39b6dc8ba2
active network stack instance. Turning on options VIMAGE at compile time yields the following changes relative to default kernel build: 1) V_ accessor macros for virtualized variables resolve to structure fields via base pointers, instead of being resolved as fields in global structs or plain global variables. As an example, V_ifnet becomes: options VIMAGE: ((struct vnet_net *) vnet_net)->_ifnet default build: vnet_net_0._ifnet options VIMAGE_GLOBALS: ifnet 2) INIT_VNET_* macros will declare and set up base pointers to be used by V_ accessor macros, instead of resolving to whitespace: INIT_VNET_NET(ifp->if_vnet); becomes struct vnet_net *vnet_net = (ifp->if_vnet)->mod_data[VNET_MOD_NET]; 3) Memory for vnet modules registered via vnet_mod_register() is now allocated at run time in sys/kern/kern_vimage.c, instead of per vnet module structs being declared as globals. If required, vnet modules can now request the framework to provide them with allocated bzeroed memory by filling in the vmi_size field in their vmi_modinfo structures. 4) structs socket, ifnet, inpcbinfo, tcpcb and syncache_head are extended to hold a pointer to the parent vnet. options VIMAGE builds will fill in those fields as required. 5) curvnet is introduced as a new global variable in options VIMAGE builds, always pointing to the default and only struct vnet. 6) struct sysctl_oid has been extended with additional two fields to store major and minor virtualization module identifiers, oid_v_subs and oid_v_mod. SYSCTL_V_* family of macros will fill in those fields accordingly, and store the offset in the appropriate vnet container struct in oid_arg1. In sysctl handlers dealing with virtualized sysctls, the SYSCTL_RESOLVE_V_ARG1() macro will compute the address of the target variable and make it available in arg1 variable for further processing. Unused fields in structs vnet_inet, vnet_inet6 and vnet_ipfw have been deleted. Reviewed by: bz, rwatson Approved by: julian (mentor)
1950 lines
49 KiB
C
1950 lines
49 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1991, 1993, 1995
|
|
* The Regents of the University of California.
|
|
* Copyright (c) 2007-2009 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_mac.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vimage.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/udp.h>
|
|
#include <netinet/udp_var.h>
|
|
#include <netinet/vinet.h>
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/vinet6.h>
|
|
#endif /* INET6 */
|
|
|
|
|
|
#ifdef IPSEC
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/key.h>
|
|
#endif /* IPSEC */
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#ifdef VIMAGE_GLOBALS
|
|
/*
|
|
* These configure the range of local port addresses assigned to
|
|
* "unspecified" outgoing connections/packets/whatever.
|
|
*/
|
|
int ipport_lowfirstauto;
|
|
int ipport_lowlastauto;
|
|
int ipport_firstauto;
|
|
int ipport_lastauto;
|
|
int ipport_hifirstauto;
|
|
int ipport_hilastauto;
|
|
|
|
/*
|
|
* Reserved ports accessible only to root. There are significant
|
|
* security considerations that must be accounted for when changing these,
|
|
* but the security benefits can be great. Please be careful.
|
|
*/
|
|
int ipport_reservedhigh;
|
|
int ipport_reservedlow;
|
|
|
|
/* Variables dealing with random ephemeral port allocation. */
|
|
int ipport_randomized;
|
|
int ipport_randomcps;
|
|
int ipport_randomtime;
|
|
int ipport_stoprandom;
|
|
int ipport_tcpallocs;
|
|
int ipport_tcplastcount;
|
|
#endif
|
|
|
|
#define RANGECHK(var, min, max) \
|
|
if ((var) < (min)) { (var) = (min); } \
|
|
else if ((var) > (max)) { (var) = (max); }
|
|
|
|
static int
|
|
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
int error;
|
|
|
|
SYSCTL_RESOLVE_V_ARG1();
|
|
|
|
error = sysctl_handle_int(oidp, arg1, arg2, req);
|
|
if (error == 0) {
|
|
RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#undef RANGECHK
|
|
|
|
SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
|
|
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
lowfirst, CTLTYPE_INT|CTLFLAG_RW, ipport_lowfirstauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
lowlast, CTLTYPE_INT|CTLFLAG_RW, ipport_lowlastauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
first, CTLTYPE_INT|CTLFLAG_RW, ipport_firstauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
last, CTLTYPE_INT|CTLFLAG_RW, ipport_lastauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
hifirst, CTLTYPE_INT|CTLFLAG_RW, ipport_hifirstauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
hilast, CTLTYPE_INT|CTLFLAG_RW, ipport_hilastauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedhigh, 0, "");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, reservedlow,
|
|
CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedlow, 0, "");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomized,
|
|
CTLFLAG_RW, ipport_randomized, 0, "Enable random port allocation");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomcps,
|
|
CTLFLAG_RW, ipport_randomcps, 0, "Maximum number of random port "
|
|
"allocations before switching to a sequental one");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomtime,
|
|
CTLFLAG_RW, ipport_randomtime, 0,
|
|
"Minimum time to keep sequental port "
|
|
"allocation before switching to a random one");
|
|
|
|
/*
|
|
* in_pcb.c: manage the Protocol Control Blocks.
|
|
*
|
|
* NOTE: It is assumed that most of these functions will be called with
|
|
* the pcbinfo lock held, and often, the inpcb lock held, as these utility
|
|
* functions often modify hash chains or addresses in pcbs.
|
|
*/
|
|
|
|
/*
|
|
* Allocate a PCB and associate it with the socket.
|
|
* On success return with the PCB locked.
