);
|
|
while (n && (pa < p->p_paddr || pa >= p->p_paddr + p->p_memsz))
|
|
p++, n--;
|
|
if (n == 0)
|
|
goto fail;
|
|
|
|
*ofs = (pa - p->p_paddr) + p->p_offset;
|
|
if (pgsz == 0)
|
|
return (p->p_memsz - (pa - p->p_paddr));
|
|
return (pgsz - ((size_t)pa & (pgsz - 1)));
|
|
|
|
fail:
|
|
_kvm_err(kd, kd->program, "invalid physical address %#jx",
|
|
(uintmax_t)pa);
|
|
return (0);
|
|
}
|
|
|
|
static size_t
|
|
phys_kvatop(kvm_t *kd, uint64_t va, off_t *ofs)
|
|
{
|
|
struct ia64_lpte pte;
|
|
uint64_t pa, pgaddr, pt0addr, pt1addr;
|
|
size_t pgno, pgsz, pt0no, pt1no;
|
|
|
|
if (va >= REGION_BASE(6)) {
|
|
/* Regions 6 and 7: direct mapped. */
|
|
pa = REGION_ADDR(va);
|
|
return (phys_addr2off(kd, pa, ofs, 0));
|
|
} else if (va >= REGION_BASE(5)) {
|
|
/* Region 5: Kernel Virtual Memory. */
|
|
va = REGION_ADDR(va);
|
|
pgsz = kd->vmst->pagesize;
|
|
pt0no = KPTE_DIR0_INDEX(va, pgsz);
|
|
pt1no = KPTE_DIR1_INDEX(va, pgsz);
|
|
pgno = KPTE_PTE_INDEX(va, pgsz);
|
|
if (pt0no >= NKPTEDIR(pgsz))
|
|
goto fail;
|
|
pt0addr = kd->vmst->kptdir + (pt0no << 3);
|
|
if (kvm_read(kd, pt0addr, &pt1addr, 8) != 8)
|
|
goto fail;
|
|
if (pt1addr == 0)
|
|
goto fail;
|
|
pt1addr += pt1no << 3;
|
|
if (kvm_read(kd, pt1addr, &pgaddr, 8) != 8)
|
|
goto fail;
|
|
if (pgaddr == 0)
|
|
goto fail;
|
|
pgaddr += pgno * sizeof(pte);
|
|
if (kvm_read(kd, pgaddr, &pte, sizeof(pte)) != sizeof(pte))
|
|
goto fail;
|
|
if (!(pte.pte & PTE_PRESENT))
|
|
goto fail;
|
|
pa = (pte.pte & PTE_PPN_MASK) + (va & (pgsz - 1));
|
|
return (phys_addr2off(kd, pa, ofs, pgsz));
|
|
} else if (va >= PBVM_BASE) {
|
|
/* Region 4: Pre-Boot Virtual Memory (PBVM). */
|
|
va -= PBVM_BASE;
|
|
pgsz = PBVM_PGSZ;
|
|
pt0no = va / pgsz;
|
|
if (pt0no >= (kd->vmst->pbvm_pgtblsz >> 3))
|
|
goto fail;
|
|
pt0addr = kd->vmst->pbvm_pgtbl[pt0no];
|
|
if (!(pt0addr & PTE_PRESENT))
|
|
goto fail;
|
|
pa = (pt0addr & PTE_PPN_MASK) + va % pgsz;
|
|
return (phys_addr2off(kd, pa, ofs, pgsz));
|
|
}
|
|
|
|
fail:
|
|
_kvm_err(kd, kd->program, "invalid kernel virtual address %#jx",
|
|
(uintmax_t)va);
|
|
*ofs = -1;
|
|
return (0);
|
|
}
|
|
|
|
static ssize_t
|
|
phys_read(kvm_t *kd, uint64_t pa, void *buf, size_t bufsz)
|
|
{
|
|
off_t ofs;
|
|
size_t sz;
|
|
|
|
sz = phys_addr2off(kd, pa, &ofs, 0);
|
|
if (sz < bufsz)
|
|
return ((ssize_t)sz);
|
|
|
|
if (lseek(kd->pmfd, ofs, 0) == -1)
|
|
return (-1);
|
|
return (read(kd->pmfd, buf, bufsz));
|
|
}
|
|
|
|
/*
|
|
* Virtual core support (aka minidump).
|
|
*/
|
|
|
|
static size_t
|
|
virt_addr2off(kvm_t *kd, uint64_t va, off_t *ofs, size_t pgsz)
|
|
{
|
|
Elf64_Ehdr *e;
|
|
Elf64_Phdr *p;
|
|
int n;
|
|
|
|
if (va < REGION_BASE(4))
|
|
goto fail;
|
|
|
|
e = (Elf64_Ehdr *)(kd->vmst->mmapbase);
|
|
n = e->e_phnum;
|
|
p = (Elf64_Phdr *)(void *)((uintptr_t)(void *)e + e->e_phoff);
|
|
while (n && (va < p->p_vaddr || va >= p->p_vaddr + p->p_memsz))
|
|
p++, n--;
|
|
if (n == 0)
|
|
goto fail;
|
|
|
|
*ofs = (va - p->p_vaddr) + p->p_offset;
|
|
if (pgsz == 0)
|
|
return (p->p_memsz - (va - p->p_vaddr));
|
|
return (pgsz - ((size_t)va & (pgsz - 1)));
|
|
|
|
fail:
|
|
_kvm_err(kd, kd->program, "invalid virtual address %#jx",
|
|
(uintmax_t)va);
|
|
return (0);
|
|
}
|
|
|
|
static size_t
|
|
virt_kvatop(kvm_t *kd, uint64_t va, off_t *ofs)
|
|
{
|
|
|
|
return (virt_addr2off(kd, va, ofs, 0));
|
|
}
|
|
|
|
/*
|
|
* KVM architecture support functions.
