890b30850f
branch as of May 26th, 2000. [these are changes March 31 - May 24th]
9877 lines
286 KiB
C
9877 lines
286 KiB
C
/* Handle parameterized types (templates) for GNU C++.
|
||
Copyright (C) 1992, 93-97, 1998, 1999 Free Software Foundation, Inc.
|
||
Written by Ken Raeburn (raeburn@cygnus.com) while at Watchmaker Computing.
|
||
Rewritten by Jason Merrill (jason@cygnus.com).
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* Known bugs or deficiencies include:
|
||
|
||
all methods must be provided in header files; can't use a source
|
||
file that contains only the method templates and "just win". */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "obstack.h"
|
||
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "cp-tree.h"
|
||
#include "decl.h"
|
||
#include "parse.h"
|
||
#include "lex.h"
|
||
#include "output.h"
|
||
#include "defaults.h"
|
||
#include "except.h"
|
||
#include "toplev.h"
|
||
#include "rtl.h"
|
||
#include "varray.h"
|
||
|
||
/* The type of functions taking a tree, and some additional data, and
|
||
returning an int. */
|
||
typedef int (*tree_fn_t) PROTO((tree, void*));
|
||
|
||
extern struct obstack permanent_obstack;
|
||
|
||
extern int lineno;
|
||
extern char *input_filename;
|
||
|
||
tree current_template_parms;
|
||
HOST_WIDE_INT processing_template_decl;
|
||
|
||
/* The PENDING_TEMPLATES is a TREE_LIST of templates whose
|
||
instantiations have been deferred, either because their definitions
|
||
were not yet available, or because we were putting off doing the
|
||
work. The TREE_PURPOSE of each entry is a SRCLOC indicating where
|
||
the instantiate request occurred; the TREE_VALUE is a either a DECL
|
||
(for a function or static data member), or a TYPE (for a class)
|
||
indicating what we are hoping to instantiate. */
|
||
static tree pending_templates;
|
||
static tree *template_tail = &pending_templates;
|
||
|
||
static tree maybe_templates;
|
||
static tree *maybe_template_tail = &maybe_templates;
|
||
|
||
int minimal_parse_mode;
|
||
|
||
int processing_specialization;
|
||
int processing_explicit_instantiation;
|
||
int processing_template_parmlist;
|
||
static int template_header_count;
|
||
|
||
static tree saved_trees;
|
||
static varray_type inline_parm_levels;
|
||
static size_t inline_parm_levels_used;
|
||
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
|
||
#define UNIFY_ALLOW_NONE 0
|
||
#define UNIFY_ALLOW_MORE_CV_QUAL 1
|
||
#define UNIFY_ALLOW_LESS_CV_QUAL 2
|
||
#define UNIFY_ALLOW_DERIVED 4
|
||
#define UNIFY_ALLOW_INTEGER 8
|
||
|
||
#define GTB_VIA_VIRTUAL 1 /* The base class we are examining is
|
||
virtual, or a base class of a virtual
|
||
base. */
|
||
#define GTB_IGNORE_TYPE 2 /* We don't need to try to unify the current
|
||
type with the desired type. */
|
||
|
||
static int resolve_overloaded_unification PROTO((tree, tree, tree, tree,
|
||
unification_kind_t, int));
|
||
static int try_one_overload PROTO((tree, tree, tree, tree, tree,
|
||
unification_kind_t, int));
|
||
static int unify PROTO((tree, tree, tree, tree, int));
|
||
static void add_pending_template PROTO((tree));
|
||
static int push_tinst_level PROTO((tree));
|
||
static tree classtype_mangled_name PROTO((tree));
|
||
static char *mangle_class_name_for_template PROTO((char *, tree, tree));
|
||
static tree tsubst_expr_values PROTO((tree, tree));
|
||
static int list_eq PROTO((tree, tree));
|
||
static tree get_class_bindings PROTO((tree, tree, tree));
|
||
static tree coerce_template_parms PROTO((tree, tree, tree, int, int));
|
||
static void tsubst_enum PROTO((tree, tree, tree));
|
||
static tree add_to_template_args PROTO((tree, tree));
|
||
static tree add_outermost_template_args PROTO((tree, tree));
|
||
static void maybe_adjust_types_for_deduction PROTO((unification_kind_t, tree*,
|
||
tree*));
|
||
static int type_unification_real PROTO((tree, tree, tree, tree,
|
||
int, unification_kind_t, int));
|
||
static void note_template_header PROTO((int));
|
||
static tree maybe_fold_nontype_arg PROTO((tree));
|
||
static tree convert_nontype_argument PROTO((tree, tree));
|
||
static tree convert_template_argument PROTO ((tree, tree, tree, int,
|
||
int , tree));
|
||
static tree get_bindings_overload PROTO((tree, tree, tree));
|
||
static int for_each_template_parm PROTO((tree, tree_fn_t, void*));
|
||
static tree build_template_parm_index PROTO((int, int, int, tree, tree));
|
||
static int inline_needs_template_parms PROTO((tree));
|
||
static void push_inline_template_parms_recursive PROTO((tree, int));
|
||
static tree retrieve_specialization PROTO((tree, tree));
|
||
static tree register_specialization PROTO((tree, tree, tree));
|
||
static int unregister_specialization PROTO((tree, tree));
|
||
static tree reduce_template_parm_level PROTO((tree, tree, int));
|
||
static tree build_template_decl PROTO((tree, tree));
|
||
static int mark_template_parm PROTO((tree, void *));
|
||
static tree tsubst_friend_function PROTO((tree, tree));
|
||
static tree tsubst_friend_class PROTO((tree, tree));
|
||
static tree get_bindings_real PROTO((tree, tree, tree, int));
|
||
static int template_decl_level PROTO((tree));
|
||
static tree maybe_get_template_decl_from_type_decl PROTO((tree));
|
||
static int check_cv_quals_for_unify PROTO((int, tree, tree));
|
||
static tree tsubst_template_arg_vector PROTO((tree, tree, int));
|
||
static tree tsubst_template_parms PROTO((tree, tree, int));
|
||
static void regenerate_decl_from_template PROTO((tree, tree));
|
||
static tree most_specialized PROTO((tree, tree, tree));
|
||
static tree most_specialized_class PROTO((tree, tree));
|
||
static tree most_general_template PROTO((tree));
|
||
static void set_mangled_name_for_template_decl PROTO((tree));
|
||
static int template_class_depth_real PROTO((tree, int));
|
||
static tree tsubst_aggr_type PROTO((tree, tree, int, tree, int));
|
||
static tree tsubst_decl PROTO((tree, tree, tree, tree));
|
||
static tree tsubst_arg_types PROTO((tree, tree, int, tree));
|
||
static tree tsubst_function_type PROTO((tree, tree, int, tree));
|
||
static void check_specialization_scope PROTO((void));
|
||
static tree process_partial_specialization PROTO((tree));
|
||
static void set_current_access_from_decl PROTO((tree));
|
||
static void check_default_tmpl_args PROTO((tree, tree, int, int));
|
||
static tree tsubst_call_declarator_parms PROTO((tree, tree, int, tree));
|
||
static tree get_template_base_recursive PROTO((tree, tree,
|
||
tree, tree, tree, int));
|
||
static tree get_template_base PROTO((tree, tree, tree, tree));
|
||
static tree try_class_unification PROTO((tree, tree, tree, tree));
|
||
static int coerce_template_template_parms PROTO((tree, tree, int,
|
||
tree, tree));
|
||
static tree determine_specialization PROTO((tree, tree, tree *, int));
|
||
static int template_args_equal PROTO((tree, tree));
|
||
static void print_template_context PROTO((int));
|
||
static int has_pvbases_p PROTO((tree, tree));
|
||
|
||
/* We use TREE_VECs to hold template arguments. If there is only one
|
||
level of template arguments, then the TREE_VEC contains the
|
||
arguments directly. If there is more than one level of template
|
||
arguments, then each entry in the TREE_VEC is itself a TREE_VEC,
|
||
containing the template arguments for a single level. The first
|
||
entry in the outer TREE_VEC is the outermost level of template
|
||
parameters; the last is the innermost.