|
|
*/
|
|
int
|
|
in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
|
|
{
|
|
#ifdef INET6
|
|
INIT_VNET_INET6(curvnet);
|
|
#endif
|
|
struct inpcb *inp;
|
|
int error;
|
|
|
|
INP_INFO_WLOCK_ASSERT(pcbinfo);
|
|
error = 0;
|
|
inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
|
|
if (inp == NULL)
|
|
return (ENOBUFS);
|
|
bzero(inp, inp_zero_size);
|
|
inp->inp_pcbinfo = pcbinfo;
|
|
inp->inp_socket = so;
|
|
inp->inp_cred = crhold(so->so_cred);
|
|
inp->inp_inc.inc_fibnum = so->so_fibnum;
|
|
#ifdef MAC
|
|
error = mac_inpcb_init(inp, M_NOWAIT);
|
|
if (error != 0)
|
|
goto out;
|
|
SOCK_LOCK(so);
|
|
mac_inpcb_create(so, inp);
|
|
SOCK_UNLOCK(so);
|
|
#endif
|
|
#ifdef IPSEC
|
|
error = ipsec_init_policy(so, &inp->inp_sp);
|
|
if (error != 0) {
|
|
#ifdef MAC
|
|
mac_inpcb_destroy(inp);
|
|
#endif
|
|
goto out;
|
|
}
|
|
#endif /*IPSEC*/
|
|
#ifdef INET6
|
|
if (INP_SOCKAF(so) == AF_INET6) {
|
|
inp->inp_vflag |= INP_IPV6PROTO;
|
|
if (V_ip6_v6only)
|
|
inp->inp_flags |= IN6P_IPV6_V6ONLY;
|
|
}
|
|
#endif
|
|
LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
|
|
pcbinfo->ipi_count++;
|
|
so->so_pcb = (caddr_t)inp;
|
|
#ifdef INET6
|
|
if (V_ip6_auto_flowlabel)
|
|
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
|
|
#endif
|
|
INP_WLOCK(inp);
|
|
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
|
|
inp->inp_refcount = 1; /* Reference from the inpcbinfo */
|
|
#if defined(IPSEC) || defined(MAC)
|
|
out:
|
|
if (error != 0) {
|
|
crfree(inp->inp_cred);
|
|
uma_zfree(pcbinfo->ipi_zone, inp);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
|
|
{
|
|
int anonport, error;
|
|
|
|
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
|
|
return (EINVAL);
|
|
anonport = inp->inp_lport == 0 && (nam == NULL ||
|
|
((struct sockaddr_in *)nam)->sin_port == 0);
|
|
error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
|
|
&inp->inp_lport, cred);
|
|
if (error)
|
|
return (error);
|
|
if (in_pcbinshash(inp) != 0) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
inp->inp_lport = 0;
|
|
return (EAGAIN);
|
|
}
|
|
if (anonport)
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set up a bind operation on a PCB, performing port allocation
|
|
* as required, but do not actually modify the PCB. Callers can
|
|
* either complete the bind by setting inp_laddr/inp_lport and
|
|
* calling in_pcbinshash(), or they can just use the resulting
|
|
* port and address to authorise the sending of a once-off packet.
|
|
*
|
|
* On error, the values of *laddrp and *lportp are not changed.
|
|
*/
|
|
int
|
|
in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
|
|
u_short *lportp, struct ucred *cred)
|
|
{
|
|
INIT_VNET_INET(inp->inp_vnet);
|
|
struct socket *so = inp->inp_socket;
|
|
unsigned short *lastport;
|
|
struct sockaddr_in *sin;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct in_addr laddr;
|
|
u_short lport = 0;
|
|
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
|
|
int error;
|
|
int dorandom;
|
|
|
|
/*
|
|
* Because no actual state changes occur here, a global write lock on
|
|
* the pcbinfo isn't required.
|
|
*/
|
|
INP_INFO_LOCK_ASSERT(pcbinfo);
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
|
|
return (EADDRNOTAVAIL);
|
|
laddr.s_addr = *laddrp;
|
|
if (nam != NULL && laddr.s_addr != INADDR_ANY)
|
|
return (EINVAL);
|
|
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
|
|
wild = INPLOOKUP_WILDCARD;
|
|
if (nam == NULL) {
|
|
if ((error = prison_local_ip4(cred, &laddr)) != 0)
|
|
return (error);
|
|
} else {
|
|
sin = (struct sockaddr_in *)nam;
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
#ifdef notdef
|
|
/*
|
|
* We should check the family, but old programs
|
|
* incorrectly fail to initialize it.
|
|
*/
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
#endif
|
|
error = prison_local_ip4(cred, &sin->sin_addr);
|
|
if (error)
|
|
return (error);
|
|
if (sin->sin_port != *lportp) {
|
|
/* Don't allow the port to change. */
|
|
if (*lportp != 0)
|
|
return (EINVAL);
|
|
lport = sin->sin_port;
|
|
}
|
|
/* NB: lport is left as 0 if the port isn't being changed. */
|
|
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
|
|
/*
|
|
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
|
|
* allow complete duplication of binding if
|
|
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
|
|
* and a multicast address is bound on both
|
|
* new and duplicated sockets.
|
|
*/
|
|
if (so->so_options & SO_REUSEADDR)
|
|
reuseport = SO_REUSEADDR|SO_REUSEPORT;
|
|
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
|
|
sin->sin_port = 0; /* yech... */
|
|
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
|
|
/*
|
|
* Is the address a local IP address?
|
|
* If INP_NONLOCALOK is set, then the socket may be bound
|
|
* to any endpoint address, local or not.
|
|
*/
|
|
if (
|
|
#if defined(IP_NONLOCALBIND)
|
|
((inp->inp_flags & INP_NONLOCALOK) == 0) &&
|
|
#endif
|
|
(ifa_ifwithaddr((struct sockaddr *)sin) == 0))
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
laddr = sin->sin_addr;
|
|
if (lport) {
|
|
struct inpcb *t;
|
|
struct tcptw *tw;
|
|
|
|
/* GROSS */
|
|
if (ntohs(lport) <= V_ipport_reservedhigh &&
|
|
ntohs(lport) >= V_ipport_reservedlow &&
|
|
priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
|
|
0))
|
|
return (EACCES);
|
|
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
|
|
priv_check_cred(inp->inp_cred,
|
|
PRIV_NETINET_REUSEPORT, 0) != 0) {
|
|
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
|
|
lport, INPLOOKUP_WILDCARD, cred);
|
|
/*
|
|
* XXX
|
|
* This entire block sorely needs a rewrite.
|
|
*/
|
|
if (t &&
|
|
((t->inp_flags & INP_TIMEWAIT) == 0) &&
|
|
(so->so_type != SOCK_STREAM ||
|
|
ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
|
|
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
|
|
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
|
|
(t->inp_socket->so_options &
|
|
SO_REUSEPORT) == 0) &&
|
|
(inp->inp_cred->cr_uid !=
|
|
t->inp_cred->cr_uid))
|
|
return (EADDRINUSE);
|
|
}
|
|
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
|
|
lport, wild, cred);
|
|
if (t && (t->inp_flags & INP_TIMEWAIT)) {
|
|
/*
|
|
* XXXRW: If an incpb has had its timewait
|
|
* state recycled, we treat the address as
|
|
* being in use (for now). This is better
|
|
* than a panic, but not desirable.
