Poul-Henning Kamp 46783fb897 Remove NBPF conditionality of bpf calls in most of our network drivers.
This means that we will not have to have a bpf and a non-bpf version
of our driver modules.

This does not open any security hole, because the bpf core isn't loadable

The drivers left unchanged are the "cross platform" drivers where the respective
maintainers are urged to DTRT, whatever that may be.

Add a couple of missing FreeBSD tags.
1999-09-25 12:06:01 +00:00

869 lines
24 KiB
C

/*
* Copyright (c) 1996, Javier Martín Rueda (jmrueda@diatel.upm.es)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Intel EtherExpress Pro/10, Pro/10+ Ethernet driver
*
* Revision history:
*
* 30-Oct-1996: first beta version. Inet and BPF supported, but no multicast.
*/
#include "ex.h"
#if NEX > 0
#include "opt_inet.h"
#include "opt_ipx.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net/bpf.h>
#include <machine/clock.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/if_exreg.h>
#ifdef EXDEBUG
#define Start_End 1
#define Rcvd_Pkts 2
#define Sent_Pkts 4
#define Status 8
static int debug_mask = 0;
static int exintr_count = 0;
#define DODEBUG(level, action) if (level & debug_mask) action
#else
#define DODEBUG(level, action)
#endif
#define Conn_BNC 1
#define Conn_TPE 2
#define Conn_AUI 3
struct ex_softc {
struct arpcom arpcom; /* Ethernet common data */
u_int iobase; /* I/O base address. */
u_short connector; /* Connector type. */
u_short irq_no; /* IRQ number. */
char *irq2ee; /* irq <-> internal representation conversion */
u_char *ee2irq;
u_int mem_size; /* Total memory size, in bytes. */
u_int rx_mem_size; /* Rx memory size (by default, first 3/4 of total memory). */
u_int rx_lower_limit, rx_upper_limit; /* Lower and upper limits of receive buffer. */
u_int rx_head; /* Head of receive ring buffer. */
u_int tx_mem_size; /* Tx memory size (by default, last quarter of total memory). */
u_int tx_lower_limit, tx_upper_limit; /* Lower and upper limits of transmit buffer. */
u_int tx_head, tx_tail; /* Head and tail of transmit ring buffer. */
u_int tx_last; /* Pointer to beginning of last frame in the chain. */
};
static struct ex_softc ex_sc[NEX]; /* XXX would it be better to malloc(3) the memory? */
static char irq2eemap[] = { -1, -1, 0, 1, -1, 2, -1, -1, -1, 0, 3, 4, -1, -1, -1, -1 };
static u_char ee2irqmap[] = { 9, 3, 5, 10, 11, 0, 0, 0 };
static char plus_irq2eemap[] = { -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, -1, -1, -1 };
static u_char plus_ee2irqmap[] = { 3, 4, 5, 7, 9, 10, 11, 12 };
static int ex_probe __P((struct isa_device *));
static int ex_attach __P((struct isa_device *));
static void ex_init __P((void *));
static void ex_start __P((struct ifnet *));
static void ex_stop __P((int));
static ointhand2_t exintr;
static int ex_ioctl __P((struct ifnet *, u_long, caddr_t));
static void ex_reset __P((int));
static void ex_watchdog __P((struct ifnet *));
static u_short eeprom_read __P((int, int));
static int look_for_card __P((u_int));
static void ex_tx_intr __P((int));
static void ex_rx_intr __P((int));
struct isa_driver exdriver = {
ex_probe,
ex_attach,
"ex",
0
};
static int look_for_card(u_int iobase)
{
int count1, count2;
/*
* Check for the i82595 signature, and check that the round robin
* counter actually advances.
*/
if (((count1 = inb(iobase + ID_REG)) & Id_Mask) != Id_Sig)
return(0);
count2 = inb(iobase + ID_REG);
count2 = inb(iobase + ID_REG);
count2 = inb(iobase + ID_REG);
return((count2 & Counter_bits) == ((count1 + 0xc0) & Counter_bits));
}
int ex_probe(struct isa_device *dev)
{
int unit = dev->id_unit;
struct ex_softc *sc = &ex_sc[unit];
u_int iobase;
u_short eaddr_tmp;
int tmp;
DODEBUG(Start_End, printf("ex_probe%d: start\n", unit););
/*
* If an I/O address was supplied in the configuration file, probe only
* that. Otherwise, cycle through the predefined set of possible addresses.