|
||
|
||
It is incorrect to ever form a template argument vector containing
|
||
only one level of arguments, but which is a TREE_VEC containing as
|
||
its only entry the TREE_VEC for that level. */
|
||
|
||
/* Non-zero if the template arguments is actually a vector of vectors,
|
||
rather than just a vector. */
|
||
#define TMPL_ARGS_HAVE_MULTIPLE_LEVELS(NODE) \
|
||
(NODE != NULL_TREE \
|
||
&& TREE_CODE (NODE) == TREE_VEC \
|
||
&& TREE_VEC_LENGTH (NODE) > 0 \
|
||
&& TREE_VEC_ELT (NODE, 0) != NULL_TREE \
|
||
&& TREE_CODE (TREE_VEC_ELT (NODE, 0)) == TREE_VEC)
|
||
|
||
/* The depth of a template argument vector. When called directly by
|
||
the parser, we use a TREE_LIST rather than a TREE_VEC to represent
|
||
template arguments. In fact, we may even see NULL_TREE if there
|
||
are no template arguments. In both of those cases, there is only
|
||
one level of template arguments. */
|
||
#define TMPL_ARGS_DEPTH(NODE) \
|
||
(TMPL_ARGS_HAVE_MULTIPLE_LEVELS (NODE) ? TREE_VEC_LENGTH (NODE) : 1)
|
||
|
||
/* The LEVELth level of the template ARGS. Note that template
|
||
parameter levels are indexed from 1, not from 0. */
|
||
#define TMPL_ARGS_LEVEL(ARGS, LEVEL) \
|
||
(TMPL_ARGS_HAVE_MULTIPLE_LEVELS (ARGS) \
|
||
? TREE_VEC_ELT ((ARGS), (LEVEL) - 1) : ARGS)
|
||
|
||
/* Set the LEVELth level of the template ARGS to VAL. This macro does
|
||
not work with single-level argument vectors. */
|
||
#define SET_TMPL_ARGS_LEVEL(ARGS, LEVEL, VAL) \
|
||
(TREE_VEC_ELT ((ARGS), (LEVEL) - 1) = (VAL))
|
||
|
||
/* Accesses the IDXth parameter in the LEVELth level of the ARGS. */
|
||
#define TMPL_ARG(ARGS, LEVEL, IDX) \
|
||
(TREE_VEC_ELT (TMPL_ARGS_LEVEL (ARGS, LEVEL), IDX))
|
||
|
||
/* Set the IDXth element in the LEVELth level of ARGS to VAL. This
|
||
macro does not work with single-level argument vectors. */
|
||
#define SET_TMPL_ARG(ARGS, LEVEL, IDX, VAL) \
|
||
(TREE_VEC_ELT (TREE_VEC_ELT ((ARGS), (LEVEL) - 1), (IDX)) = (VAL))
|
||
|
||
/* Given a single level of template arguments in NODE, return the
|
||
number of arguments. */
|
||
#define NUM_TMPL_ARGS(NODE) \
|
||
((NODE) == NULL_TREE ? 0 \
|
||
: (TREE_CODE (NODE) == TREE_VEC \
|
||
? TREE_VEC_LENGTH (NODE) : list_length (NODE)))
|
||
|
||
/* The number of levels of template parameters given by NODE. */
|
||
#define TMPL_PARMS_DEPTH(NODE) \
|
||
(TREE_INT_CST_HIGH (TREE_PURPOSE (NODE)))
|
||
|
||
/* Do any processing required when DECL (a member template declaration
|
||
using TEMPLATE_PARAMETERS as its innermost parameter list) is
|
||
finished. Returns the TEMPLATE_DECL corresponding to DECL, unless
|
||
it is a specialization, in which case the DECL itself is returned. */
|
||
|
||
tree
|
||
finish_member_template_decl (decl)
|
||
tree decl;
|
||
{
|
||
if (decl == NULL_TREE || decl == void_type_node)
|
||
return NULL_TREE;
|
||
else if (decl == error_mark_node)
|
||
/* By returning NULL_TREE, the parser will just ignore this
|
||
declaration. We have already issued the error. */
|
||
return NULL_TREE;
|
||
else if (TREE_CODE (decl) == TREE_LIST)
|
||
{
|
||
/* Assume that the class is the only declspec. */
|
||
decl = TREE_VALUE (decl);
|
||
if (IS_AGGR_TYPE (decl) && CLASSTYPE_TEMPLATE_INFO (decl)
|
||
&& ! CLASSTYPE_TEMPLATE_SPECIALIZATION (decl))
|
||
{
|
||
tree tmpl = CLASSTYPE_TI_TEMPLATE (decl);
|
||
check_member_template (tmpl);
|
||
return tmpl;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
else if (DECL_TEMPLATE_INFO (decl))
|
||
{
|
||
if (!DECL_TEMPLATE_SPECIALIZATION (decl))
|
||
{
|
||
check_member_template (DECL_TI_TEMPLATE (decl));
|
||
return DECL_TI_TEMPLATE (decl);
|
||
}
|
||
else
|
||
return decl;
|
||
}
|
||
else
|
||
cp_error ("invalid member template declaration `%D'", decl);
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Returns the template nesting level of the indicated class TYPE.
|
||
|
||
For example, in:
|
||
template <class T>
|
||
struct A
|
||
{
|
||
template <class U>
|
||
struct B {};
|
||
};
|
||
|
||
A<T>::B<U> has depth two, while A<T> has depth one.
|
||
Both A<T>::B<int> and A<int>::B<U> have depth one, if
|
||
COUNT_SPECIALIZATIONS is 0 or if they are instantiations, not
|
||
specializations.
|
||
|
||
This function is guaranteed to return 0 if passed NULL_TREE so
|
||
that, for example, `template_class_depth (current_class_type)' is
|
||
always safe. */
|
||
|
||
static int
|
||
template_class_depth_real (type, count_specializations)
|
||
tree type;
|
||
int count_specializations;
|
||
{
|
||
int depth;
|
||
|
||
for (depth = 0;
|
||
type && TREE_CODE (type) != NAMESPACE_DECL;
|
||
type = (TREE_CODE (type) == FUNCTION_DECL)
|
||
? DECL_REAL_CONTEXT (type) : TYPE_CONTEXT (type))
|
||
{
|
||
if (TREE_CODE (type) != FUNCTION_DECL)
|
||
{
|
||
if (CLASSTYPE_TEMPLATE_INFO (type)
|
||
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
|
||
&& ((count_specializations
|
||
&& CLASSTYPE_TEMPLATE_SPECIALIZATION (type))
|
||
|| uses_template_parms (CLASSTYPE_TI_ARGS (type))))
|
||
++depth;
|
||
}
|
||
else
|
||
{
|
||
if (DECL_TEMPLATE_INFO (type)
|
||
&& PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (type))
|
||
&& ((count_specializations
|
||
&& DECL_TEMPLATE_SPECIALIZATION (type))
|
||
|| uses_template_parms (DECL_TI_ARGS (type))))
|
||
++depth;
|
||
}
|
||
}
|
||
|
||
return depth;
|
||
}
|
||
|
||
/* Returns the template nesting level of the indicated class TYPE.
|
||
Like template_class_depth_real, but instantiations do not count in
|
||
the depth. */
|
||
|
||
int
|
||
template_class_depth (type)
|
||
tree type;
|
||
{
|
||
return template_class_depth_real (type, /*count_specializations=*/0);
|
||
}
|
||
|
||
/* Returns 1 if processing DECL as part of do_pending_inlines
|
||
needs us to push template parms. */
|
||
|
||
static int
|
||
inline_needs_template_parms (decl)
|
||
tree decl;
|
||
{
|
||
if (! DECL_TEMPLATE_INFO (decl))
|
||
return 0;
|
||
|
||
return (TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (most_general_template (decl)))
|
||
> (processing_template_decl + DECL_TEMPLATE_SPECIALIZATION (decl)));
|
||
}
|
||
|
||
/* Subroutine of maybe_begin_member_template_processing.
|
||
Push the template parms in PARMS, starting from LEVELS steps into the
|
||
chain, and ending at the beginning, since template parms are listed
|
||
innermost first. */
|
||
|
||
static void
|
||
push_inline_template_parms_recursive (parmlist, levels)
|
||
tree parmlist;
|
||
int levels;
|
||
{
|
||
tree parms = TREE_VALUE (parmlist);
|
||
int i;
|
||
|
||
if (levels > 1)
|
||
push_inline_template_parms_recursive (TREE_CHAIN (parmlist), levels - 1);
|
||
|
||
++processing_template_decl;
|
||
current_template_parms
|
||
= tree_cons (build_int_2 (0, processing_template_decl),
|
||
parms, current_template_parms);
|
||
TEMPLATE_PARMS_FOR_INLINE (current_template_parms) = 1;
|
||
|
||
pushlevel (0);
|
||
for (i = 0; i < TREE_VEC_LENGTH (parms); ++i)
|
||
{
|
||
tree parm = TREE_VALUE (TREE_VEC_ELT (parms, i));
|
||
my_friendly_assert (TREE_CODE_CLASS (TREE_CODE (parm)) == 'd', 0);
|
||
|
||
switch (TREE_CODE (parm))
|
||
{
|
||
case TYPE_DECL:
|
||
case TEMPLATE_DECL:
|
||
pushdecl (parm);
|
||
break;
|
||
|
||
case PARM_DECL:
|
||
{
|
||
/* Make a CONST_DECL as is done in process_template_parm.