|
|
*/
|
|
tw = intotw(inp);
|
|
if (tw == NULL ||
|
|
(reuseport & tw->tw_so_options) == 0)
|
|
return (EADDRINUSE);
|
|
} else if (t &&
|
|
(reuseport & t->inp_socket->so_options) == 0) {
|
|
#ifdef INET6
|
|
if (ntohl(sin->sin_addr.s_addr) !=
|
|
INADDR_ANY ||
|
|
ntohl(t->inp_laddr.s_addr) !=
|
|
INADDR_ANY ||
|
|
INP_SOCKAF(so) ==
|
|
INP_SOCKAF(t->inp_socket))
|
|
#endif
|
|
return (EADDRINUSE);
|
|
}
|
|
}
|
|
}
|
|
if (*lportp != 0)
|
|
lport = *lportp;
|
|
if (lport == 0) {
|
|
u_short first, last, aux;
|
|
int count;
|
|
|
|
if (inp->inp_flags & INP_HIGHPORT) {
|
|
first = V_ipport_hifirstauto; /* sysctl */
|
|
last = V_ipport_hilastauto;
|
|
lastport = &pcbinfo->ipi_lasthi;
|
|
} else if (inp->inp_flags & INP_LOWPORT) {
|
|
error = priv_check_cred(cred,
|
|
PRIV_NETINET_RESERVEDPORT, 0);
|
|
if (error)
|
|
return error;
|
|
first = V_ipport_lowfirstauto; /* 1023 */
|
|
last = V_ipport_lowlastauto; /* 600 */
|
|
lastport = &pcbinfo->ipi_lastlow;
|
|
} else {
|
|
first = V_ipport_firstauto; /* sysctl */
|
|
last = V_ipport_lastauto;
|
|
lastport = &pcbinfo->ipi_lastport;
|
|
}
|
|
/*
|
|
* For UDP, use random port allocation as long as the user
|
|
* allows it. For TCP (and as of yet unknown) connections,
|
|
* use random port allocation only if the user allows it AND
|
|
* ipport_tick() allows it.
|
|
*/
|
|
if (V_ipport_randomized &&
|
|
(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
|
|
dorandom = 1;
|
|
else
|
|
dorandom = 0;
|
|
/*
|
|
* It makes no sense to do random port allocation if
|
|
* we have the only port available.
|
|
*/
|
|
if (first == last)
|
|
dorandom = 0;
|
|
/* Make sure to not include UDP packets in the count. */
|
|
if (pcbinfo != &V_udbinfo)
|
|
V_ipport_tcpallocs++;
|
|
/*
|
|
* Instead of having two loops further down counting up or down
|
|
* make sure that first is always <= last and go with only one
|
|
* code path implementing all logic.
|
|
*/
|
|
if (first > last) {
|
|
aux = first;
|
|
first = last;
|
|
last = aux;
|
|
}
|
|
|
|
if (dorandom)
|
|
*lastport = first +
|
|
(arc4random() % (last - first));
|
|
|
|
count = last - first;
|
|
|
|
do {
|
|
if (count-- < 0) /* completely used? */
|
|
return (EADDRNOTAVAIL);
|
|
++*lastport;
|
|
if (*lastport < first || *lastport > last)
|
|
*lastport = first;
|
|
lport = htons(*lastport);
|
|
} while (in_pcblookup_local(pcbinfo, laddr,
|
|
lport, wild, cred));
|
|
}
|
|
*laddrp = laddr.s_addr;
|
|
*lportp = lport;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Connect from a socket to a specified address.
|
|
* Both address and port must be specified in argument sin.
|
|
* If don't have a local address for this socket yet,
|
|
* then pick one.
|
|
*/
|
|
int
|
|
in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
|
|
{
|
|
u_short lport, fport;
|
|
in_addr_t laddr, faddr;
|
|
int anonport, error;
|
|
|
|
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
lport = inp->inp_lport;
|
|
laddr = inp->inp_laddr.s_addr;
|
|
anonport = (lport == 0);
|
|
error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
|
|
NULL, cred);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Do the initial binding of the local address if required. */
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
|
|
inp->inp_lport = lport;
|
|
inp->inp_laddr.s_addr = laddr;
|
|
if (in_pcbinshash(inp) != 0) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
inp->inp_lport = 0;
|
|
return (EAGAIN);
|
|
}
|
|
}
|
|
|
|
/* Commit the remaining changes. */
|
|
inp->inp_lport = lport;
|
|
inp->inp_laddr.s_addr = laddr;
|
|
inp->inp_faddr.s_addr = faddr;
|
|
inp->inp_fport = fport;
|
|
in_pcbrehash(inp);
|
|
|
|
if (anonport)
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Do proper source address selection on an unbound socket in case
|
|
* of connect. Take jails into account as well.
|
|
*/
|
|
static int
|
|
in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
|
|
struct ucred *cred)
|
|
{
|
|
struct in_ifaddr *ia;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr *sa;
|
|
struct sockaddr_in *sin;
|
|
struct route sro;
|
|
int error;
|
|
|
|
KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
|
|
|
|
error = 0;
|
|
ia = NULL;
|
|
bzero(&sro, sizeof(sro));
|
|
|
|
sin = (struct sockaddr_in *)&sro.ro_dst;
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(struct sockaddr_in);
|
|
sin->sin_addr.s_addr = faddr->s_addr;
|
|
|
|
/*
|
|
* If route is known our src addr is taken from the i/f,
|
|
* else punt.
|
|
*
|
|
* Find out route to destination.
|
|
*/
|
|
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
|
|
in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
|
|
|
|
/*
|
|
* If we found a route, use the address corresponding to
|
|
* the outgoing interface.
|
|
*
|
|
* Otherwise assume faddr is reachable on a directly connected
|
|
* network and try to find a corresponding interface to take
|
|
* the source address from.
|
|
*/
|
|
if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
|
|
struct ifnet *ifp;
|
|
|
|
ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
|
|
if (ia == NULL)
|
|
ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin));
|
|
if (ia == NULL) {
|
|
error = ENETUNREACH;
|
|
goto done;
|
|
}
|
|
|
|
if (cred == NULL || !jailed(cred)) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
ifp = ia->ia_ifp;
|
|
ia = NULL;
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
|
|
sa = ifa->ifa_addr;
|
|
if (sa->sa_family != AF_INET)
|
|
continue;
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
|
|
ia = (struct in_ifaddr *)ifa;
|
|
break;
|
|
}
|
|
}
|
|
if (ia != NULL) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
IF_ADDR_UNLOCK(ifp);
|
|
goto done;
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
|
|
/* 3. As a last resort return the 'default' jail address. */
|
|
error = prison_get_ip4(cred, laddr);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If the outgoing interface on the route found is not
|
|
* a loopback interface, use the address from that interface.
|
|
* In case of jails do those three steps:
|
|
* 1. check if the interface address belongs to the jail. If so use it.
|
|
* 2. check if we have any address on the outgoing interface
|
|
* belonging to this jail. If so use it.
|
|
* 3. as a last resort return the 'default' jail address.
|
|
*/
|
|
if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
|
|
struct ifnet *ifp;
|
|
|
|
/* If not jailed, use the default returned. */
|
|
if (cred == NULL || !jailed(cred)) {
|
|
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* Jailed. */
|
|
/* 1. Check if the iface address belongs to the jail. */
|
|
sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
|
|
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
|
|
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* 2. Check if we have any address on the outgoing interface
|
|
* belonging to this jail.