*/
if (dev->id_iobase != -1) {
if (! look_for_card(iobase = dev->id_iobase))
return(0);
}
else {
for (iobase = 0x200; iobase < 0x3a0; iobase += 0x10)
if (look_for_card(iobase))
break;
if (iobase >= 0x3a0)
return(0);
else
dev->id_iobase = iobase;
}
/*
* Reset the card.
*/
outb(iobase + CMD_REG, Reset_CMD);
DELAY(400);
/*
* Fill in several fields of the softc structure:
* - I/O base address.
* - Hardware Ethernet address.
* - IRQ number (if not supplied in config file, read it from EEPROM).
* - Connector type.
*/
sc->iobase = iobase;
eaddr_tmp = eeprom_read(iobase, EE_Eth_Addr_Lo);
sc->arpcom.ac_enaddr[5] = eaddr_tmp & 0xff;
sc->arpcom.ac_enaddr[4] = eaddr_tmp >> 8;
eaddr_tmp = eeprom_read(iobase, EE_Eth_Addr_Mid);
sc->arpcom.ac_enaddr[3] = eaddr_tmp & 0xff;
sc->arpcom.ac_enaddr[2] = eaddr_tmp >> 8;
eaddr_tmp = eeprom_read(iobase, EE_Eth_Addr_Hi);
sc->arpcom.ac_enaddr[1] = eaddr_tmp & 0xff;
sc->arpcom.ac_enaddr[0] = eaddr_tmp >> 8;
tmp = eeprom_read(iobase, EE_IRQ_No) & IRQ_No_Mask;
/* work out which set of irq <-> internal tables to use */
if (sc->arpcom.ac_enaddr[0] == 0x00 &&
sc->arpcom.ac_enaddr[1] == 0xA0 &&
sc->arpcom.ac_enaddr[2] == 0xC9) { /* it's a 10+ */
sc->irq2ee = plus_irq2eemap;
sc->ee2irq = plus_ee2irqmap;
} else { /* it's an ordinary 10 */
sc->irq2ee = irq2eemap;
sc->ee2irq = ee2irqmap;
}
if (dev->id_irq > 0) {
if (sc->ee2irq[tmp] != ffs(dev->id_irq) - 1)
printf("ex%d: WARNING: board's EEPROM is configured for IRQ %d, using %d\n", unit, sc->ee2irq[tmp], ffs(dev->id_irq) - 1);
sc->irq_no = ffs(dev->id_irq) - 1;
}
else {
sc->irq_no = sc->ee2irq[tmp];
dev->id_irq = 1 << sc->irq_no;
}
if (sc->irq_no == 0) {
printf("ex%d: invalid IRQ.\n", unit);
return(0);
}
outb(iobase + CMD_REG, Bank2_Sel);
tmp = inb(iobase + REG3);
if (tmp & TPE_bit)
sc->connector = Conn_TPE;
else if (tmp & BNC_bit)
sc->connector = Conn_BNC;
else
sc->connector = Conn_AUI;
sc->mem_size = CARD_RAM_SIZE; /* XXX This should be read from the card itself. */
outb(iobase + CMD_REG, Bank0_Sel);
DODEBUG(Start_End, printf("ex_probe%d: finish\n", unit););
return(EX_IOSIZE);
}
int ex_attach(struct isa_device *dev)
{
int unit = dev->id_unit;
struct ex_softc *sc = &ex_sc[unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
DODEBUG(Start_End, printf("ex_attach%d: start\n", unit););
dev->id_ointr = exintr;
/*
* Initialize the ifnet structure.