|
||
It is ugly that we recreate this here; the original
|
||
version built in process_template_parm is no longer
|
||
available. */
|
||
tree decl = build_decl (CONST_DECL, DECL_NAME (parm),
|
||
TREE_TYPE (parm));
|
||
SET_DECL_ARTIFICIAL (decl);
|
||
DECL_INITIAL (decl) = DECL_INITIAL (parm);
|
||
DECL_TEMPLATE_PARM_P (decl) = 1;
|
||
pushdecl (decl);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
my_friendly_abort (0);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Restore the template parameter context for a member template or
|
||
a friend template defined in a class definition. */
|
||
|
||
void
|
||
maybe_begin_member_template_processing (decl)
|
||
tree decl;
|
||
{
|
||
tree parms;
|
||
int levels = 0;
|
||
|
||
if (inline_needs_template_parms (decl))
|
||
{
|
||
parms = DECL_TEMPLATE_PARMS (most_general_template (decl));
|
||
levels = TMPL_PARMS_DEPTH (parms) - processing_template_decl;
|
||
|
||
if (DECL_TEMPLATE_SPECIALIZATION (decl))
|
||
{
|
||
--levels;
|
||
parms = TREE_CHAIN (parms);
|
||
}
|
||
|
||
push_inline_template_parms_recursive (parms, levels);
|
||
}
|
||
|
||
/* Remember how many levels of template parameters we pushed so that
|
||
we can pop them later. */
|
||
if (!inline_parm_levels)
|
||
VARRAY_INT_INIT (inline_parm_levels, 4, "inline_parm_levels");
|
||
if (inline_parm_levels_used == inline_parm_levels->num_elements)
|
||
VARRAY_GROW (inline_parm_levels, 2 * inline_parm_levels_used);
|
||
VARRAY_INT (inline_parm_levels, inline_parm_levels_used) = levels;
|
||
++inline_parm_levels_used;
|
||
}
|
||
|
||
/* Undo the effects of begin_member_template_processing. */
|
||
|
||
void
|
||
maybe_end_member_template_processing ()
|
||
{
|
||
int i;
|
||
|
||
if (!inline_parm_levels_used)
|
||
return;
|
||
|
||
--inline_parm_levels_used;
|
||
for (i = 0;
|
||
i < VARRAY_INT (inline_parm_levels, inline_parm_levels_used);
|
||
++i)
|
||
{
|
||
--processing_template_decl;
|
||
current_template_parms = TREE_CHAIN (current_template_parms);
|
||
poplevel (0, 0, 0);
|
||
}
|
||
}
|
||
|
||
/* Returns non-zero iff T is a member template function. We must be
|
||
careful as in
|
||
|
||
template <class T> class C { void f(); }
|
||
|
||
Here, f is a template function, and a member, but not a member
|
||
template. This function does not concern itself with the origin of
|
||
T, only its present state. So if we have
|
||
|
||
template <class T> class C { template <class U> void f(U); }
|
||
|
||
then neither C<int>::f<char> nor C<T>::f<double> is considered
|
||
to be a member template. But, `template <class U> void
|
||
C<int>::f(U)' is considered a member template. */
|
||
|
||
int
|
||
is_member_template (t)
|
||
tree t;
|
||
{
|
||
if (!DECL_FUNCTION_TEMPLATE_P (t))
|
||
/* Anything that isn't a function or a template function is
|
||
certainly not a member template. */
|
||
return 0;
|
||
|
||
/* A local class can't have member templates. */
|
||
if (hack_decl_function_context (t))
|
||
return 0;
|
||
|
||
return (DECL_FUNCTION_MEMBER_P (DECL_TEMPLATE_RESULT (t))
|
||
/* If there are more levels of template parameters than
|
||
there are template classes surrounding the declaration,
|
||
then we have a member template. */
|
||
&& (TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (t)) >
|
||
template_class_depth (DECL_CLASS_CONTEXT (t))));
|
||
}
|
||
|
||
#if 0 /* UNUSED */
|
||
/* Returns non-zero iff T is a member template class. See
|
||
is_member_template for a description of what precisely constitutes
|
||
a member template. */
|
||
|
||
int
|
||
is_member_template_class (t)
|
||
tree t;
|
||
{
|
||
if (!DECL_CLASS_TEMPLATE_P (t))
|
||
/* Anything that isn't a class template, is certainly not a member
|
||
template. */
|
||
return 0;
|
||
|
||
if (!DECL_CLASS_SCOPE_P (t))
|
||
/* Anything whose context isn't a class type is surely not a
|
||
member template. */
|
||
return 0;
|
||
|
||
/* If there are more levels of template parameters than there are
|
||
template classes surrounding the declaration, then we have a
|
||
member template. */
|
||
return (TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (t)) >
|
||
template_class_depth (DECL_CONTEXT (t)));
|
||
}
|
||
#endif
|
||
|
||
/* Return a new template argument vector which contains all of ARGS,
|
||
but has as its innermost set of arguments the EXTRA_ARGS. The
|
||
resulting vector will be built on a temporary obstack, and so must
|
||
be explicitly copied to the permanent obstack, if required. */
|
||
|
||
static tree
|
||
add_to_template_args (args, extra_args)
|
||
tree args;
|
||
tree extra_args;
|
||
{
|
||
tree new_args;
|
||
int extra_depth;
|
||
int i;
|
||
int j;
|
||
|
||
extra_depth = TMPL_ARGS_DEPTH (extra_args);
|
||
new_args = make_temp_vec (TMPL_ARGS_DEPTH (args) + extra_depth);
|
||
|
||
for (i = 1; i <= TMPL_ARGS_DEPTH (args); ++i)
|
||
SET_TMPL_ARGS_LEVEL (new_args, i, TMPL_ARGS_LEVEL (args, i));
|
||
|
||
for (j = 1; j <= extra_depth; ++j, ++i)
|
||
SET_TMPL_ARGS_LEVEL (new_args, i, TMPL_ARGS_LEVEL (extra_args, j));
|
||
|
||
return new_args;
|
||
}
|
||
|
||
/* Like add_to_template_args, but only the outermost ARGS are added to
|
||
the EXTRA_ARGS. In particular, all but TMPL_ARGS_DEPTH
|
||
(EXTRA_ARGS) levels are added. This function is used to combine
|
||
the template arguments from a partial instantiation with the
|
||
template arguments used to attain the full instantiation from the
|
||
partial instantiation. */
|
||
|
||
static tree
|
||
add_outermost_template_args (args, extra_args)
|
||
tree args;
|
||
tree extra_args;
|
||
{
|
||
tree new_args;
|
||
|
||
/* If there are more levels of EXTRA_ARGS than there are ARGS,
|
||
something very fishy is going on. */
|
||
my_friendly_assert (TMPL_ARGS_DEPTH (args) >= TMPL_ARGS_DEPTH (extra_args),
|
||
0);
|
||
|
||
/* If *all* the new arguments will be the EXTRA_ARGS, just return
|
||
them. */
|
||
if (TMPL_ARGS_DEPTH (args) == TMPL_ARGS_DEPTH (extra_args))
|
||
return extra_args;
|
||
|
||
/* For the moment, we make ARGS look like it contains fewer levels. */
|
||
TREE_VEC_LENGTH (args) -= TMPL_ARGS_DEPTH (extra_args);
|
||
|
||
new_args = add_to_template_args (args, extra_args);
|
||
|
||
/* Now, we restore ARGS to its full dimensions. */
|
||
TREE_VEC_LENGTH (args) += TMPL_ARGS_DEPTH (extra_args);
|
||
|
||
return new_args;
|
||
}
|
||
|
||
/* We've got a template header coming up; push to a new level for storing
|
||
the parms. */
|
||
|
||
void
|
||
begin_template_parm_list ()
|
||
{
|
||
/* We use a non-tag-transparent scope here, which causes pushtag to
|
||
put tags in this scope, rather than in the enclosing class or
|
||
namespace scope. This is the right thing, since we want
|
||
TEMPLATE_DECLS, and not TYPE_DECLS for template classes. For a
|
||
global template class, push_template_decl handles putting the
|
||
TEMPLATE_DECL into top-level scope. For a nested template class,
|
||
e.g.:
|
||
|
||
template <class T> struct S1 {
|
||
template <class T> struct S2 {};
|
||
};
|
||
|
||
pushtag contains special code to call pushdecl_with_scope on the
|
||
TEMPLATE_DECL for S2. */
|
||
pushlevel (0);
|
||
declare_pseudo_global_level ();
|
||
++processing_template_decl;
|
||
++processing_template_parmlist;
|
||
note_template_header (0);
|
||
}
|
||
|
||
/* This routine is called when a specialization is declared. If it is
|
||
illegal to declare a specialization here, an error is reported. */
|
||
|
||
static void
|
||
check_specialization_scope ()
|
||
{
|
||
tree scope = current_scope ();
|
||
|
||
/* [temp.expl.spec]
|
||
|
||
An explicit specialization shall be declared in the namespace of
|
||
which the template is a member, or, for member templates, in the
|
||
namespace of which the enclosing class or enclosing class
|
||
template is a member. An explicit specialization of a member
|
||
function, member class or static data member of a class template
|
||
shall be declared in the namespace of which the class template
|
||
is a member. */
|
||
if (scope && TREE_CODE (scope) != NAMESPACE_DECL)
|
||
cp_error ("explicit specialization in non-namespace scope `%D'",
|
||
scope);
|
||
|
||
/* [temp.expl.spec]
|
||
|
||
In an explicit specialization declaration for a member of a class
|
||
template or a member template that appears in namespace scope,
|
||
the member template and some of its enclosing class templates may
|
||
remain unspecialized, except that the declaration shall not
|
||
explicitly specialize a class member template if its enclosing
|
||
class templates are not explicitly specialized as well. */
|
||
if (current_template_parms)
|
||
cp_error ("enclosing class templates are not explicitly specialized");
|
||
}
|
||
|
||
/* We've just seen template <>. */
|
||
|
||
void
|
||
begin_specialization ()
|
||
{
|
||
note_template_header (1);
|
||
check_specialization_scope ();
|
||
}
|
||
|
||
/* Called at then end of processing a declaration preceeded by
|
||
template<>. */
|
||
|
||
void
|
||
end_specialization ()
|
||
{
|
||
reset_specialization ();
|
||
}
|
||
|
||
/* Any template <>'s that we have seen thus far are not referring to a
|
||
function specialization. */
|
||
|
||
void
|
||
reset_specialization ()
|
||
{
|
||
processing_specialization = 0;
|
||
template_header_count = 0;
|
||
}
|
||
|
||
/* We've just seen a template header. If SPECIALIZATION is non-zero,
|
||
it was of the form template <>. */
|
||
|
||
static void
|
||
note_template_header (specialization)
|
||
int specialization;
|
||
{
|
||
processing_specialization = specialization;
|
||
template_header_count++;
|
||
}
|
||
|
||
/* We're beginning an explicit instantiation. */
|
||
|
||
void
|
||
begin_explicit_instantiation ()
|
||
{
|
||
++processing_explicit_instantiation;
|
||
}
|
||
|
||
|
||
void
|
||
end_explicit_instantiation ()
|
||
{
|
||
my_friendly_assert(processing_explicit_instantiation > 0, 0);
|
||
--processing_explicit_instantiation;
|
||
}
|
||
|
||
/* The TYPE is being declared. If it is a template type, that means it
|
||
is a partial specialization. Do appropriate error-checking. */
|
||
|
||
void
|
||
maybe_process_partial_specialization (type)
|
||
tree type;
|
||
{
|
||
if (IS_AGGR_TYPE (type) && CLASSTYPE_USE_TEMPLATE (type))
|
||
{
|
||
if (CLASSTYPE_IMPLICIT_INSTANTIATION (type)
|
||
&& TYPE_SIZE (type) == NULL_TREE)
|
||