|
|
*/
|
|
ifp = sro.ro_rt->rt_ifp;
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
|
|
sa = ifa->ifa_addr;
|
|
if (sa->sa_family != AF_INET)
|
|
continue;
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
|
|
ia = (struct in_ifaddr *)ifa;
|
|
break;
|
|
}
|
|
}
|
|
if (ia != NULL) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
IF_ADDR_UNLOCK(ifp);
|
|
goto done;
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
|
|
/* 3. As a last resort return the 'default' jail address. */
|
|
error = prison_get_ip4(cred, laddr);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* The outgoing interface is marked with 'loopback net', so a route
|
|
* to ourselves is here.
|
|
* Try to find the interface of the destination address and then
|
|
* take the address from there. That interface is not necessarily
|
|
* a loopback interface.
|
|
* In case of jails, check that it is an address of the jail
|
|
* and if we cannot find, fall back to the 'default' jail address.
|
|
*/
|
|
if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
|
|
struct sockaddr_in sain;
|
|
|
|
bzero(&sain, sizeof(struct sockaddr_in));
|
|
sain.sin_family = AF_INET;
|
|
sain.sin_len = sizeof(struct sockaddr_in);
|
|
sain.sin_addr.s_addr = faddr->s_addr;
|
|
|
|
ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
|
|
if (ia == NULL)
|
|
ia = ifatoia(ifa_ifwithnet(sintosa(&sain)));
|
|
|
|
if (cred == NULL || !jailed(cred)) {
|
|
#if __FreeBSD_version < 800000
|
|
if (ia == NULL)
|
|
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
|
|
#endif
|
|
if (ia == NULL) {
|
|
error = ENETUNREACH;
|
|
goto done;
|
|
}
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* Jailed. */
|
|
if (ia != NULL) {
|
|
struct ifnet *ifp;
|
|
|
|
ifp = ia->ia_ifp;
|
|
ia = NULL;
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
|
|
sa = ifa->ifa_addr;
|
|
if (sa->sa_family != AF_INET)
|
|
continue;
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (prison_check_ip4(cred,
|
|
&sin->sin_addr) == 0) {
|
|
ia = (struct in_ifaddr *)ifa;
|
|
break;
|
|
}
|
|
}
|
|
if (ia != NULL) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
IF_ADDR_UNLOCK(ifp);
|
|
goto done;
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
}
|
|
|
|
/* 3. As a last resort return the 'default' jail address. */
|
|
error = prison_get_ip4(cred, laddr);
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
if (sro.ro_rt != NULL)
|
|
RTFREE(sro.ro_rt);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set up for a connect from a socket to the specified address.
|
|
* On entry, *laddrp and *lportp should contain the current local
|
|
* address and port for the PCB; these are updated to the values
|
|
* that should be placed in inp_laddr and inp_lport to complete
|
|
* the connect.
|
|
*
|
|
* On success, *faddrp and *fportp will be set to the remote address
|
|
* and port. These are not updated in the error case.
|
|
*
|
|
* If the operation fails because the connection already exists,
|
|
* *oinpp will be set to the PCB of that connection so that the
|
|
* caller can decide to override it. In all other cases, *oinpp
|
|
* is set to NULL.
|
|
*/
|
|
int
|
|
in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
|
|
in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
|
|
struct inpcb **oinpp, struct ucred *cred)
|
|
{
|
|
INIT_VNET_INET(inp->inp_vnet);
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
|
|
struct in_ifaddr *ia;
|
|
struct inpcb *oinp;
|
|
struct in_addr laddr, faddr;
|
|
u_short lport, fport;
|
|
int error;
|
|
|
|
/*
|
|
* Because a global state change doesn't actually occur here, a read
|
|
* lock is sufficient.
|
|
*/
|
|
INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
if (oinpp != NULL)
|
|
*oinpp = NULL;
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
if (sin->sin_port == 0)
|
|
return (EADDRNOTAVAIL);
|
|
laddr.s_addr = *laddrp;
|
|
lport = *lportp;
|
|
faddr = sin->sin_addr;
|
|
fport = sin->sin_port;
|
|
|
|
if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
|
|
/*
|
|
* If the destination address is INADDR_ANY,
|
|
* use the primary local address.
|
|
* If the supplied address is INADDR_BROADCAST,
|
|
* and the primary interface supports broadcast,
|
|
* choose the broadcast address for that interface.
|
|
*/
|
|
if (faddr.s_addr == INADDR_ANY) {
|
|
faddr =
|
|
IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
|
|
if (cred != NULL &&
|
|
(error = prison_get_ip4(cred, &faddr)) != 0)
|
|
return (error);
|
|
} else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
|
|
(TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
|
|
IFF_BROADCAST))
|
|
faddr = satosin(&TAILQ_FIRST(
|
|
&V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
|
|
}
|
|
if (laddr.s_addr == INADDR_ANY) {
|
|
error = in_pcbladdr(inp, &faddr, &laddr, cred);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* If the destination address is multicast and an outgoing
|
|
* interface has been set as a multicast option, use the
|
|
* address of that interface as our source address.
|
|
*/
|
|
if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
|
|
inp->inp_moptions != NULL) {
|
|
struct ip_moptions *imo;
|
|
struct ifnet *ifp;
|
|
|
|
imo = inp->inp_moptions;
|
|
if (imo->imo_multicast_ifp != NULL) {
|
|
ifp = imo->imo_multicast_ifp;
|
|
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
|
|
if (ia->ia_ifp == ifp)
|
|
break;
|
|
if (ia == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
laddr = ia->ia_addr.sin_addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
|
|
0, NULL);
|
|
if (oinp != NULL) {
|
|
if (oinpp != NULL)
|
|
*oinpp = oinp;
|
|
return (EADDRINUSE);
|
|
}
|
|
if (lport == 0) {
|
|
error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
|
|
cred);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
*laddrp = laddr.s_addr;
|
|
*lportp = lport;
|
|
*faddrp = faddr.s_addr;
|
|
*fportp = fport;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
in_pcbdisconnect(struct inpcb *inp)
|
|
{
|
|
|
|
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
inp->inp_faddr.s_addr = INADDR_ANY;
|
|
inp->inp_fport = 0;
|
|
in_pcbrehash(inp);
|
|
}
|
|
|
|
/*
|
|
* in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
|
|
* For most protocols, this will be invoked immediately prior to calling
|
|
* in_pcbfree(). However, with TCP the inpcb may significantly outlive the
|
|
* socket, in which case in_pcbfree() is deferred.
|
|
*/
|
|
void
|
|
in_pcbdetach(struct inpcb *inp)
|
|
{
|
|
|
|
KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
|
|
|
|
inp->inp_socket->so_pcb = NULL;
|
|
inp->inp_socket = NULL;
|
|
}
|
|
|
|
/*
|
|
* in_pcbfree_internal() frees an inpcb that has been detached from its
|
|
* socket, and whose reference count has reached 0. It will also remove the
|
|
* inpcb from any global lists it might remain on.
