freebsd-skq/lib/libc/rpc/key_call.c
hrs 2f61636cf8 Replace Sun RPC license in TI-RPC library with a 3-clause BSD license,
with the explicit permission of Sun Microsystems in 2009.
2013-11-25 19:04:36 +00:00

480 lines
12 KiB
C

/*-
* Copyright (c) 2009, Sun Microsystems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of Sun Microsystems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1986-1991 by Sun Microsystems Inc.
*/
#ident "@(#)key_call.c 1.25 94/04/24 SMI"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* key_call.c, Interface to keyserver
*
* setsecretkey(key) - set your secret key
* encryptsessionkey(agent, deskey) - encrypt a session key to talk to agent
* decryptsessionkey(agent, deskey) - decrypt ditto
* gendeskey(deskey) - generate a secure des key
*/
#include "namespace.h"
#include "reentrant.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <rpc/rpc.h>
#include <rpc/auth.h>
#include <rpc/auth_unix.h>
#include <rpc/key_prot.h>
#include <string.h>
#include <netconfig.h>
#include <sys/utsname.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/fcntl.h>
#include "un-namespace.h"
#include "mt_misc.h"
#define KEY_TIMEOUT 5 /* per-try timeout in seconds */
#define KEY_NRETRY 12 /* number of retries */
#ifdef DEBUG
#define debug(msg) (void) fprintf(stderr, "%s\n", msg);
#else
#define debug(msg)
#endif /* DEBUG */
/*
* Hack to allow the keyserver to use AUTH_DES (for authenticated
* NIS+ calls, for example). The only functions that get called
* are key_encryptsession_pk, key_decryptsession_pk, and key_gendes.
*
* The approach is to have the keyserver fill in pointers to local
* implementations of these functions, and to call those in key_call().
*/
cryptkeyres *(*__key_encryptsession_pk_LOCAL)() = 0;
cryptkeyres *(*__key_decryptsession_pk_LOCAL)() = 0;
des_block *(*__key_gendes_LOCAL)() = 0;
static int key_call( u_long, xdrproc_t, void *, xdrproc_t, void *);
int
key_setsecret(secretkey)
const char *secretkey;
{
keystatus status;
if (!key_call((u_long) KEY_SET, (xdrproc_t)xdr_keybuf,
(void *)secretkey,
(xdrproc_t)xdr_keystatus, &status)) {
return (-1);
}
if (status != KEY_SUCCESS) {
debug("set status is nonzero");
return (-1);
}
return (0);
}
/* key_secretkey_is_set() returns 1 if the keyserver has a secret key
* stored for the caller's effective uid; it returns 0 otherwise
*
* N.B.: The KEY_NET_GET key call is undocumented. Applications shouldn't
* be using it, because it allows them to get the user's secret key.
*/
int
key_secretkey_is_set(void)
{
struct key_netstres kres;
memset((void*)&kres, 0, sizeof (kres));
if (key_call((u_long) KEY_NET_GET, (xdrproc_t)xdr_void, NULL,
(xdrproc_t)xdr_key_netstres, &kres) &&
(kres.status == KEY_SUCCESS) &&
(kres.key_netstres_u.knet.st_priv_key[0] != 0)) {
/* avoid leaving secret key in memory */
memset(kres.key_netstres_u.knet.st_priv_key, 0, HEXKEYBYTES);
return (1);
}
return (0);
}
int
key_encryptsession_pk(remotename, remotekey, deskey)
char *remotename;
netobj *remotekey;
des_block *deskey;
{
cryptkeyarg2 arg;
cryptkeyres res;
arg.remotename = remotename;
arg.remotekey = *remotekey;
arg.deskey = *deskey;
if (!key_call((u_long)KEY_ENCRYPT_PK, (xdrproc_t)xdr_cryptkeyarg2, &arg,
(xdrproc_t)xdr_cryptkeyres, &res)) {
return (-1);
}
if (res.status != KEY_SUCCESS) {
debug("encrypt status is nonzero");
return (-1);
}
*deskey = res.cryptkeyres_u.deskey;
return (0);
}
int
key_decryptsession_pk(remotename, remotekey, deskey)
char *remotename;
netobj *remotekey;
des_block *deskey;
{
cryptkeyarg2 arg;
cryptkeyres res;
arg.remotename = remotename;
arg.remotekey = *remotekey;
arg.deskey = *deskey;
if (!key_call((u_long)KEY_DECRYPT_PK, (xdrproc_t)xdr_cryptkeyarg2, &arg,
(xdrproc_t)xdr_cryptkeyres, &res)) {
return (-1);
}
if (res.status != KEY_SUCCESS) {
debug("decrypt status is nonzero");
return (-1);
}
*deskey = res.cryptkeyres_u.deskey;
return (0);
}
int
key_encryptsession(remotename, deskey)
const char *remotename;
des_block *deskey;
{
cryptkeyarg arg;