{
|
||
if (current_namespace
|
||
!= decl_namespace_context (CLASSTYPE_TI_TEMPLATE (type)))
|
||
{
|
||
cp_pedwarn ("specializing `%#T' in different namespace", type);
|
||
cp_pedwarn_at (" from definition of `%#D'",
|
||
CLASSTYPE_TI_TEMPLATE (type));
|
||
}
|
||
SET_CLASSTYPE_TEMPLATE_SPECIALIZATION (type);
|
||
if (processing_template_decl)
|
||
push_template_decl (TYPE_MAIN_DECL (type));
|
||
}
|
||
else if (CLASSTYPE_TEMPLATE_INSTANTIATION (type))
|
||
cp_error ("specialization of `%T' after instantiation", type);
|
||
}
|
||
else if (processing_specialization)
|
||
cp_error ("explicit specialization of non-template `%T'", type);
|
||
}
|
||
|
||
/* Retrieve the specialization (in the sense of [temp.spec] - a
|
||
specialization is either an instantiation or an explicit
|
||
specialization) of TMPL for the given template ARGS. If there is
|
||
no such specialization, return NULL_TREE. The ARGS are a vector of
|
||
arguments, or a vector of vectors of arguments, in the case of
|
||
templates with more than one level of parameters. */
|
||
|
||
static tree
|
||
retrieve_specialization (tmpl, args)
|
||
tree tmpl;
|
||
tree args;
|
||
{
|
||
tree s;
|
||
|
||
my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 0);
|
||
|
||
/* There should be as many levels of arguments as there are
|
||
levels of parameters. */
|
||
my_friendly_assert (TMPL_ARGS_DEPTH (args)
|
||
== TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (tmpl)),
|
||
0);
|
||
|
||
for (s = DECL_TEMPLATE_SPECIALIZATIONS (tmpl);
|
||
s != NULL_TREE;
|
||
s = TREE_CHAIN (s))
|
||
if (comp_template_args (TREE_PURPOSE (s), args))
|
||
return TREE_VALUE (s);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns non-zero iff DECL is a specialization of TMPL. */
|
||
|
||
int
|
||
is_specialization_of (decl, tmpl)
|
||
tree decl;
|
||
tree tmpl;
|
||
{
|
||
tree t;
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
for (t = decl;
|
||
t != NULL_TREE;
|
||
t = DECL_TEMPLATE_INFO (t) ? DECL_TI_TEMPLATE (t) : NULL_TREE)
|
||
if (t == tmpl)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 0);
|
||
|
||
for (t = TREE_TYPE (decl);
|
||
t != NULL_TREE;
|
||
t = CLASSTYPE_USE_TEMPLATE (t)
|
||
? TREE_TYPE (CLASSTYPE_TI_TEMPLATE (t)) : NULL_TREE)
|
||
if (same_type_p (TYPE_MAIN_VARIANT (t),
|
||
TYPE_MAIN_VARIANT (TREE_TYPE (tmpl))))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Register the specialization SPEC as a specialization of TMPL with
|
||
the indicated ARGS. Returns SPEC, or an equivalent prior
|
||
declaration, if available. */
|
||
|
||
static tree
|
||
register_specialization (spec, tmpl, args)
|
||
tree spec;
|
||
tree tmpl;
|
||
tree args;
|
||
{
|
||
tree s;
|
||
|
||
my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 0);
|
||
|
||
if (TREE_CODE (spec) == FUNCTION_DECL
|
||
&& uses_template_parms (DECL_TI_ARGS (spec)))
|
||
/* This is the FUNCTION_DECL for a partial instantiation. Don't
|
||
register it; we want the corresponding TEMPLATE_DECL instead.
|
||
We use `uses_template_parms (DECL_TI_ARGS (spec))' rather than
|
||
the more obvious `uses_template_parms (spec)' to avoid problems
|
||
with default function arguments. In particular, given
|
||
something like this:
|
||
|
||
template <class T> void f(T t1, T t = T())
|
||
|
||
the default argument expression is not substituted for in an
|
||
instantiation unless and until it is actually needed. */
|
||
return spec;
|
||
|
||
/* There should be as many levels of arguments as there are
|
||
levels of parameters. */
|
||
my_friendly_assert (TMPL_ARGS_DEPTH (args)
|
||
== TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (tmpl)),
|
||
0);
|
||
|
||
for (s = DECL_TEMPLATE_SPECIALIZATIONS (tmpl);
|
||
s != NULL_TREE;
|
||
s = TREE_CHAIN (s))
|
||
if (comp_template_args (TREE_PURPOSE (s), args))
|
||
{
|
||
tree fn = TREE_VALUE (s);
|
||
|
||
if (DECL_TEMPLATE_SPECIALIZATION (spec))
|
||
{
|
||
if (DECL_TEMPLATE_INSTANTIATION (fn))
|
||
{
|
||
if (TREE_USED (fn)
|
||
|| DECL_EXPLICIT_INSTANTIATION (fn))
|
||
{
|
||
cp_error ("specialization of %D after instantiation",
|
||
fn);
|
||
return spec;
|
||
}
|
||
else
|
||
{
|
||
/* This situation should occur only if the first
|
||
specialization is an implicit instantiation,
|
||
the second is an explicit specialization, and
|
||
the implicit instantiation has not yet been
|
||
used. That situation can occur if we have
|
||
implicitly instantiated a member function and
|
||
then specialized it later.
|
||
|
||
We can also wind up here if a friend
|
||
declaration that looked like an instantiation
|
||
turns out to be a specialization:
|
||
|
||
template <class T> void foo(T);
|
||
class S { friend void foo<>(int) };
|
||
template <> void foo(int);
|
||
|
||
We transform the existing DECL in place so that
|
||
any pointers to it become pointers to the
|
||
updated declaration.
|
||
|
||
If there was a definition for the template, but
|
||
not for the specialization, we want this to
|
||
look as if there is no definition, and vice
|
||
versa. */
|
||
DECL_INITIAL (fn) = NULL_TREE;
|
||
duplicate_decls (spec, fn);
|
||
|
||
return fn;
|
||
}
|
||
}
|
||
else if (DECL_TEMPLATE_SPECIALIZATION (fn))
|
||
{
|
||
duplicate_decls (spec, fn);
|
||
return fn;
|
||
}
|
||
}
|
||
}
|
||
|
||
DECL_TEMPLATE_SPECIALIZATIONS (tmpl)
|
||
= perm_tree_cons (args, spec, DECL_TEMPLATE_SPECIALIZATIONS (tmpl));
|
||
|
||
return spec;
|
||
}
|
||
|
||
/* Unregister the specialization SPEC as a specialization of TMPL.
|
||
Returns nonzero if the SPEC was listed as a specialization of
|
||
TMPL. */
|
||
|
||
static int
|
||
unregister_specialization (spec, tmpl)
|
||
tree spec;
|
||
tree tmpl;
|
||
{
|
||
tree* s;
|
||
|
||
for (s = &DECL_TEMPLATE_SPECIALIZATIONS (tmpl);
|
||
*s != NULL_TREE;
|
||
s = &TREE_CHAIN (*s))
|
||
if (TREE_VALUE (*s) == spec)
|
||
{
|
||
*s = TREE_CHAIN (*s);
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Print the list of candidate FNS in an error message. */
|
||
|
||
void
|
||
print_candidates (fns)
|
||
tree fns;
|
||
{
|
||
tree fn;
|
||
|
||
const char *str = "candidates are:";
|
||
|
||
for (fn = fns; fn != NULL_TREE; fn = TREE_CHAIN (fn))
|
||
{
|
||
tree f;
|
||
|
||
for (f = TREE_VALUE (fn); f; f = OVL_NEXT (f))
|
||
cp_error_at ("%s %+#D", str, OVL_CURRENT (f));
|
||
str = " ";
|
||
}
|
||
}
|
||
|
||
/* Returns the template (one of the functions given by TEMPLATE_ID)
|
||
which can be specialized to match the indicated DECL with the
|
||
explicit template args given in TEMPLATE_ID. The DECL may be
|
||
NULL_TREE if none is available. In that case, the functions in
|
||
TEMPLATE_ID are non-members.
|
||
|
||
If NEED_MEMBER_TEMPLATE is non-zero the function is known to be a
|
||
specialization of a member template.
|
||
|
||
The template args (those explicitly specified and those deduced)
|
||
are output in a newly created vector *TARGS_OUT.
|
||
|
||
If it is impossible to determine the result, an error message is
|
||
issued. The error_mark_node is returned to indicate failure. */
|
||
|
||
static tree
|
||
determine_specialization (template_id, decl, targs_out,
|
||
need_member_template)
|
||
tree template_id;
|
||
tree decl;
|
||
tree* targs_out;
|
||
int need_member_template;
|
||
{
|
||
tree fn;
|
||
tree fns;
|
||
tree targs;
|
||
tree explicit_targs;
|
||
tree candidates = NULL_TREE;
|
||
tree templates = NULL_TREE;
|
||
|
||
*targs_out = NULL_TREE;
|
||
|
||
if (template_id == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
fns = TREE_OPERAND (template_id, 0);
|
||
explicit_targs = TREE_OPERAND (template_id, 1);
|
||
|
||
if (fns == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Check for baselinks. */
|
||
if (TREE_CODE (fns) == TREE_LIST)
|
||
fns = TREE_VALUE (fns);
|
||
|
||
for (; fns; fns = OVL_NEXT (fns))
|
||
{
|
||
tree tmpl;
|
||
|
||
fn = OVL_CURRENT (fns);
|
||
|
||
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
||
/* DECL might be a specialization of FN. */
|
||
tmpl = fn;
|
||
else if (need_member_template)
|
||
/* FN is an ordinary member function, and we need a
|
||
specialization of a member template. */
|
||
continue;
|
||
else if (TREE_CODE (fn) != FUNCTION_DECL)
|
||
/* We can get IDENTIFIER_NODEs here in certain erroneous
|
||
cases. */
|
||
continue;
|
||
else if (!DECL_FUNCTION_MEMBER_P (fn))
|
||
/* This is just an ordinary non-member function. Nothing can
|
||
be a specialization of that. */
|
||
continue;
|
||
else
|
||
{
|
||
tree decl_arg_types;
|
||
|
||
/* This is an ordinary member function. However, since
|
||
we're here, we can assume it's enclosing class is a
|
||
template class. For example,
|
||
|
||
template <typename T> struct S { void f(); };
|
||
template <> void S<int>::f() {}
|
||
|
||
Here, S<int>::f is a non-template, but S<int> is a
|
||
template class. If FN has the same type as DECL, we
|
||
might be in business. */
|
||
if (!same_type_p (TREE_TYPE (TREE_TYPE (decl)),
|
||
TREE_TYPE (TREE_TYPE (fn))))
|
||
/* The return types differ. */
|
||
continue;
|
||
|
||
/* Adjust the type of DECL in case FN is a static member. */
|
||
decl_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
|
||
if (DECL_STATIC_FUNCTION_P (fn)
|
||
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
|
||
decl_arg_types = TREE_CHAIN (decl_arg_types);
|
||
|
||
if (compparms (TYPE_ARG_TYPES (TREE_TYPE (fn)),
|
||
decl_arg_types))
|
||
/* They match! */
|
||
candidates = tree_cons (NULL_TREE, fn, candidates);
|
||
|
||
continue;
|
||
}
|
||
|
||
/* See whether this function might be a specialization of this
|
||
template. */
|
||
targs = get_bindings (tmpl, decl, explicit_targs);
|
||
|
||
if (!targs)
|
||
/* We cannot deduce template arguments that when used to
|
||
specialize TMPL will produce DECL. */
|
||
continue;
|
||
|
||
/* Save this template, and the arguments deduced. */
|
||
templates = scratch_tree_cons (targs, tmpl, templates);
|
||
}
|
||
|
||
if (templates && TREE_CHAIN (templates))
|
||
{
|
||
/* We have:
|
||
|
||
[temp.expl.spec]
|
||
|
||
It is possible for a specialization with a given function
|
||
signature to be instantiated from more than one function
|
||
template. In such cases, explicit specification of the
|
||
template arguments must be used to uniquely identify the
|
||
function template specialization being specialized.