|
|
*/
|
|
|
|
void
|
|
_kvm_freevtop(kvm_t *kd)
|
|
{
|
|
struct vmstate *vm = kd->vmst;
|
|
|
|
if (vm->pbvm_pgtbl != NULL)
|
|
free(vm->pbvm_pgtbl);
|
|
if (vm->mmapbase != NULL)
|
|
munmap(vm->mmapbase, vm->mmapsize);
|
|
free(vm);
|
|
kd->vmst = NULL;
|
|
}
|
|
|
|
int
|
|
_kvm_initvtop(kvm_t *kd)
|
|
{
|
|
struct bootinfo bi;
|
|
struct nlist nl[2];
|
|
uint64_t va;
|
|
Elf64_Ehdr *ehdr;
|
|
size_t hdrsz;
|
|
ssize_t sz;
|
|
|
|
kd->vmst = (struct vmstate *)_kvm_malloc(kd, sizeof(*kd->vmst));
|
|
if (kd->vmst == NULL) {
|
|
_kvm_err(kd, kd->program, "cannot allocate vm");
|
|
return (-1);
|
|
}
|
|
|
|
#ifndef CROSS_LIBKVM
|
|
kd->vmst->pagesize = getpagesize();
|
|
#else
|
|
kd->vmst->pagesize = 8192;
|
|
#endif
|
|
|
|
if (ia64_maphdrs(kd, sizeof(Elf64_Ehdr)) == -1)
|
|
return (-1);
|
|
|
|
ehdr = kd->vmst->mmapbase;
|
|
hdrsz = ehdr->e_phoff + ehdr->e_phentsize * ehdr->e_phnum;
|
|
if (ia64_maphdrs(kd, hdrsz) == -1)
|
|
return (-1);
|
|
|
|
kd->vmst->kvatop = (ehdr->e_flags & EF_IA_64_ABSOLUTE) ?
|
|
phys_kvatop : virt_kvatop;
|
|
|
|
/*
|
|
* Load the PBVM page table. We need this to resolve PBVM addresses.
|
|
* The PBVM page table is obtained from the bootinfo structure, of
|
|
* which the address is given to us in e_entry. If e_entry is 0, then
|
|
* this is assumed to be a pre-PBVM kernel.
|
|
* Note that the address of the bootinfo structure is either physical
|
|
* or virtual, depending on whether the core is physical or virtual.
|
|
*/
|
|
if (ehdr->e_entry != 0 && (ehdr->e_flags & EF_IA_64_ABSOLUTE) != 0) {
|
|
sz = phys_read(kd, ehdr->e_entry, &bi, sizeof(bi));
|
|
if (sz != sizeof(bi)) {
|
|
_kvm_err(kd, kd->program,
|
|
"cannot read bootinfo at physical address %#jx",
|
|
(uintmax_t)ehdr->e_entry);
|
|
return (-1);
|
|
}
|
|
if (bi.bi_magic != BOOTINFO_MAGIC) {
|
|
_kvm_err(kd, kd->program, "invalid bootinfo");
|
|
return (-1);
|
|
}
|
|
kd->vmst->pbvm_pgtbl = _kvm_malloc(kd, bi.bi_pbvm_pgtblsz);
|
|
if (kd->vmst->pbvm_pgtbl == NULL) {
|
|
_kvm_err(kd, kd->program, "cannot allocate page table");
|
|
return (-1);
|
|
}
|
|
kd->vmst->pbvm_pgtblsz = bi.bi_pbvm_pgtblsz;
|
|
sz = phys_read(kd, bi.bi_pbvm_pgtbl, kd->vmst->pbvm_pgtbl,
|
|
bi.bi_pbvm_pgtblsz);
|
|
if (sz != bi.bi_pbvm_pgtblsz) {
|
|
_kvm_err(kd, kd->program,
|
|
"cannot read page table at physical address %#jx",
|
|
(uintmax_t)bi.bi_pbvm_pgtbl);
|
|
return (-1);
|
|
}
|
|
} else {
|
|
kd->vmst->pbvm_pgtbl = NULL;
|
|
kd->vmst->pbvm_pgtblsz = 0;
|
|
}
|
|
|
|
/*
|
|
* At this point we've got enough information to use kvm_read() for
|
|
* direct mapped (ie region 6 and region 7) address, such as symbol
|
|
* addresses/values.
|
|
*/
|
|
|
|
nl[0].n_name = "ia64_kptdir";
|
|
nl[1].n_name = 0;
|
|
|
|
if (kvm_nlist(kd, nl) != 0) {
|
|
_kvm_err(kd, kd->program, "bad namelist");
|
|
return (-1);
|
|
}
|
|
|
|
if (kvm_read(kd, (nl[0].n_value), &va, sizeof(va)) != sizeof(va)) {
|
|
_kvm_err(kd, kd->program, "cannot read kptdir");
|
|
return (-1);
|
|
}
|
|
|
|
if (va == REGION_BASE(5)) {
|
|
_kvm_err(kd, kd->program, "kptdir is itself virtual");
|
|
return (-1);
|
|
}
|
|
|
|
kd->vmst->kptdir = va;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
_kvm_kvatop(kvm_t *kd, u_long va, off_t *ofs)
|
|
{
|
|
size_t sz;
|
|
|
|
sz = kd->vmst->kvatop(kd, va, ofs);
|
|
return ((sz > INT_MAX) ? INT_MAX : sz);
|
|
}
|