*/
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "ex";
ifp->if_init = ex_init;
ifp->if_output = ether_output;
ifp->if_start = ex_start;
ifp->if_ioctl = ex_ioctl;
ifp->if_watchdog = ex_watchdog;
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST /* XXX not done yet. | IFF_MULTICAST */;
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp);
if (sc->arpcom.ac_enaddr[0] == 0x00 &&
sc->arpcom.ac_enaddr[1] == 0xA0 &&
sc->arpcom.ac_enaddr[2] == 0xC9) {
printf("ex%d: Intel EtherExpress Pro/10+, address %6D, connector ", dev->id_unit, sc->arpcom.ac_enaddr, ":");
} else {
printf("ex%d: Intel EtherExpress Pro/10, address %6D, connector ", dev->id_unit, sc->arpcom.ac_enaddr, ":");
}
switch(sc->connector) {
case Conn_TPE: printf("TPE\n"); break;
case Conn_BNC: printf("BNC\n"); break;
case Conn_AUI: printf("AUI\n"); break;
default: printf("???\n");
}
/*
* If BPF is in the kernel, call the attach for it
*/
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
DODEBUG(Start_End, printf("ex_attach%d: finish\n", unit););
sc->arpcom.ac_if.if_snd.ifq_maxlen = ifqmaxlen;
return(1);
}
void ex_init(void *xsc)
{
register struct ex_softc *sc = (struct ex_softc *) xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
int s, i;
register int iobase = sc->iobase;
unsigned short temp_reg;
DODEBUG(Start_End, printf("ex_init%d: start\n", ifp->if_unit););
if (ifp->if_addrhead.tqh_first == NULL)
return;
s = splimp();
sc->arpcom.ac_if.if_timer = 0;
/*
* Load the ethernet address into the card.
*/
outb(iobase + CMD_REG, Bank2_Sel);
temp_reg = inb(iobase + EEPROM_REG);
if (temp_reg & Trnoff_Enable)
outb(iobase + EEPROM_REG, temp_reg & ~Trnoff_Enable);
for (i = 0; i < ETHER_ADDR_LEN; i++)
outb(iobase + I_ADDR_REG0 + i, sc->arpcom.ac_enaddr[i]);
/*
* - Setup transmit chaining and discard bad received frames.
* - Match broadcast.
* - Clear test mode.
* - Set receiving mode.
* - Set IRQ number.
*/
outb(iobase + REG1, inb(iobase + REG1) | Tx_Chn_Int_Md | Tx_Chn_ErStp | Disc_Bad_Fr);
outb(iobase + REG2, inb(iobase + REG2) | No_SA_Ins | RX_CRC_InMem);
outb(iobase + REG3, inb(iobase + REG3) & 0x3f /* XXX constants. */ );
outb(iobase + CMD_REG, Bank1_Sel);
outb(iobase + INT_NO_REG, (inb(iobase + INT_NO_REG) & 0xf8) | sc->irq2ee[sc->irq_no]);
/*
* Divide the available memory in the card into rcv and xmt buffers.
* By default, I use the first 3/4 of the memory for the rcv buffer,
* and the remaining 1/4 of the memory for the xmt buffer.
*/
sc->rx_mem_size = sc->mem_size * 3 / 4;
sc->tx_mem_size = sc->mem_size - sc->rx_mem_size;
sc->rx_lower_limit = 0x0000;
sc->rx_upper_limit = sc->rx_mem_size - 2;
sc->tx_lower_limit = sc->rx_mem_size;
sc->tx_upper_limit = sc->mem_size - 2;
outb(iobase + RCV_LOWER_LIMIT_REG, sc->rx_lower_limit >> 8);
outb(iobase + RCV_UPPER_LIMIT_REG, sc->rx_upper_limit >> 8);
outb(iobase + XMT_LOWER_LIMIT_REG, sc->tx_lower_limit >> 8);
outb(iobase + XMT_UPPER_LIMIT_REG, sc->tx_upper_limit >> 8);
/*
* Enable receive and transmit interrupts, and clear any pending int.
*/
outb(iobase + REG1, inb(iobase + REG1) | TriST_INT);
outb(iobase + CMD_REG, Bank0_Sel);
outb(iobase + MASK_REG, All_Int & ~(Rx_Int | Tx_Int));
outb(iobase + STATUS_REG, All_Int);
/*
* Initialize receive and transmit ring buffers.