|
|
*/
|
|
static void
|
|
in_pcbfree_internal(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *ipi = inp->inp_pcbinfo;
|
|
|
|
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
|
|
KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__));
|
|
|
|
INP_INFO_WLOCK_ASSERT(ipi);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
#ifdef IPSEC
|
|
if (inp->inp_sp != NULL)
|
|
ipsec_delete_pcbpolicy(inp);
|
|
#endif /* IPSEC */
|
|
inp->inp_gencnt = ++ipi->ipi_gencnt;
|
|
in_pcbremlists(inp);
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6PROTO) {
|
|
ip6_freepcbopts(inp->in6p_outputopts);
|
|
if (inp->in6p_moptions != NULL)
|
|
ip6_freemoptions(inp->in6p_moptions);
|
|
}
|
|
#endif
|
|
if (inp->inp_options)
|
|
(void)m_free(inp->inp_options);
|
|
if (inp->inp_moptions != NULL)
|
|
inp_freemoptions(inp->inp_moptions);
|
|
inp->inp_vflag = 0;
|
|
crfree(inp->inp_cred);
|
|
|
|
#ifdef MAC
|
|
mac_inpcb_destroy(inp);
|
|
#endif
|
|
INP_WUNLOCK(inp);
|
|
uma_zfree(ipi->ipi_zone, inp);
|
|
}
|
|
|
|
/*
|
|
* in_pcbref() bumps the reference count on an inpcb in order to maintain
|
|
* stability of an inpcb pointer despite the inpcb lock being released. This
|
|
* is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
|
|
* but where the inpcb lock is already held.
|
|
*
|
|
* While the inpcb will not be freed, releasing the inpcb lock means that the
|
|
* connection's state may change, so the caller should be careful to
|
|
* revalidate any cached state on reacquiring the lock. Drop the reference
|
|
* using in_pcbrele().
|
|
*/
|
|
void
|
|
in_pcbref(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
|
|
|
|
inp->inp_refcount++;
|
|
}
|
|
|
|
/*
|
|
* Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
|
|
* in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
|
|
* return a flag indicating whether or not the inpcb remains valid. If it is
|
|
* valid, we return with the inpcb lock held.
|
|
*/
|
|
int
|
|
in_pcbrele(struct inpcb *inp)
|
|
{
|
|
#ifdef INVARIANTS
|
|
struct inpcbinfo *ipi = inp->inp_pcbinfo;
|
|
#endif
|
|
|
|
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
|
|
|
|
INP_INFO_WLOCK_ASSERT(ipi);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
inp->inp_refcount--;
|
|
if (inp->inp_refcount > 0)
|
|
return (0);
|
|
in_pcbfree_internal(inp);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Unconditionally schedule an inpcb to be freed by decrementing its
|
|
* reference count, which should occur only after the inpcb has been detached
|
|
* from its socket. If another thread holds a temporary reference (acquired
|
|
* using in_pcbref()) then the free is deferred until that reference is
|
|
* released using in_pcbrele(), but the inpcb is still unlocked.
|
|
*/
|
|
void
|
|
in_pcbfree(struct inpcb *inp)
|
|
{
|
|
#ifdef INVARIANTS
|
|
struct inpcbinfo *ipi = inp->inp_pcbinfo;
|
|
#endif
|
|
|
|
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL",
|
|
__func__));
|
|
|
|
INP_INFO_WLOCK_ASSERT(ipi);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if (!in_pcbrele(inp))
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
|
|
/*
|
|
* in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
|
|
* port reservation, and preventing it from being returned by inpcb lookups.
|
|
*
|
|
* It is used by TCP to mark an inpcb as unused and avoid future packet
|
|
* delivery or event notification when a socket remains open but TCP has
|
|
* closed. This might occur as a result of a shutdown()-initiated TCP close
|
|
* or a RST on the wire, and allows the port binding to be reused while still
|
|
* maintaining the invariant that so_pcb always points to a valid inpcb until
|
|
* in_pcbdetach().
|
|
*
|
|
* XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash
|
|
* lists, but can lead to confusing netstat output, as open sockets with
|
|
* closed TCP connections will no longer appear to have their bound port
|
|
* number. An explicit flag would be better, as it would allow us to leave
|
|
* the port number intact after the connection is dropped.
|
|
*
|
|
* XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
|
|
* in_pcbnotifyall() and in_pcbpurgeif0()?
|
|
*/
|
|
void
|
|
in_pcbdrop(struct inpcb *inp)
|
|
{
|
|
|
|
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
inp->inp_flags |= INP_DROPPED;
|
|
if (inp->inp_flags & INP_INHASHLIST) {
|
|
struct inpcbport *phd = inp->inp_phd;
|
|
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_REMOVE(inp, inp_portlist);
|
|
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
|
|
LIST_REMOVE(phd, phd_hash);
|
|
free(phd, M_PCB);
|
|
}
|
|
inp->inp_flags &= ~INP_INHASHLIST;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Common routines to return the socket addresses associated with inpcbs.
|
|
*/
|
|
struct sockaddr *
|
|
in_sockaddr(in_port_t port, struct in_addr *addr_p)
|
|
{
|
|
struct sockaddr_in *sin;
|
|
|
|
sin = malloc(sizeof *sin, M_SONAME,
|
|
M_WAITOK | M_ZERO);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = *addr_p;
|
|
sin->sin_port = port;
|
|
|
|
return (struct sockaddr *)sin;
|
|
}
|
|
|
|
int
|
|
in_getsockaddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in_addr addr;
|
|
in_port_t port;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
|
|
|
|
INP_RLOCK(inp);
|
|
port = inp->inp_lport;
|
|
addr = inp->inp_laddr;
|
|
INP_RUNLOCK(inp);
|
|
|
|
*nam = in_sockaddr(port, &addr);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
in_getpeeraddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in_addr addr;
|
|
in_port_t port;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
|
|
|
|
INP_RLOCK(inp);
|
|
port = inp->inp_fport;
|
|
addr = inp->inp_faddr;
|
|
INP_RUNLOCK(inp);
|
|
|
|
*nam = in_sockaddr(port, &addr);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
|
|
struct inpcb *(*notify)(struct inpcb *, int))
|
|
{
|
|
struct inpcb *inp, *inp_temp;
|
|
|
|
INP_INFO_WLOCK(pcbinfo);
|
|
LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
|
|
INP_WLOCK(inp);
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV4) == 0) {
|
|
INP_WUNLOCK(inp);
|
|
continue;
|
|
}
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != faddr.s_addr ||
|
|
inp->inp_socket == NULL) {
|
|
INP_WUNLOCK(inp);
|
|
continue;
|
|
}
|
|
if ((*notify)(inp, errno))
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
INP_INFO_WUNLOCK(pcbinfo);
|
|
}
|
|
|
|
void
|
|
in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
|
|
{
|
|
struct inpcb *inp;
|
|
struct ip_moptions *imo;
|
|
int i, gap;
|
|
|
|
INP_INFO_RLOCK(pcbinfo);
|
|
LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
|
|
INP_WLOCK(inp);
|
|
imo = inp->inp_moptions;
|
|
if ((inp->inp_vflag & INP_IPV4) &&
|
|
imo != NULL) {
|
|
/*
|
|
* Unselect the outgoing interface if it is being
|
|
* detached.