|
||
|
||
Note that here, there's no suggestion that we're supposed to
|
||
determine which of the candidate templates is most
|
||
specialized. However, we, also have:
|
||
|
||
[temp.func.order]
|
||
|
||
Partial ordering of overloaded function template
|
||
declarations is used in the following contexts to select
|
||
the function template to which a function template
|
||
specialization refers:
|
||
|
||
-- when an explicit specialization refers to a function
|
||
template.
|
||
|
||
So, we do use the partial ordering rules, at least for now.
|
||
This extension can only serve to make illegal programs legal,
|
||
so it's safe. And, there is strong anecdotal evidence that
|
||
the committee intended the partial ordering rules to apply;
|
||
the EDG front-end has that behavior, and John Spicer claims
|
||
that the committee simply forgot to delete the wording in
|
||
[temp.expl.spec]. */
|
||
tree tmpl = most_specialized (templates, decl, explicit_targs);
|
||
if (tmpl && tmpl != error_mark_node)
|
||
{
|
||
targs = get_bindings (tmpl, decl, explicit_targs);
|
||
templates = scratch_tree_cons (targs, tmpl, NULL_TREE);
|
||
}
|
||
}
|
||
|
||
if (templates == NULL_TREE && candidates == NULL_TREE)
|
||
{
|
||
cp_error_at ("template-id `%D' for `%+D' does not match any template declaration",
|
||
template_id, decl);
|
||
return error_mark_node;
|
||
}
|
||
else if ((templates && TREE_CHAIN (templates))
|
||
|| (candidates && TREE_CHAIN (candidates))
|
||
|| (templates && candidates))
|
||
{
|
||
cp_error_at ("ambiguous template specialization `%D' for `%+D'",
|
||
template_id, decl);
|
||
chainon (candidates, templates);
|
||
print_candidates (candidates);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* We have one, and exactly one, match. */
|
||
if (candidates)
|
||
{
|
||
/* It was a specialization of an ordinary member function in a
|
||
template class. */
|
||
*targs_out = copy_node (DECL_TI_ARGS (TREE_VALUE (candidates)));
|
||
return DECL_TI_TEMPLATE (TREE_VALUE (candidates));
|
||
}
|
||
|
||
/* It was a specialization of a template. */
|
||
targs = DECL_TI_ARGS (DECL_RESULT (TREE_VALUE (templates)));
|
||
if (TMPL_ARGS_HAVE_MULTIPLE_LEVELS (targs))
|
||
{
|
||
*targs_out = copy_node (targs);
|
||
SET_TMPL_ARGS_LEVEL (*targs_out,
|
||
TMPL_ARGS_DEPTH (*targs_out),
|
||
TREE_PURPOSE (templates));
|
||
}
|
||
else
|
||
*targs_out = TREE_PURPOSE (templates);
|
||
return TREE_VALUE (templates);
|
||
}
|
||
|
||
/* Check to see if the function just declared, as indicated in
|
||
DECLARATOR, and in DECL, is a specialization of a function
|
||
template. We may also discover that the declaration is an explicit
|
||
instantiation at this point.
|
||
|
||
Returns DECL, or an equivalent declaration that should be used
|
||
instead if all goes well. Issues an error message if something is
|
||
amiss. Returns error_mark_node if the error is not easily
|
||
recoverable.
|
||
|
||
FLAGS is a bitmask consisting of the following flags:
|
||
|
||
2: The function has a definition.
|
||
4: The function is a friend.
|
||
|
||
The TEMPLATE_COUNT is the number of references to qualifying
|
||
template classes that appeared in the name of the function. For
|
||
example, in
|
||
|
||
template <class T> struct S { void f(); };
|
||
void S<int>::f();
|
||
|
||
the TEMPLATE_COUNT would be 1. However, explicitly specialized
|
||
classes are not counted in the TEMPLATE_COUNT, so that in
|
||
|
||
template <class T> struct S {};
|
||
template <> struct S<int> { void f(); }
|
||
template <> void S<int>::f();
|
||
|
||
the TEMPLATE_COUNT would be 0. (Note that this declaration is
|
||
illegal; there should be no template <>.)
|
||
|
||
If the function is a specialization, it is marked as such via
|
||
DECL_TEMPLATE_SPECIALIZATION. Furthermore, its DECL_TEMPLATE_INFO
|
||
is set up correctly, and it is added to the list of specializations
|
||
for that template. */
|
||
|
||
tree
|
||
check_explicit_specialization (declarator, decl, template_count, flags)
|
||
tree declarator;
|
||
tree decl;
|
||
int template_count;
|
||
int flags;
|
||
{
|
||
int have_def = flags & 2;
|
||
int is_friend = flags & 4;
|
||
int specialization = 0;
|
||
int explicit_instantiation = 0;
|
||
int member_specialization = 0;
|
||
|
||
tree ctype = DECL_CLASS_CONTEXT (decl);
|
||
tree dname = DECL_NAME (decl);
|
||
|
||
if (processing_specialization)
|
||
{
|
||
/* The last template header was of the form template <>. */
|
||
|
||
if (template_header_count > template_count)
|
||
{
|
||
/* There were more template headers than qualifying template
|
||
classes. */
|
||
if (template_header_count - template_count > 1)
|
||
/* There shouldn't be that many template parameter lists.
|
||
There can be at most one parameter list for every
|
||
qualifying class, plus one for the function itself. */
|
||
cp_error ("too many template parameter lists in declaration of `%D'", decl);
|
||
|
||
SET_DECL_TEMPLATE_SPECIALIZATION (decl);
|
||
if (ctype)
|
||
member_specialization = 1;
|
||
else
|
||
specialization = 1;
|
||
}
|
||
else if (template_header_count == template_count)
|
||
{
|
||
/* The counts are equal. So, this might be a
|
||
specialization, but it is not a specialization of a
|
||
member template. It might be something like
|
||
|
||
template <class T> struct S {
|
||
void f(int i);
|
||
};
|
||
template <>
|
||
void S<int>::f(int i) {} */
|
||
specialization = 1;
|
||
SET_DECL_TEMPLATE_SPECIALIZATION (decl);
|
||
}
|
||
else
|
||
{
|
||
/* This cannot be an explicit specialization. There are not
|
||
enough headers for all of the qualifying classes. For
|
||
example, we might have:
|
||
|
||
template <>
|
||
void S<int>::T<char>::f();
|
||
|
||
But, we're missing another template <>. */
|
||
cp_error("too few template parameter lists in declaration of `%D'", decl);
|
||
return decl;
|
||
}
|
||
}
|
||
else if (processing_explicit_instantiation)
|
||
{
|
||
if (template_header_count)
|
||
cp_error ("template parameter list used in explicit instantiation");
|
||
|
||
if (have_def)
|
||
cp_error ("definition provided for explicit instantiation");
|
||
|
||
explicit_instantiation = 1;
|
||
}
|
||
else if (ctype != NULL_TREE
|
||
&& !TYPE_BEING_DEFINED (ctype)
|
||
&& CLASSTYPE_TEMPLATE_INSTANTIATION (ctype)
|
||
&& !is_friend)
|
||
{
|
||
/* This case catches outdated code that looks like this:
|
||
|
||
template <class T> struct S { void f(); };
|
||
void S<int>::f() {} // Missing template <>
|
||
|
||
We disable this check when the type is being defined to
|
||
avoid complaining about default compiler-generated
|
||
constructors, destructors, and assignment operators.