*/
outw(iobase + RCV_BAR, sc->rx_lower_limit);
sc->rx_head = sc->rx_lower_limit;
outw(iobase + RCV_STOP_REG, sc->rx_upper_limit | 0xfe);
outw(iobase + XMT_BAR, sc->tx_lower_limit);
sc->tx_head = sc->tx_tail = sc->tx_lower_limit;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
DODEBUG(Status, printf("OIDLE init\n"););
/*
* Final reset of the board, and enable operation.
*/
outb(iobase + CMD_REG, Sel_Reset_CMD);
DELAY(2);
outb(iobase + CMD_REG, Rcv_Enable_CMD);
ex_start(ifp);
splx(s);
DODEBUG(Start_End, printf("ex_init%d: finish\n", ifp->if_unit););
}
void ex_start(struct ifnet *ifp)
{
int unit = ifp->if_unit;
register struct ex_softc *sc = &ex_sc[unit];
register int iobase = sc->iobase;
int i, s, len, data_len, avail, dest, next;
unsigned char tmp16[2];
struct mbuf *opkt;
register struct mbuf *m;
DODEBUG(Start_End, printf("ex_start%d: start\n", unit););
s = splimp();
/*
* Main loop: send outgoing packets to network card until there are no
* more packets left, or the card cannot accept any more yet.
*/
while (((opkt = ifp->if_snd.ifq_head) != NULL) && ! (ifp->if_flags & IFF_OACTIVE)) {
/*
* Ensure there is enough free transmit buffer space for this packet,
* including its header. Note: the header cannot wrap around the end of
* the transmit buffer and must be kept together, so we allow space for
* twice the length of the header, just in case.
*/
for (len = 0, m = opkt; m != NULL; m = m->m_next)
len += m->m_len;
data_len = len;
DODEBUG(Sent_Pkts, printf("1. Sending packet with %d data bytes. ", data_len););
if (len & 1)
len += XMT_HEADER_LEN + 1;
else
len += XMT_HEADER_LEN;
if ((i = sc->tx_tail - sc->tx_head) >= 0)
avail = sc->tx_mem_size - i;
else
avail = -i;
DODEBUG(Sent_Pkts, printf("i=%d, avail=%d\n", i, avail););
if (avail >= len + XMT_HEADER_LEN) {
IF_DEQUEUE(&ifp->if_snd, opkt);
#ifdef EX_PSA_INTR
/*
* Disable rx and tx interrupts, to avoid corruption of the host
* address register by interrupt service routines. XXX Is this necessary with splimp() enabled?
*/
outb(iobase + MASK_REG, All_Int);
#endif
/*
* Compute the start and end addresses of this frame in the tx buffer.
*/
dest = sc->tx_tail;
next = dest + len;
if (next > sc->tx_upper_limit) {
if ((sc->tx_upper_limit + 2 - sc->tx_tail) <= XMT_HEADER_LEN) {
dest = sc->tx_lower_limit;
next = dest + len;
}
else
next = sc->tx_lower_limit + next - sc->tx_upper_limit - 2;
}
/*
* Build the packet frame in the card's ring buffer.
*/
DODEBUG(Sent_Pkts, printf("2. dest=%d, next=%d. ", dest, next););
outw(iobase + HOST_ADDR_REG, dest);
outw(iobase + IO_PORT_REG, Transmit_CMD);
outw(iobase + IO_PORT_REG, 0);
outw(iobase + IO_PORT_REG, next);
outw(iobase + IO_PORT_REG, data_len);
/*
* Output the packet data to the card. Ensure all transfers are
* 16-bit wide, even if individual mbufs have odd length.
*/
for (m = opkt, i = 0; m != NULL; m = m->m_next) {
DODEBUG(Sent_Pkts, printf("[%d]", m->m_len););
if (i) {
tmp16[1] = *(mtod(m, caddr_t));
outsw(iobase + IO_PORT_REG, tmp16, 1);
}
outsw(iobase + IO_PORT_REG, mtod(m, caddr_t) + i, (m->m_len - i) / 2);
if ((i = (m->m_len - i) & 1) != 0)
tmp16[0] = *(mtod(m, caddr_t) + m->m_len - 1);
}
if (i)
outsw(iobase + IO_PORT_REG, tmp16, 1);
/*
* If there were other frames chained, update the chain in the last one.