|
|
*/
|
|
if (imo->imo_multicast_ifp == ifp)
|
|
imo->imo_multicast_ifp = NULL;
|
|
|
|
/*
|
|
* Drop multicast group membership if we joined
|
|
* through the interface being detached.
|
|
*/
|
|
for (i = 0, gap = 0; i < imo->imo_num_memberships;
|
|
i++) {
|
|
if (imo->imo_membership[i]->inm_ifp == ifp) {
|
|
in_delmulti(imo->imo_membership[i]);
|
|
gap++;
|
|
} else if (gap != 0)
|
|
imo->imo_membership[i - gap] =
|
|
imo->imo_membership[i];
|
|
}
|
|
imo->imo_num_memberships -= gap;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
INP_INFO_RUNLOCK(pcbinfo);
|
|
}
|
|
|
|
/*
|
|
* Lookup a PCB based on the local address and port.
|
|
*/
|
|
#define INP_LOOKUP_MAPPED_PCB_COST 3
|
|
struct inpcb *
|
|
in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
|
|
u_short lport, int wild_okay, struct ucred *cred)
|
|
{
|
|
struct inpcb *inp;
|
|
#ifdef INET6
|
|
int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
|
|
#else
|
|
int matchwild = 3;
|
|
#endif
|
|
int wildcard;
|
|
|
|
INP_INFO_LOCK_ASSERT(pcbinfo);
|
|
|
|
if (!wild_okay) {
|
|
struct inpcbhead *head;
|
|
/*
|
|
* Look for an unconnected (wildcard foreign addr) PCB that
|
|
* matches the local address and port we're looking for.
|
|
*/
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
|
|
0, pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == INADDR_ANY &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* Found?
|
|
*/
|
|
if (cred == NULL ||
|
|
inp->inp_cred->cr_prison == cred->cr_prison)
|
|
return (inp);
|
|
}
|
|
}
|
|
/*
|
|
* Not found.
|
|
*/
|
|
return (NULL);
|
|
} else {
|
|
struct inpcbporthead *porthash;
|
|
struct inpcbport *phd;
|
|
struct inpcb *match = NULL;
|
|
/*
|
|
* Best fit PCB lookup.
|
|
*
|
|
* First see if this local port is in use by looking on the
|
|
* port hash list.
|
|
*/
|
|
porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
|
|
pcbinfo->ipi_porthashmask)];
|
|
LIST_FOREACH(phd, porthash, phd_hash) {
|
|
if (phd->phd_port == lport)
|
|
break;
|
|
}
|
|
if (phd != NULL) {
|
|
/*
|
|
* Port is in use by one or more PCBs. Look for best
|
|
* fit.
|
|
*/
|
|
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
|
|
wildcard = 0;
|
|
if (cred != NULL &&
|
|
inp->inp_cred->cr_prison != cred->cr_prison)
|
|
continue;
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
/*
|
|
* We never select the PCB that has
|
|
* INP_IPV6 flag and is bound to :: if
|
|
* we have another PCB which is bound
|
|
* to 0.0.0.0. If a PCB has the
|
|
* INP_IPV6 flag, then we set its cost
|
|
* higher than IPv4 only PCBs.
|
|
*
|
|
* Note that the case only happens
|
|
* when a socket is bound to ::, under
|
|
* the condition that the use of the
|
|
* mapped address is allowed.
|
|
*/
|
|
if ((inp->inp_vflag & INP_IPV6) != 0)
|
|
wildcard += INP_LOOKUP_MAPPED_PCB_COST;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
if (inp->inp_laddr.s_addr != INADDR_ANY) {
|
|
if (laddr.s_addr == INADDR_ANY)
|
|
wildcard++;
|
|
else if (inp->inp_laddr.s_addr != laddr.s_addr)
|
|
continue;
|
|
} else {
|
|
if (laddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
}
|
|
if (wildcard < matchwild) {
|
|
match = inp;
|
|
matchwild = wildcard;
|
|
if (matchwild == 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return (match);
|
|
}
|
|
}
|
|
#undef INP_LOOKUP_MAPPED_PCB_COST
|
|
|
|
/*
|
|
* Lookup PCB in hash list.
|
|
*/
|
|
struct inpcb *
|
|
in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
|
|
u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
|
|
struct ifnet *ifp)
|
|
{
|
|
struct inpcbhead *head;
|
|
struct inpcb *inp, *tmpinp;
|
|
u_short fport = fport_arg, lport = lport_arg;
|
|
|
|
INP_INFO_LOCK_ASSERT(pcbinfo);
|
|
|
|
/*
|
|
* First look for an exact match.
|
|
*/
|
|
tmpinp = NULL;
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
|
|
pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == faddr.s_addr &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_fport == fport &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* XXX We should be able to directly return
|
|
* the inp here, without any checks.
|
|
* Well unless both bound with SO_REUSEPORT?
|
|
*/
|
|
if (jailed(inp->inp_cred))
|
|
return (inp);
|
|
if (tmpinp == NULL)
|
|
tmpinp = inp;
|
|
}
|
|
}
|
|
if (tmpinp != NULL)
|
|
return (tmpinp);
|
|
|
|
/*
|
|
* Then look for a wildcard match, if requested.
|
|
*/
|
|
if (wildcard == INPLOOKUP_WILDCARD) {
|
|
struct inpcb *local_wild = NULL, *local_exact = NULL;
|
|
#ifdef INET6
|
|
struct inpcb *local_wild_mapped = NULL;
|
|
#endif
|
|
struct inpcb *jail_wild = NULL;
|
|
int injail;
|
|
|
|
/*
|
|
* Order of socket selection - we always prefer jails.
|
|
* 1. jailed, non-wild.
|
|
* 2. jailed, wild.
|
|
* 3. non-jailed, non-wild.
|
|
* 4. non-jailed, wild.