|
||
Since the type is an instantiation, not a specialization,
|
||
these are the only functions that can be defined before
|
||
the class is complete. */
|
||
|
||
/* If they said
|
||
template <class T> void S<int>::f() {}
|
||
that's bogus. */
|
||
if (template_header_count)
|
||
{
|
||
cp_error ("template parameters specified in specialization");
|
||
return decl;
|
||
}
|
||
|
||
if (pedantic)
|
||
cp_pedwarn
|
||
("explicit specialization not preceded by `template <>'");
|
||
specialization = 1;
|
||
SET_DECL_TEMPLATE_SPECIALIZATION (decl);
|
||
}
|
||
else if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR)
|
||
{
|
||
if (is_friend)
|
||
/* This could be something like:
|
||
|
||
template <class T> void f(T);
|
||
class S { friend void f<>(int); } */
|
||
specialization = 1;
|
||
else
|
||
{
|
||
/* This case handles bogus declarations like template <>
|
||
template <class T> void f<int>(); */
|
||
|
||
cp_error ("template-id `%D' in declaration of primary template",
|
||
declarator);
|
||
return decl;
|
||
}
|
||
}
|
||
|
||
if (specialization || member_specialization)
|
||
{
|
||
tree t = TYPE_ARG_TYPES (TREE_TYPE (decl));
|
||
for (; t; t = TREE_CHAIN (t))
|
||
if (TREE_PURPOSE (t))
|
||
{
|
||
cp_pedwarn
|
||
("default argument specified in explicit specialization");
|
||
break;
|
||
}
|
||
if (current_lang_name == lang_name_c)
|
||
cp_error ("template specialization with C linkage");
|
||
}
|
||
|
||
if (specialization || member_specialization || explicit_instantiation)
|
||
{
|
||
tree tmpl = NULL_TREE;
|
||
tree targs = NULL_TREE;
|
||
|
||
/* Make sure that the declarator is a TEMPLATE_ID_EXPR. */
|
||
if (TREE_CODE (declarator) != TEMPLATE_ID_EXPR)
|
||
{
|
||
tree fns;
|
||
|
||
my_friendly_assert (TREE_CODE (declarator) == IDENTIFIER_NODE,
|
||
0);
|
||
if (!ctype)
|
||
fns = IDENTIFIER_NAMESPACE_VALUE (dname);
|
||
else
|
||
fns = dname;
|
||
|
||
declarator =
|
||
lookup_template_function (fns, NULL_TREE);
|
||
}
|
||
|
||
if (declarator == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (ctype != NULL_TREE && TYPE_BEING_DEFINED (ctype))
|
||
{
|
||
if (!explicit_instantiation)
|
||
/* A specialization in class scope. This is illegal,
|
||
but the error will already have been flagged by
|
||
check_specialization_scope. */
|
||
return error_mark_node;
|
||
else
|
||
{
|
||
/* It's not legal to write an explicit instantiation in
|
||
class scope, e.g.:
|
||
|
||
class C { template void f(); }
|
||
|
||
This case is caught by the parser. However, on
|
||
something like:
|
||
|
||
template class C { void f(); };
|
||
|
||
(which is illegal) we can get here. The error will be
|
||
issued later. */
|
||
;
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
else if (TREE_CODE (TREE_OPERAND (declarator, 0)) == LOOKUP_EXPR)
|
||
{
|
||
/* A friend declaration. We can't do much, because we don't
|
||
know what this resolves to, yet. */
|
||
my_friendly_assert (is_friend != 0, 0);
|
||
my_friendly_assert (!explicit_instantiation, 0);
|
||
SET_DECL_IMPLICIT_INSTANTIATION (decl);
|
||
return decl;
|
||
}
|
||
else if (ctype != NULL_TREE
|
||
&& (TREE_CODE (TREE_OPERAND (declarator, 0)) ==
|
||
IDENTIFIER_NODE))
|
||
{
|
||
/* Find the list of functions in ctype that have the same
|
||
name as the declared function. */
|
||
tree name = TREE_OPERAND (declarator, 0);
|
||
tree fns = NULL_TREE;
|
||
int idx;
|
||
|
||
if (name == constructor_name (ctype)
|
||
|| name == constructor_name_full (ctype))
|
||
{
|
||
int is_constructor = DECL_CONSTRUCTOR_P (decl);
|
||
|
||
if (is_constructor ? !TYPE_HAS_CONSTRUCTOR (ctype)
|
||
: !TYPE_HAS_DESTRUCTOR (ctype))
|
||
{
|
||
/* From [temp.expl.spec]:
|
||
|
||
If such an explicit specialization for the member
|
||
of a class template names an implicitly-declared
|
||
special member function (clause _special_), the
|
||
program is ill-formed.
|
||
|
||
Similar language is found in [temp.explicit]. */
|
||
cp_error ("specialization of implicitly-declared special member function");
|
||
return error_mark_node;
|
||
}
|
||
|
||
name = is_constructor ? ctor_identifier : dtor_identifier;
|
||
}
|
||
|
||
if (!IDENTIFIER_TYPENAME_P (name))
|
||
{
|
||
idx = lookup_fnfields_1 (ctype, name);
|
||
if (idx >= 0)
|
||
fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (ctype), idx);
|
||
}
|
||
else
|
||
{
|
||
tree methods;
|
||
|
||
/* For a type-conversion operator, we cannot do a
|
||
name-based lookup. We might be looking for `operator
|
||
int' which will be a specialization of `operator T'.
|
||
So, we find *all* the conversion operators, and then
|
||
select from them. */
|
||
fns = NULL_TREE;
|
||
|
||
methods = CLASSTYPE_METHOD_VEC (ctype);
|
||
if (methods)
|
||
for (idx = 2; idx < TREE_VEC_LENGTH (methods); ++idx)
|
||
{
|
||
tree ovl = TREE_VEC_ELT (methods, idx);
|
||
|
||
if (!ovl || !DECL_CONV_FN_P (OVL_CURRENT (ovl)))
|
||
/* There are no more conversion functions. */
|
||
break;
|
||
|
||
/* Glue all these conversion functions together
|
||
with those we already have. */
|
||
for (; ovl; ovl = OVL_NEXT (ovl))
|
||
fns = ovl_cons (OVL_CURRENT (ovl), fns);
|
||
}
|
||
}
|
||
|
||
if (fns == NULL_TREE)
|
||
{
|
||
cp_error ("no member function `%D' declared in `%T'",
|
||
name, ctype);
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
TREE_OPERAND (declarator, 0) = fns;
|
||
}
|
||
|
||
/* Figure out what exactly is being specialized at this point.
|
||
Note that for an explicit instantiation, even one for a
|
||
member function, we cannot tell apriori whether the
|
||
instantiation is for a member template, or just a member
|
||
function of a template class. Even if a member template is
|
||
being instantiated, the member template arguments may be
|
||
elided if they can be deduced from the rest of the
|
||
declaration. */
|
||
tmpl = determine_specialization (declarator, decl,
|
||
&targs,
|
||
member_specialization);
|
||
|
||
if (!tmpl || tmpl == error_mark_node)
|
||
/* We couldn't figure out what this declaration was
|
||
specializing. */
|
||
return error_mark_node;
|
||
else
|
||
{
|
||
tree gen_tmpl = most_general_template (tmpl);
|
||
|
||
if (explicit_instantiation)
|
||
{
|
||
/* We don't set DECL_EXPLICIT_INSTANTIATION here; that
|
||
is done by do_decl_instantiation later. */
|
||
|
||
int arg_depth = TMPL_ARGS_DEPTH (targs);
|
||
int parm_depth = TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (tmpl));
|
||
|
||
if (arg_depth > parm_depth)
|
||
{
|
||
/* If TMPL is not the most general template (for
|
||
example, if TMPL is a friend template that is
|
||
injected into namespace scope), then there will
|
||
be too many levels fo TARGS. Remove some of them
|
||
here. */
|
||
int i;
|
||
tree new_targs;
|
||
|
||
new_targs = make_temp_vec (parm_depth);
|
||
for (i = arg_depth - parm_depth; i < arg_depth; ++i)
|
||
TREE_VEC_ELT (new_targs, i - (arg_depth - parm_depth))
|
||
= TREE_VEC_ELT (targs, i);
|
||
targs = new_targs;
|
||
}
|
||
|
||
decl = instantiate_template (tmpl, targs);
|
||
return decl;
|
||
}
|
||
|
||
/* If we though that the DECL was a member function, but it
|
||
turns out to be specializing a static member function,
|
||
make DECL a static member function as well. */
|
||
if (DECL_STATIC_FUNCTION_P (tmpl)
|
||
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
|
||
{
|
||
revert_static_member_fn (&decl, 0, 0);
|
||
last_function_parms = TREE_CHAIN (last_function_parms);
|
||
}
|
||
|
||
/* Set up the DECL_TEMPLATE_INFO for DECL. */
|
||
DECL_TEMPLATE_INFO (decl)
|
||
= perm_tree_cons (tmpl, targs, NULL_TREE);
|
||
|
||
/* Mangle the function name appropriately. Note that we do
|
||
not mangle specializations of non-template member
|
||
functions of template classes, e.g. with
|
||
|
||
template <class T> struct S { void f(); }
|
||
|
||
and given the specialization
|
||
|
||
template <> void S<int>::f() {}
|
||
|
||
we do not mangle S<int>::f() here. That's because it's
|
||
just an ordinary member function and doesn't need special
|
||
treatment. We do this here so that the ordinary,
|
||
non-template, name-mangling algorith will not be used
|
||
later. */
|
||
if ((is_member_template (tmpl) || ctype == NULL_TREE)
|
||
&& name_mangling_version >= 1)
|
||
set_mangled_name_for_template_decl (decl);
|
||
|
||
if (is_friend && !have_def)
|
||
/* This is not really a declaration of a specialization.
|
||
It's just the name of an instantiation. But, it's not
|
||
a request for an instantiation, either. */
|
||
SET_DECL_IMPLICIT_INSTANTIATION (decl);
|
||
|
||
/* Register this specialization so that we can find it
|
||
again. */
|
||
decl = register_specialization (decl, gen_tmpl, targs);
|
||
}
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* TYPE is being declared. Verify that the use of template headers
|
||
and such is reasonable. Issue error messages if not. */
|
||
|
||
void
|
||
maybe_check_template_type (type)
|
||
tree type;
|
||
{
|
||
if (template_header_count)
|
||
{
|
||
/* We are in the scope of some `template <...>' header. */
|
||
|
||
int context_depth
|
||
= template_class_depth_real (TYPE_CONTEXT (type),
|
||
/*count_specializations=*/1);
|
||
|
||
if (template_header_count <= context_depth)
|
||
/* This is OK; the template headers are for the context. We
|
||
are actually too lenient here; like
|
||
check_explicit_specialization we should consider the number
|
||
of template types included in the actual declaration. For
|
||
example,
|
||
|
||
template <class T> struct S {
|
||
template <class U> template <class V>
|
||
struct I {};
|
||
};
|
||
|
||
is illegal, but:
|
||
|
||
template <class T> struct S {
|
||
template <class U> struct I;
|
||
};
|
||
|
||
template <class T> template <class U.