cryptkeyres res;
arg.remotename = (char *) remotename;
arg.deskey = *deskey;
if (!key_call((u_long)KEY_ENCRYPT, (xdrproc_t)xdr_cryptkeyarg, &arg,
(xdrproc_t)xdr_cryptkeyres, &res)) {
return (-1);
}
if (res.status != KEY_SUCCESS) {
debug("encrypt status is nonzero");
return (-1);
}
*deskey = res.cryptkeyres_u.deskey;
return (0);
}
int
key_decryptsession(remotename, deskey)
const char *remotename;
des_block *deskey;
{
cryptkeyarg arg;
cryptkeyres res;
arg.remotename = (char *) remotename;
arg.deskey = *deskey;
if (!key_call((u_long)KEY_DECRYPT, (xdrproc_t)xdr_cryptkeyarg, &arg,
(xdrproc_t)xdr_cryptkeyres, &res)) {
return (-1);
}
if (res.status != KEY_SUCCESS) {
debug("decrypt status is nonzero");
return (-1);
}
*deskey = res.cryptkeyres_u.deskey;
return (0);
}
int
key_gendes(key)
des_block *key;
{
if (!key_call((u_long)KEY_GEN, (xdrproc_t)xdr_void, NULL,
(xdrproc_t)xdr_des_block, key)) {
return (-1);
}
return (0);
}
int
key_setnet(arg)
struct key_netstarg *arg;
{
keystatus status;
if (!key_call((u_long) KEY_NET_PUT, (xdrproc_t)xdr_key_netstarg, arg,
(xdrproc_t)xdr_keystatus, &status)){
return (-1);
}
if (status != KEY_SUCCESS) {
debug("key_setnet status is nonzero");
return (-1);
}
return (1);
}
int
key_get_conv(pkey, deskey)
char *pkey;
des_block *deskey;
{
cryptkeyres res;
if (!key_call((u_long) KEY_GET_CONV, (xdrproc_t)xdr_keybuf, pkey,
(xdrproc_t)xdr_cryptkeyres, &res)) {
return (-1);
}
if (res.status != KEY_SUCCESS) {
debug("get_conv status is nonzero");
return (-1);
}
*deskey = res.cryptkeyres_u.deskey;
return (0);
}
struct key_call_private {
CLIENT *client; /* Client handle */
pid_t pid; /* process-id at moment of creation */
uid_t uid; /* user-id at last authorization */
};
static struct key_call_private *key_call_private_main = NULL;
static thread_key_t key_call_key;
static once_t key_call_once = ONCE_INITIALIZER;
static int key_call_key_error;
static void
key_call_destroy(void *vp)
{
struct key_call_private *kcp = (struct key_call_private *)vp;
if (kcp) {
if (kcp->client)
clnt_destroy(kcp->client);
free(kcp);
}
}
static void
key_call_init(void)
{
key_call_key_error = thr_keycreate(&key_call_key, key_call_destroy);
}
/*
* Keep the handle cached. This call may be made quite often.
*/
static CLIENT *
getkeyserv_handle(vers)
int vers;
{
void *localhandle;
struct netconfig *nconf;
struct netconfig *tpconf;
struct key_call_private *kcp;
struct timeval wait_time;
struct utsname u;
int main_thread;
int fd;
#define TOTAL_TIMEOUT 30 /* total timeout talking to keyserver */
#define TOTAL_TRIES 5 /* Number of tries */
if ((main_thread = thr_main())) {
kcp = key_call_private_main;
} else {
if (thr_once(&key_call_once, key_call_init) != 0 ||
key_call_key_error != 0)
return ((CLIENT *) NULL);
kcp = (struct key_call_private *)thr_getspecific(key_call_key);
}
if (kcp == (struct key_call_private *)NULL) {
kcp = (struct key_call_private *)malloc(sizeof (*kcp));
if (kcp == (struct key_call_private *)NULL) {
return ((CLIENT *) NULL);
}
if (main_thread)
key_call_private_main = kcp;
else
thr_setspecific(key_call_key, (void *) kcp);
kcp->client = NULL;
}
/* if pid has changed, destroy client and rebuild */
if (kcp->client != NULL && kcp->pid != getpid()) {
clnt_destroy(kcp->client);
kcp->client = NULL;
}
if (kcp->client != NULL) {
/* if uid has changed, build client handle again */
if (kcp->uid != geteuid()) {
kcp->uid = geteuid();
auth_destroy(kcp->client->cl_auth);
kcp->client->cl_auth =
authsys_create("", kcp->uid, 0, 0, NULL);
if (kcp->client->cl_auth == NULL) {
clnt_destroy(kcp->client);
kcp->client = NULL;
return ((CLIENT *) NULL);
}
}
/* Change the version number to the new one */
clnt_control(kcp->client, CLSET_VERS, (void *)&vers);
return (kcp->client);
}
if (!(localhandle = setnetconfig())) {
return ((CLIENT *) NULL);
}
tpconf = NULL;
#if defined(__FreeBSD__)
if (uname(&u) == -1)
#else
#if defined(i386)
if (_nuname(&u) == -1)
#elif defined(sparc)
if (_uname(&u) == -1)
#else
#error Unknown architecture!