*/
if (sc->tx_head != sc->tx_tail) {
if (sc->tx_tail != dest) {
outw(iobase + HOST_ADDR_REG, sc->tx_last + XMT_Chain_Point);
outw(iobase + IO_PORT_REG, dest);
}
outw(iobase + HOST_ADDR_REG, sc->tx_last + XMT_Byte_Count);
i = inw(iobase + IO_PORT_REG);
outw(iobase + HOST_ADDR_REG, sc->tx_last + XMT_Byte_Count);
outw(iobase + IO_PORT_REG, i | Ch_bit);
}
/*
* Resume normal operation of the card:
* - Make a dummy read to flush the DRAM write pipeline.
* - Enable receive and transmit interrupts.
* - Send Transmit or Resume_XMT command, as appropriate.
*/
inw(iobase + IO_PORT_REG);
#ifdef EX_PSA_INTR
outb(iobase + MASK_REG, All_Int & ~(Rx_Int | Tx_Int));
#endif
if (sc->tx_head == sc->tx_tail) {
outw(iobase + XMT_BAR, dest);
outb(iobase + CMD_REG, Transmit_CMD);
sc->tx_head = dest;
DODEBUG(Sent_Pkts, printf("Transmit\n"););
}
else {
outb(iobase + CMD_REG, Resume_XMT_List_CMD);
DODEBUG(Sent_Pkts, printf("Resume\n"););
}
sc->tx_last = dest;
sc->tx_tail = next;
if (ifp->if_bpf != NULL)
bpf_mtap(ifp, opkt);
ifp->if_timer = 2;
ifp->if_opackets++;
m_freem(opkt);
}
else {
ifp->if_flags |= IFF_OACTIVE;
DODEBUG(Status, printf("OACTIVE start\n"););
}
}
splx(s);
DODEBUG(Start_End, printf("ex_start%d: finish\n", unit););
}
void ex_stop(int unit)
{
struct ex_softc *sc = &ex_sc[unit];
int iobase = sc->iobase;
DODEBUG(Start_End, printf("ex_stop%d: start\n", unit););
/*
* Disable card operation:
* - Disable the interrupt line.
* - Flush transmission and disable reception.
* - Mask and clear all interrupts.
* - Reset the 82595.
*/
outb(iobase + CMD_REG, Bank1_Sel);
outb(iobase + REG1, inb(iobase + REG1) & ~TriST_INT);
outb(iobase + CMD_REG, Bank0_Sel);
outb(iobase + CMD_REG, Rcv_Stop);
sc->tx_head = sc->tx_tail = sc->tx_lower_limit;
sc->tx_last = 0; /* XXX I think these two lines are not necessary, because ex_init will always be called again to reinit the interface. */
outb(iobase + MASK_REG, All_Int);
outb(iobase + STATUS_REG, All_Int);
outb(iobase + CMD_REG, Reset_CMD);
DELAY(200);
DODEBUG(Start_End, printf("ex_stop%d: finish\n", unit););
}
static void exintr(int unit)
{
struct ex_softc *sc = &ex_sc[unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
int iobase = sc->iobase;
int int_status, send_pkts;
DODEBUG(Start_End, printf("exintr%d: start\n", unit););
#ifdef EXDEBUG
if (++exintr_count != 1)
printf("WARNING: nested interrupt (%d). Mail the author.\n", exintr_count);
#endif
send_pkts = 0;
while ((int_status = inb(iobase + STATUS_REG)) & (Tx_Int | Rx_Int)) {
if (int_status & Rx_Int) {
outb(iobase + STATUS_REG, Rx_Int);
ex_rx_intr(unit);
}
else if (int_status & Tx_Int) {
outb(iobase + STATUS_REG, Tx_Int);
ex_tx_intr(unit);
send_pkts = 1;
}
}
/*
* If any packet has been transmitted, and there are queued packets to
* be sent, attempt to send more packets to the network card.