|
||
struct S<T>::I {};
|
||
|
||
is not. */
|
||
;
|
||
else if (template_header_count > context_depth + 1)
|
||
/* There are two many template parameter lists. */
|
||
cp_error ("too many template parameter lists in declaration of `%T'", type);
|
||
}
|
||
}
|
||
|
||
/* Returns 1 iff PARMS1 and PARMS2 are identical sets of template
|
||
parameters. These are represented in the same format used for
|
||
DECL_TEMPLATE_PARMS. */
|
||
|
||
int comp_template_parms (parms1, parms2)
|
||
tree parms1;
|
||
tree parms2;
|
||
{
|
||
tree p1;
|
||
tree p2;
|
||
|
||
if (parms1 == parms2)
|
||
return 1;
|
||
|
||
for (p1 = parms1, p2 = parms2;
|
||
p1 != NULL_TREE && p2 != NULL_TREE;
|
||
p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2))
|
||
{
|
||
tree t1 = TREE_VALUE (p1);
|
||
tree t2 = TREE_VALUE (p2);
|
||
int i;
|
||
|
||
my_friendly_assert (TREE_CODE (t1) == TREE_VEC, 0);
|
||
my_friendly_assert (TREE_CODE (t2) == TREE_VEC, 0);
|
||
|
||
if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
|
||
return 0;
|
||
|
||
for (i = 0; i < TREE_VEC_LENGTH (t2); ++i)
|
||
{
|
||
tree parm1 = TREE_VALUE (TREE_VEC_ELT (t1, i));
|
||
tree parm2 = TREE_VALUE (TREE_VEC_ELT (t2, i));
|
||
|
||
if (TREE_CODE (parm1) != TREE_CODE (parm2))
|
||
return 0;
|
||
|
||
if (TREE_CODE (parm1) == TEMPLATE_TYPE_PARM)
|
||
continue;
|
||
else if (!same_type_p (TREE_TYPE (parm1), TREE_TYPE (parm2)))
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if ((p1 != NULL_TREE) != (p2 != NULL_TREE))
|
||
/* One set of parameters has more parameters lists than the
|
||
other. */
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Complain if DECL shadows a template parameter.
|
||
|
||
[temp.local]: A template-parameter shall not be redeclared within its
|
||
scope (including nested scopes). */
|
||
|
||
void
|
||
check_template_shadow (decl)
|
||
tree decl;
|
||
{
|
||
tree olddecl;
|
||
|
||
/* If we're not in a template, we can't possibly shadow a template
|
||
parameter. */
|
||
if (!current_template_parms)
|
||
return;
|
||
|
||
/* Figure out what we're shadowing. */
|
||
if (TREE_CODE (decl) == OVERLOAD)
|
||
decl = OVL_CURRENT (decl);
|
||
olddecl = IDENTIFIER_VALUE (DECL_NAME (decl));
|
||
|
||
/* If there's no previous binding for this name, we're not shadowing
|
||
anything, let alone a template parameter. */
|
||
if (!olddecl)
|
||
return;
|
||
|
||
/* If we're not shadowing a template parameter, we're done. Note
|
||
that OLDDECL might be an OVERLOAD (or perhaps even an
|
||
ERROR_MARK), so we can't just blithely assume it to be a _DECL
|
||
node. */
|
||
if (TREE_CODE_CLASS (TREE_CODE (olddecl)) != 'd'
|
||
|| !DECL_TEMPLATE_PARM_P (olddecl))
|
||
return;
|
||
|
||
/* We check for decl != olddecl to avoid bogus errors for using a
|
||
name inside a class. We check TPFI to avoid duplicate errors for
|
||
inline member templates. */
|
||
if (decl == olddecl
|
||
|| TEMPLATE_PARMS_FOR_INLINE (current_template_parms))
|
||
return;
|
||
|
||
cp_error_at ("declaration of `%#D'", decl);
|
||
cp_error_at (" shadows template parm `%#D'", olddecl);
|
||
}
|
||
|
||
/* Return a new TEMPLATE_PARM_INDEX with the indicated INDEX, LEVEL,
|
||
ORIG_LEVEL, DECL, and TYPE. */
|
||
|
||
static tree
|
||
build_template_parm_index (index, level, orig_level, decl, type)
|
||
int index;
|
||
int level;
|
||
int orig_level;
|
||
tree decl;
|
||
tree type;
|
||
{
|
||
tree t = make_node (TEMPLATE_PARM_INDEX);
|
||
TEMPLATE_PARM_IDX (t) = index;
|
||
TEMPLATE_PARM_LEVEL (t) = level;
|
||
TEMPLATE_PARM_ORIG_LEVEL (t) = orig_level;
|
||
TEMPLATE_PARM_DECL (t) = decl;
|
||
TREE_TYPE (t) = type;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a TEMPLATE_PARM_INDEX, similar to INDEX, but whose
|
||
TEMPLATE_PARM_LEVEL has been decreased by LEVELS. If such a
|
||
TEMPLATE_PARM_INDEX already exists, it is returned; otherwise, a
|
||
new one is created. */
|
||
|
||
static tree
|
||
reduce_template_parm_level (index, type, levels)
|
||
tree index;
|
||
tree type;
|
||
int levels;
|
||
{
|
||
if (TEMPLATE_PARM_DESCENDANTS (index) == NULL_TREE
|
||
|| (TEMPLATE_PARM_LEVEL (TEMPLATE_PARM_DESCENDANTS (index))
|
||
!= TEMPLATE_PARM_LEVEL (index) - levels))
|
||
{
|
||
tree decl
|
||
= build_decl (TREE_CODE (TEMPLATE_PARM_DECL (index)),
|
||
DECL_NAME (TEMPLATE_PARM_DECL (index)),
|
||
type);
|
||
tree t
|
||
= build_template_parm_index (TEMPLATE_PARM_IDX (index),
|
||
TEMPLATE_PARM_LEVEL (index) - levels,
|
||
TEMPLATE_PARM_ORIG_LEVEL (index),
|
||
decl, type);
|
||
TEMPLATE_PARM_DESCENDANTS (index) = t;
|
||
|
||
/* Template template parameters need this. */
|
||
DECL_TEMPLATE_PARMS (decl)
|
||
= DECL_TEMPLATE_PARMS (TEMPLATE_PARM_DECL (index));
|
||
}
|
||
|
||
return TEMPLATE_PARM_DESCENDANTS (index);
|
||
}
|
||
|
||
/* Process information from new template parameter NEXT and append it to the
|
||
LIST being built. */
|
||
|
||
tree
|
||
process_template_parm (list, next)
|
||
tree list, next;
|
||
{
|
||
tree parm;
|
||
tree decl = 0;
|
||
tree defval;
|
||
int is_type, idx;
|
||
|
||
parm = next;
|
||
my_friendly_assert (TREE_CODE (parm) == TREE_LIST, 259);
|
||
defval = TREE_PURPOSE (parm);
|
||
parm = TREE_VALUE (parm);
|
||
is_type = TREE_PURPOSE (parm) == class_type_node;
|
||
|
||
if (list)
|
||
{
|
||
tree p = TREE_VALUE (tree_last (list));
|
||
|
||
if (TREE_CODE (p) == TYPE_DECL)
|
||
idx = TEMPLATE_TYPE_IDX (TREE_TYPE (p));
|
||
else if (TREE_CODE (p) == TEMPLATE_DECL)
|
||
idx = TEMPLATE_TYPE_IDX (TREE_TYPE (DECL_TEMPLATE_RESULT (p)));
|
||
else
|
||
idx = TEMPLATE_PARM_IDX (DECL_INITIAL (p));
|
||
++idx;
|
||
}
|
||
else
|
||
idx = 0;
|
||
|
||
if (!is_type)
|
||
{
|
||
my_friendly_assert (TREE_CODE (TREE_PURPOSE (parm)) == TREE_LIST, 260);
|
||
/* is a const-param */
|
||
parm = grokdeclarator (TREE_VALUE (parm), TREE_PURPOSE (parm),
|
||
PARM, 0, NULL_TREE);
|
||
|
||
/* [temp.param]
|
||
|
||
The top-level cv-qualifiers on the template-parameter are
|
||
ignored when determining its type. */
|
||
TREE_TYPE (parm) = TYPE_MAIN_VARIANT (TREE_TYPE (parm));
|
||
|
||
/* A template parameter is not modifiable. */
|
||
TREE_READONLY (parm) = 1;
|
||
if (IS_AGGR_TYPE (TREE_TYPE (parm))
|
||
&& TREE_CODE (TREE_TYPE (parm)) != TEMPLATE_TYPE_PARM
|
||
&& TREE_CODE (TREE_TYPE (parm)) != TYPENAME_TYPE)
|
||
{
|
||
cp_error ("`%#T' is not a valid type for a template constant parameter",
|
||
TREE_TYPE (parm));
|
||
if (DECL_NAME (parm) == NULL_TREE)
|
||
error (" a template type parameter must begin with `class' or `typename'");
|
||
TREE_TYPE (parm) = void_type_node;
|
||
}
|
||
else if (pedantic
|
||
&& (TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE
|
||
|| TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE))
|
||
cp_pedwarn ("`%T' is not a valid type for a template constant parameter",
|
||
TREE_TYPE (parm));
|
||
if (TREE_PERMANENT (parm) == 0)
|
||
{
|
||
parm = copy_node (parm);
|
||
TREE_PERMANENT (parm) = 1;
|
||
}
|
||
decl = build_decl (CONST_DECL, DECL_NAME (parm), TREE_TYPE (parm));
|
||
DECL_INITIAL (parm) = DECL_INITIAL (decl)
|
||
= build_template_parm_index (idx, processing_template_decl,
|
||
processing_template_decl,
|
||
decl, TREE_TYPE (parm));
|
||
}
|
||
else
|
||
{
|
||
tree t;
|
||
parm = TREE_VALUE (parm);
|
||
|
||
if (parm && TREE_CODE (parm) == TEMPLATE_DECL)
|
||
{
|
||
t = make_lang_type (TEMPLATE_TEMPLATE_PARM);
|
||
/* This is for distinguishing between real templates and template