#endif
#endif
{
endnetconfig(localhandle);
return ((CLIENT *) NULL);
}
while ((nconf = getnetconfig(localhandle)) != NULL) {
if (strcmp(nconf->nc_protofmly, NC_LOOPBACK) == 0) {
/*
* We use COTS_ORD here so that the caller can
* find out immediately if the server is dead.
*/
if (nconf->nc_semantics == NC_TPI_COTS_ORD) {
kcp->client = clnt_tp_create(u.nodename,
KEY_PROG, vers, nconf);
if (kcp->client)
break;
} else {
tpconf = nconf;
}
}
}
if ((kcp->client == (CLIENT *) NULL) && (tpconf))
/* Now, try the CLTS or COTS loopback transport */
kcp->client = clnt_tp_create(u.nodename,
KEY_PROG, vers, tpconf);
endnetconfig(localhandle);
if (kcp->client == (CLIENT *) NULL) {
return ((CLIENT *) NULL);
}
kcp->uid = geteuid();
kcp->pid = getpid();
kcp->client->cl_auth = authsys_create("", kcp->uid, 0, 0, NULL);
if (kcp->client->cl_auth == NULL) {
clnt_destroy(kcp->client);
kcp->client = NULL;
return ((CLIENT *) NULL);
}
wait_time.tv_sec = TOTAL_TIMEOUT/TOTAL_TRIES;
wait_time.tv_usec = 0;
(void) clnt_control(kcp->client, CLSET_RETRY_TIMEOUT,
(char *)&wait_time);
if (clnt_control(kcp->client, CLGET_FD, (char *)&fd))
_fcntl(fd, F_SETFD, 1); /* make it "close on exec" */
return (kcp->client);
}
/* returns 0 on failure, 1 on success */
static int
key_call(proc, xdr_arg, arg, xdr_rslt, rslt)
u_long proc;
xdrproc_t xdr_arg;
void *arg;
xdrproc_t xdr_rslt;
void *rslt;
{
CLIENT *clnt;
struct timeval wait_time;
if (proc == KEY_ENCRYPT_PK && __key_encryptsession_pk_LOCAL) {
cryptkeyres *res;
res = (*__key_encryptsession_pk_LOCAL)(geteuid(), arg);
*(cryptkeyres*)rslt = *res;
return (1);
} else if (proc == KEY_DECRYPT_PK && __key_decryptsession_pk_LOCAL) {
cryptkeyres *res;
res = (*__key_decryptsession_pk_LOCAL)(geteuid(), arg);
*(cryptkeyres*)rslt = *res;
return (1);
} else if (proc == KEY_GEN && __key_gendes_LOCAL) {
des_block *res;
res = (*__key_gendes_LOCAL)(geteuid(), 0);
*(des_block*)rslt = *res;
return (1);
}
if ((proc == KEY_ENCRYPT_PK) || (proc == KEY_DECRYPT_PK) ||
(proc == KEY_NET_GET) || (proc == KEY_NET_PUT) ||
(proc == KEY_GET_CONV))
clnt = getkeyserv_handle(2); /* talk to version 2 */
else
clnt = getkeyserv_handle(1); /* talk to version 1 */
if (clnt == NULL) {
return (0);
}
wait_time.tv_sec = TOTAL_TIMEOUT;
wait_time.tv_usec = 0;
if (clnt_call(clnt, proc, xdr_arg, arg, xdr_rslt, rslt,
wait_time) == RPC_SUCCESS) {
return (1);
} else {
return (0);
}
}