|
|
*/
|
|
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
|
|
0, pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY ||
|
|
inp->inp_lport != lport)
|
|
continue;
|
|
|
|
/* XXX inp locking */
|
|
if (ifp && ifp->if_type == IFT_FAITH &&
|
|
(inp->inp_flags & INP_FAITH) == 0)
|
|
continue;
|
|
|
|
injail = jailed(inp->inp_cred);
|
|
if (injail) {
|
|
if (prison_check_ip4(inp->inp_cred,
|
|
&laddr) != 0)
|
|
continue;
|
|
} else {
|
|
if (local_exact != NULL)
|
|
continue;
|
|
}
|
|
|
|
if (inp->inp_laddr.s_addr == laddr.s_addr) {
|
|
if (injail)
|
|
return (inp);
|
|
else
|
|
local_exact = inp;
|
|
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
#ifdef INET6
|
|
/* XXX inp locking, NULL check */
|
|
if (inp->inp_vflag & INP_IPV6PROTO)
|
|
local_wild_mapped = inp;
|
|
else
|
|
#endif /* INET6 */
|
|
if (injail)
|
|
jail_wild = inp;
|
|
else
|
|
local_wild = inp;
|
|
}
|
|
} /* LIST_FOREACH */
|
|
if (jail_wild != NULL)
|
|
return (jail_wild);
|
|
if (local_exact != NULL)
|
|
return (local_exact);
|
|
if (local_wild != NULL)
|
|
return (local_wild);
|
|
#ifdef INET6
|
|
if (local_wild_mapped != NULL)
|
|
return (local_wild_mapped);
|
|
#endif /* defined(INET6) */
|
|
} /* if (wildcard == INPLOOKUP_WILDCARD) */
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Insert PCB onto various hash lists.
|
|
*/
|
|
int
|
|
in_pcbinshash(struct inpcb *inp)
|
|
{
|
|
struct inpcbhead *pcbhash;
|
|
struct inpcbporthead *pcbporthash;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct inpcbport *phd;
|
|
u_int32_t hashkey_faddr;
|
|
|
|
INP_INFO_WLOCK_ASSERT(pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
|
|
("in_pcbinshash: INP_INHASHLIST"));
|
|
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6)
|
|
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
|
|
else
|
|
#endif /* INET6 */
|
|
hashkey_faddr = inp->inp_faddr.s_addr;
|
|
|
|
pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
|
|
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
|
|
|
|
pcbporthash = &pcbinfo->ipi_porthashbase[
|
|
INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
|
|
|
|
/*
|
|
* Go through port list and look for a head for this lport.
|
|
*/
|
|
LIST_FOREACH(phd, pcbporthash, phd_hash) {
|
|
if (phd->phd_port == inp->inp_lport)
|
|
break;
|
|
}
|
|
/*
|
|
* If none exists, malloc one and tack it on.
|
|
*/
|
|
if (phd == NULL) {
|
|
phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
|
|
if (phd == NULL) {
|
|
return (ENOBUFS); /* XXX */
|
|
}
|
|
phd->phd_port = inp->inp_lport;
|
|
LIST_INIT(&phd->phd_pcblist);
|
|
LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
|
|
}
|
|
inp->inp_phd = phd;
|
|
LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
|
|
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
|
|
inp->inp_flags |= INP_INHASHLIST;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Move PCB to the proper hash bucket when { faddr, fport } have been
|
|
* changed. NOTE: This does not handle the case of the lport changing (the
|
|
* hashed port list would have to be updated as well), so the lport must
|
|
* not change after in_pcbinshash() has been called.
|
|
*/
|
|
void
|
|
in_pcbrehash(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct inpcbhead *head;
|
|
u_int32_t hashkey_faddr;
|
|
|
|
INP_INFO_WLOCK_ASSERT(pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
KASSERT(inp->inp_flags & INP_INHASHLIST,
|
|
("in_pcbrehash: !INP_INHASHLIST"));
|
|
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6)
|
|
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
|
|
else
|
|
#endif /* INET6 */
|
|
hashkey_faddr = inp->inp_faddr.s_addr;
|
|
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
|
|
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
|
|
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_INSERT_HEAD(head, inp, inp_hash);
|
|
}
|
|
|
|
/*
|
|
* Remove PCB from various lists.
|
|
*/
|
|
void
|
|
in_pcbremlists(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
|
|
INP_INFO_WLOCK_ASSERT(pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
|
|
if (inp->inp_flags & INP_INHASHLIST) {
|
|
struct inpcbport *phd = inp->inp_phd;
|
|
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_REMOVE(inp, inp_portlist);
|
|
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
|
|
LIST_REMOVE(phd, phd_hash);
|
|
free(phd, M_PCB);
|
|
}
|
|
inp->inp_flags &= ~INP_INHASHLIST;
|
|
}
|
|
LIST_REMOVE(inp, inp_list);
|
|
pcbinfo->ipi_count--;
|
|
}
|
|
|
|
/*
|
|
* A set label operation has occurred at the socket layer, propagate the
|
|
* label change into the in_pcb for the socket.
|
|
*/
|
|
void
|
|
in_pcbsosetlabel(struct socket *so)
|
|
{
|
|
#ifdef MAC
|
|
struct inpcb *inp;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
|
|
|
|
INP_WLOCK(inp);
|
|
SOCK_LOCK(so);
|
|
mac_inpcb_sosetlabel(so, inp);
|
|
SOCK_UNLOCK(so);
|
|
INP_WUNLOCK(inp);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* ipport_tick runs once per second, determining if random port allocation
|
|
* should be continued. If more than ipport_randomcps ports have been
|
|
* allocated in the last second, then we return to sequential port
|
|
* allocation. We return to random allocation only once we drop below
|
|
* ipport_randomcps for at least ipport_randomtime seconds.