*/
if (send_pkts && (ifp->if_snd.ifq_head != NULL))
ex_start(ifp);
#ifdef EXDEBUG
exintr_count--;
#endif
DODEBUG(Start_End, printf("exintr%d: finish\n", unit););
}
void ex_tx_intr(int unit)
{
register struct ex_softc *sc = &ex_sc[unit];
register struct ifnet *ifp = &sc->arpcom.ac_if;
register int iobase = sc->iobase;
int tx_status;
DODEBUG(Start_End, printf("ex_tx_intr%d: start\n", unit););
/*
* - Cancel the watchdog.
* For all packets transmitted since last transmit interrupt:
* - Advance chain pointer to next queued packet.
* - Update statistics.
*/
ifp->if_timer = 0;
while (sc->tx_head != sc->tx_tail) {
outw(iobase + HOST_ADDR_REG, sc->tx_head);
if (! inw(iobase + IO_PORT_REG) & Done_bit)
break;
tx_status = inw(iobase + IO_PORT_REG);
sc->tx_head = inw(iobase + IO_PORT_REG);
if (tx_status & TX_OK_bit)
ifp->if_opackets++;
else
ifp->if_oerrors++;
ifp->if_collisions += tx_status & No_Collisions_bits;
}
/*
* The card should be ready to accept more packets now.
*/
ifp->if_flags &= ~IFF_OACTIVE;
DODEBUG(Status, printf("OIDLE tx_intr\n"););
DODEBUG(Start_End, printf("ex_tx_intr%d: finish\n", unit););
}
void ex_rx_intr(int unit)
{
register struct ex_softc *sc = &ex_sc[unit];
register struct ifnet *ifp = &sc->arpcom.ac_if;
register int iobase = sc->iobase;
int rx_status, pkt_len, QQQ;
register struct mbuf *m, *ipkt;
struct ether_header *eh;
DODEBUG(Start_End, printf("ex_rx_intr%d: start\n", unit););
/*
* For all packets received since last receive interrupt:
* - If packet ok, read it into a new mbuf and queue it to interface,
* updating statistics.
* - If packet bad, just discard it, and update statistics.
* Finally, advance receive stop limit in card's memory to new location.
*/
outw(iobase + HOST_ADDR_REG, sc->rx_head);
while (inw(iobase + IO_PORT_REG) == RCV_Done) {
rx_status = inw(iobase + IO_PORT_REG);
sc->rx_head = inw(iobase + IO_PORT_REG);
QQQ = pkt_len = inw(iobase + IO_PORT_REG);
if (rx_status & RCV_OK_bit) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
ipkt = m;
if (ipkt == NULL)
ifp->if_iqdrops++;
else {
ipkt->m_pkthdr.rcvif = ifp;
ipkt->m_pkthdr.len = pkt_len;
ipkt->m_len = MHLEN;
while (pkt_len > 0) {
if (pkt_len > MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
m->m_len = MCLBYTES;
else {
m_freem(ipkt);
ifp->if_iqdrops++;
goto rx_another;
}
}
m->m_len = min(m->m_len, pkt_len);
/*
* NOTE: I'm assuming that all mbufs allocated are of even length,
* except for the last one in an odd-length packet.