|
|
*/
|
|
void
|
|
ipport_tick(void *xtp)
|
|
{
|
|
VNET_ITERATOR_DECL(vnet_iter);
|
|
|
|
VNET_LIST_RLOCK();
|
|
VNET_FOREACH(vnet_iter) {
|
|
CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
|
|
INIT_VNET_INET(vnet_iter);
|
|
if (V_ipport_tcpallocs <=
|
|
V_ipport_tcplastcount + V_ipport_randomcps) {
|
|
if (V_ipport_stoprandom > 0)
|
|
V_ipport_stoprandom--;
|
|
} else
|
|
V_ipport_stoprandom = V_ipport_randomtime;
|
|
V_ipport_tcplastcount = V_ipport_tcpallocs;
|
|
CURVNET_RESTORE();
|
|
}
|
|
VNET_LIST_RUNLOCK();
|
|
callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
|
|
}
|
|
|
|
void
|
|
inp_wlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK(inp);
|
|
}
|
|
|
|
void
|
|
inp_wunlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
|
|
void
|
|
inp_rlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_RLOCK(inp);
|
|
}
|
|
|
|
void
|
|
inp_runlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_RUNLOCK(inp);
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
void
|
|
inp_lock_assert(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
}
|
|
|
|
void
|
|
inp_unlock_assert(struct inpcb *inp)
|
|
{
|
|
|
|
INP_UNLOCK_ASSERT(inp);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
struct inpcb *inp;
|
|
|
|
INP_INFO_RLOCK(&V_tcbinfo);
|
|
LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
|
|
INP_WLOCK(inp);
|
|
func(inp, arg);
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
}
|
|
|
|
struct socket *
|
|
inp_inpcbtosocket(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
return (inp->inp_socket);
|
|
}
|
|
|
|
struct tcpcb *
|
|
inp_inpcbtotcpcb(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
return ((struct tcpcb *)inp->inp_ppcb);
|
|
}
|
|
|
|
int
|
|
inp_ip_tos_get(const struct inpcb *inp)
|
|
{
|
|
|
|
return (inp->inp_ip_tos);
|
|
}
|
|
|
|
void
|
|
inp_ip_tos_set(struct inpcb *inp, int val)
|
|
{
|
|
|
|
inp->inp_ip_tos = val;
|
|
}
|
|
|
|
void
|
|
inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
|
|
uint32_t *faddr, uint16_t *fp)
|
|
{
|
|
|
|
INP_LOCK_ASSERT(inp);
|
|
*laddr = inp->inp_laddr.s_addr;
|
|
*faddr = inp->inp_faddr.s_addr;
|
|
*lp = inp->inp_lport;
|
|
*fp = inp->inp_fport;
|
|
}
|
|
|
|
struct inpcb *
|
|
so_sotoinpcb(struct socket *so)
|
|
{
|
|
|
|
return (sotoinpcb(so));
|
|
}
|
|
|
|
struct tcpcb *
|
|
so_sototcpcb(struct socket *so)
|
|
{
|
|
|
|
return (sototcpcb(so));
|
|
}
|
|
|
|
#ifdef DDB
|
|
static void
|
|
db_print_indent(int indent)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < indent; i++)
|
|
db_printf(" ");
|
|
}
|
|
|
|
static void
|
|
db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
|
|
{
|
|
char faddr_str[48], laddr_str[48];
|
|
|
|
db_print_indent(indent);
|
|
db_printf("%s at %p\n", name, inc);
|
|
|
|
indent += 2;
|
|
|
|
#ifdef INET6
|
|
if (inc->inc_flags & INC_ISIPV6) {
|
|
/* IPv6. */
|
|
ip6_sprintf(laddr_str, &inc->inc6_laddr);
|
|
ip6_sprintf(faddr_str, &inc->inc6_faddr);
|
|
} else {
|
|
#endif
|
|
/* IPv4. */
|
|
inet_ntoa_r(inc->inc_laddr, laddr_str);
|
|
inet_ntoa_r(inc->inc_faddr, faddr_str);
|
|
#ifdef INET6
|
|
}
|
|
#endif
|
|
db_print_indent(indent);
|
|
db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
|
|
ntohs(inc->inc_lport));
|
|
db_print_indent(indent);
|
|
db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
|
|
ntohs(inc->inc_fport));
|
|
}
|
|
|
|
static void
|
|
db_print_inpflags(int inp_flags)
|
|
{
|
|
int comma;
|
|
|
|
comma = 0;
|
|
if (inp_flags & INP_RECVOPTS) {
|
|
db_printf("%sINP_RECVOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVRETOPTS) {
|
|
db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVDSTADDR) {
|
|
db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_HDRINCL) {
|
|
db_printf("%sINP_HDRINCL", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_HIGHPORT) {
|
|
db_printf("%sINP_HIGHPORT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_LOWPORT) {
|
|
db_printf("%sINP_LOWPORT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_ANONPORT) {
|
|
db_printf("%sINP_ANONPORT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVIF) {
|
|
db_printf("%sINP_RECVIF", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_MTUDISC) {
|
|
db_printf("%sINP_MTUDISC", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_FAITH) {
|
|
db_printf("%sINP_FAITH", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVTTL) {
|
|
db_printf("%sINP_RECVTTL", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_DONTFRAG) {
|
|
db_printf("%sINP_DONTFRAG", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_IPV6_V6ONLY) {
|
|
db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_PKTINFO) {
|
|
db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_HOPLIMIT) {
|
|
db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_HOPOPTS) {
|
|
db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_DSTOPTS) {
|
|
db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_RTHDR) {
|
|
db_printf("%sIN6P_RTHDR", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_RTHDRDSTOPTS) {
|
|
db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_TCLASS) {
|
|
db_printf("%sIN6P_TCLASS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_AUTOFLOWLABEL) {
|
|
db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_TIMEWAIT) {
|
|
db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_ONESBCAST) {
|
|
db_printf("%sINP_ONESBCAST", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_DROPPED) {
|
|
db_printf("%sINP_DROPPED", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_SOCKREF) {
|
|
db_printf("%sINP_SOCKREF", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_RFC2292) {
|
|
db_printf("%sIN6P_RFC2292", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_MTU) {
|
|
db_printf("IN6P_MTU%s", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
db_print_inpvflag(u_char inp_vflag)
|
|
{
|
|
int comma;
|
|
|
|
comma = 0;
|
|
if (inp_vflag & INP_IPV4) {
|
|
db_printf("%sINP_IPV4", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_IPV6) {
|
|
db_printf("%sINP_IPV6", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_IPV6PROTO) {
|
|
db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
db_print_inpcb(struct inpcb *inp, const char *name, int indent)
|
|
{
|
|
|
|
db_print_indent(indent);
|
|
db_printf("%s at %p\n", name, inp);
|
|
|
|
indent += 2;
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_flow: 0x%x\n", inp->inp_flow);
|
|
|
|
db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n",
|
|
inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_label: %p inp_flags: 0x%x (",
|
|
inp->inp_label, inp->inp_flags);
|
|
db_print_inpflags(inp->inp_flags);
|
|
db_printf(")\n");
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
|
|
inp->inp_vflag);
|
|
db_print_inpvflag(inp->inp_vflag);
|
|
db_printf(")\n");
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
|
|
inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
|
|
|
|
db_print_indent(indent);
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
db_printf("in6p_options: %p in6p_outputopts: %p "
|
|
"in6p_moptions: %p\n", inp->in6p_options,
|
|
inp->in6p_outputopts, inp->in6p_moptions);
|
|
db_printf("in6p_icmp6filt: %p in6p_cksum %d "
|
|
"in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
|
|
inp->in6p_hops);
|
|
} else
|
|
#endif
|
|
{
|
|
db_printf("inp_ip_tos: %d inp_ip_options: %p "
|
|
"inp_ip_moptions: %p\n", inp->inp_ip_tos,
|
|
inp->inp_options, inp->inp_moptions);
|
|
}
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd,
|
|
(uintmax_t)inp->inp_gencnt);
|
|
}
|
|
|
|
DB_SHOW_COMMAND(inpcb, db_show_inpcb)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
if (!have_addr) {
|
|
db_printf("usage: show inpcb <addr>\n");
|
|
return;
|
|
}
|
|
inp = (struct inpcb *)addr;
|
|
|
|
db_print_inpcb(inp, "inpcb", 0);
|
|
}
|
|
#endif
|