*/
insw(iobase + IO_PORT_REG, mtod(m, caddr_t), m->m_len / 2);
if (m->m_len & 1)
*(mtod(m, caddr_t) + m->m_len - 1) = inb(iobase + IO_PORT_REG);
pkt_len -= m->m_len;
if (pkt_len > 0) {
MGET(m->m_next, M_DONTWAIT, MT_DATA);
if (m->m_next == NULL) {
m_freem(ipkt);
ifp->if_iqdrops++;
goto rx_another;
}
m = m->m_next;
m->m_len = MLEN;
}
}
eh = mtod(ipkt, struct ether_header *);
#ifdef EXDEBUG
if (debug_mask & Rcvd_Pkts) {
if ((eh->ether_dhost[5] != 0xff) || (eh->ether_dhost[0] != 0xff)) {
printf("Receive packet with %d data bytes: %6D -> ", QQQ, eh->ether_shost, ":");
printf("%6D\n", eh->ether_dhost, ":");
} /* QQQ */
}
#endif
if (ifp->if_bpf != NULL) {
bpf_mtap(ifp, ipkt);
/*
* Note that the interface cannot be in promiscuous mode if there are
* no BPF listeners. And if we are in promiscuous mode, we have to
* check if this packet is really ours.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 &&
bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, sizeof(eh->ether_dhost)) != 0 &&
bcmp(eh->ether_dhost, etherbroadcastaddr, sizeof(eh->ether_dhost)) != 0) {
m_freem(ipkt);
goto rx_another;
}
}
m_adj(ipkt, sizeof(struct ether_header));
ether_input(ifp, eh, ipkt);
ifp->if_ipackets++;
}
}
else
ifp->if_ierrors++;
outw(iobase + HOST_ADDR_REG, sc->rx_head);
rx_another: ;
}
if (sc->rx_head < sc->rx_lower_limit + 2)
outw(iobase + RCV_STOP_REG, sc->rx_upper_limit);
else
outw(iobase + RCV_STOP_REG, sc->rx_head - 2);
DODEBUG(Start_End, printf("ex_rx_intr%d: finish\n", unit););
}
int ex_ioctl(register struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ex_softc *sc = &ex_sc[ifp->if_unit];
int s, error = 0;
DODEBUG(Start_End, printf("ex_ioctl%d: start ", ifp->if_unit););
s = splimp();
switch(cmd) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, cmd, data);
break;
case SIOCSIFFLAGS:
DODEBUG(Start_End, printf("SIOCSIFFLAGS"););
if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) {
ifp->if_flags &= ~IFF_RUNNING;
ex_stop(ifp->if_unit);
}
else
ex_init(sc);
break;
#ifdef NODEF
case SIOCGHWADDR:
DODEBUG(Start_End, printf("SIOCGHWADDR"););
bcopy((caddr_t) sc->sc_addr, (caddr_t) &ifr->ifr_data, sizeof(sc->sc_addr));
break;
#endif
case SIOCADDMULTI:
DODEBUG(Start_End, printf("SIOCADDMULTI"););
case SIOCDELMULTI:
DODEBUG(Start_End, printf("SIOCDELMULTI"););
/* XXX Support not done yet. */
error = EINVAL;
break;
default:
DODEBUG(Start_End, printf("unknown"););
error = EINVAL;
}
splx(s);
DODEBUG(Start_End, printf("\nex_ioctl%d: finish\n", ifp->if_unit););
return(error);
}
void ex_reset(int unit)
{
struct ex_softc *sc = &ex_sc[unit];
int s;
DODEBUG(Start_End, printf("ex_reset%d: start\n", unit););
s = splimp();
ex_stop(unit);
ex_init(sc);
splx(s);
DODEBUG(Start_End, printf("ex_reset%d: finish\n", unit););
}
void ex_watchdog(struct ifnet *ifp)
{
DODEBUG(Start_End, printf("ex_watchdog%d: start\n", ifp->if_unit););
ifp->if_flags &= ~IFF_OACTIVE;
DODEBUG(Status, printf("OIDLE watchdog\n"););
ifp->if_oerrors++;
ex_reset(ifp->if_unit);
ex_start(ifp);
DODEBUG(Start_End, printf("ex_watchdog%d: finish\n", ifp->if_unit););
}
static u_short eeprom_read(int iobase, int location)
{
int i;
u_short data = 0;
int ee_addr;
int read_cmd = location | EE_READ_CMD;
short ctrl_val = EECS;
ee_addr = iobase + EEPROM_REG;
outb(iobase + CMD_REG, Bank2_Sel);
outb(ee_addr, EECS);
for (i = 8; i >= 0; i--) {
short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI : ctrl_val;
outb(ee_addr, outval);
outb(ee_addr, outval | EESK);
DELAY(3);
outb(ee_addr, outval);
DELAY(2);
}
outb(ee_addr, ctrl_val);
for (i = 16; i > 0; i--) {
outb(ee_addr, ctrl_val | EESK);
DELAY(3);
data = (data << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
outb(ee_addr, ctrl_val);
DELAY(2);
}
ctrl_val &= ~EECS;
outb(ee_addr, ctrl_val | EESK);
DELAY(3);
outb(ee_addr, ctrl_val);
DELAY(2);
outb(iobase + CMD_REG, Bank0_Sel);
return(data);
}
#endif /* NEX > 0 */