|
||
template parameters */
|
||
TREE_TYPE (parm) = t;
|
||
TREE_TYPE (DECL_TEMPLATE_RESULT (parm)) = t;
|
||
decl = parm;
|
||
}
|
||
else
|
||
{
|
||
t = make_lang_type (TEMPLATE_TYPE_PARM);
|
||
/* parm is either IDENTIFIER_NODE or NULL_TREE */
|
||
decl = build_decl (TYPE_DECL, parm, t);
|
||
}
|
||
|
||
TYPE_NAME (t) = decl;
|
||
TYPE_STUB_DECL (t) = decl;
|
||
parm = decl;
|
||
TEMPLATE_TYPE_PARM_INDEX (t)
|
||
= build_template_parm_index (idx, processing_template_decl,
|
||
processing_template_decl,
|
||
decl, TREE_TYPE (parm));
|
||
}
|
||
SET_DECL_ARTIFICIAL (decl);
|
||
DECL_TEMPLATE_PARM_P (decl) = 1;
|
||
pushdecl (decl);
|
||
parm = build_tree_list (defval, parm);
|
||
return chainon (list, parm);
|
||
}
|
||
|
||
/* The end of a template parameter list has been reached. Process the
|
||
tree list into a parameter vector, converting each parameter into a more
|
||
useful form. Type parameters are saved as IDENTIFIER_NODEs, and others
|
||
as PARM_DECLs. */
|
||
|
||
tree
|
||
end_template_parm_list (parms)
|
||
tree parms;
|
||
{
|
||
int nparms;
|
||
tree parm;
|
||
tree saved_parmlist = make_tree_vec (list_length (parms));
|
||
|
||
current_template_parms
|
||
= tree_cons (build_int_2 (0, processing_template_decl),
|
||
saved_parmlist, current_template_parms);
|
||
|
||
for (parm = parms, nparms = 0; parm; parm = TREE_CHAIN (parm), nparms++)
|
||
TREE_VEC_ELT (saved_parmlist, nparms) = parm;
|
||
|
||
--processing_template_parmlist;
|
||
|
||
return saved_parmlist;
|
||
}
|
||
|
||
/* end_template_decl is called after a template declaration is seen. */
|
||
|
||
void
|
||
end_template_decl ()
|
||
{
|
||
reset_specialization ();
|
||
|
||
if (! processing_template_decl)
|
||
return;
|
||
|
||
/* This matches the pushlevel in begin_template_parm_list. */
|
||
poplevel (0, 0, 0);
|
||
|
||
--processing_template_decl;
|
||
current_template_parms = TREE_CHAIN (current_template_parms);
|
||
(void) get_pending_sizes (); /* Why? */
|
||
}
|
||
|
||
/* Given a template argument vector containing the template PARMS.
|
||
The innermost PARMS are given first. */
|
||
|
||
tree
|
||
current_template_args ()
|
||
{
|
||
tree header;
|
||
tree args = NULL_TREE;
|
||
int length = TMPL_PARMS_DEPTH (current_template_parms);
|
||
int l = length;
|
||
|
||
/* If there is only one level of template parameters, we do not
|
||
create a TREE_VEC of TREE_VECs. Instead, we return a single
|
||
TREE_VEC containing the arguments. */
|
||
if (length > 1)
|
||
args = make_tree_vec (length);
|
||
|
||
for (header = current_template_parms; header; header = TREE_CHAIN (header))
|
||
{
|
||
tree a = copy_node (TREE_VALUE (header));
|
||
int i;
|
||
|
||
TREE_TYPE (a) = NULL_TREE;
|
||
for (i = TREE_VEC_LENGTH (a) - 1; i >= 0; --i)
|
||
{
|
||
tree t = TREE_VEC_ELT (a, i);
|
||
|
||
/* T will be a list if we are called from within a
|
||
begin/end_template_parm_list pair, but a vector directly
|
||
if within a begin/end_member_template_processing pair. */
|
||
if (TREE_CODE (t) == TREE_LIST)
|
||
{
|
||
t = TREE_VALUE (t);
|
||
|
||
if (TREE_CODE (t) == TYPE_DECL
|
||
|| TREE_CODE (t) == TEMPLATE_DECL)
|
||
t = TREE_TYPE (t);
|
||
else
|
||
t = DECL_INITIAL (t);
|
||
TREE_VEC_ELT (a, i) = t;
|
||
}
|
||
}
|
||
|
||
if (length > 1)
|
||
TREE_VEC_ELT (args, --l) = a;
|
||
else
|
||
args = a;
|
||
}
|
||
|
||
return args;
|
||
}
|
||
|
||
/* Return a TEMPLATE_DECL corresponding to DECL, using the indicated
|
||
template PARMS. Used by push_template_decl below. */
|
||
|
||
static tree
|
||
build_template_decl (decl, parms)
|
||
tree decl;
|
||
tree parms;
|
||
{
|
||
tree tmpl = build_lang_decl (TEMPLATE_DECL, DECL_NAME (decl), NULL_TREE);
|
||
DECL_TEMPLATE_PARMS (tmpl) = parms;
|
||
DECL_CONTEXT (tmpl) = DECL_CONTEXT (decl);
|
||
if (DECL_LANG_SPECIFIC (decl))
|
||
{
|
||
DECL_CLASS_CONTEXT (tmpl) = DECL_CLASS_CONTEXT (decl);
|
||
DECL_STATIC_FUNCTION_P (tmpl) = DECL_STATIC_FUNCTION_P (decl);
|
||
DECL_CONSTRUCTOR_P (tmpl) = DECL_CONSTRUCTOR_P (decl);
|
||
}
|
||
|
||
return tmpl;
|
||
}
|
||
|
||
struct template_parm_data
|
||
{
|
||
/* The level of the template parameters we are currently
|
||
processing. */
|
||
int level;
|
||
|
||
/* The index of the specialization argument we are currently
|
||
processing. */
|
||
int current_arg;
|
||
|
||
/* An array whose size is the number of template parameters. The
|
||
elements are non-zero if the parameter has been used in any one
|
||
of the arguments processed so far. */
|
||
int* parms;
|
||
|
||
/* An array whose size is the number of template arguments. The
|
||
elements are non-zero if the argument makes use of template
|
||
parameters of this level. */
|
||
int* arg_uses_template_parms;
|
||
};
|
||
|
||
/* Subroutine of push_template_decl used to see if each template
|
||
parameter in a partial specialization is used in the explicit
|
||
argument list. If T is of the LEVEL given in DATA (which is
|
||
treated as a template_parm_data*), then DATA->PARMS is marked
|
||
appropriately. */
|
||
|
||
static int
|
||
mark_template_parm (t, data)
|
||
tree t;
|
||
void* data;
|
||
{
|
||
int level;
|
||
int idx;
|
||
struct template_parm_data* tpd = (struct template_parm_data*) data;
|
||
|
||
if (TREE_CODE (t) == TEMPLATE_PARM_INDEX)
|
||
{
|
||
level = TEMPLATE_PARM_LEVEL (t);
|
||
idx = TEMPLATE_PARM_IDX (t);
|
||
}
|
||
else
|
||
{
|
||
level = TEMPLATE_TYPE_LEVEL (t);
|
||
idx = TEMPLATE_TYPE_IDX (t);
|
||
}
|
||
|
||
if (level == tpd->level)
|
||
{
|
||
tpd->parms[idx] = 1;
|
||
tpd->arg_uses_template_parms[tpd->current_arg] = 1;
|
||
}
|
||
|
||
/* Return zero so that for_each_template_parm will continue the
|
||
traversal of the tree; we want to mark *every* template parm. */
|
||
return 0;
|
||
}
|
||
|
||
/* Process the partial specialization DECL. */
|
||
|
||
static tree
|
||
process_partial_specialization (decl)
|
||
tree decl;
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
tree maintmpl = CLASSTYPE_TI_TEMPLATE (type);
|
||
tree specargs = CLASSTYPE_TI_ARGS (type);
|
||
tree inner_args = innermost_args (specargs);
|
||
tree inner_parms = INNERMOST_TEMPLATE_PARMS (current_template_parms);
|
||
tree main_inner_parms = DECL_INNERMOST_TEMPLATE_PARMS (maintmpl);
|
||
int nargs = TREE_VEC_LENGTH (inner_args);
|
||
int ntparms = TREE_VEC_LENGTH (inner_parms);
|
||
int i;
|
||
int did_error_intro = 0;
|
||
struct template_parm_data tpd;
|
||
struct template_parm_data tpd2;
|
||
|
||
/* We check that each of the template parameters given in the
|
||
partial specialization is used in the argument list to the
|
||
specialization. For example:
|
||
|
||
template <class T> struct S;
|
||
template <class T> struct S<T*>;
|
||
|
||
The second declaration is OK because `T*' uses the template
|
||
parameter T, whereas
|
||
|
||
template <class T> struct S<int>;
|
||
|
||
is no good. Even trickier is:
|
||
|
||
template <class T>
|
||
struct S1
|
||
{
|
||
template <class U>
|
||
struct S2;
|
||
template <class U>
|
||
struct S2<T>;
|
||
};
|
||
|
||
The S2<T> declaration is actually illegal; it is a
|
||
full-specialization. Of course,
|
||
|
||
template <class U>
|
||
struct S2<T (*)(U)>;
|
||
|
||
or some such would have been OK. */
|
||
tpd.level = TMPL_PARMS_DEPTH (current_template_parms);
|
||
tpd.parms = alloca (sizeof (int) * ntparms);
|
||
bzero ((PTR) tpd.parms, sizeof (int) * ntparms);
|
||
|
||
tpd.arg_uses_template_parms = alloca (sizeof (int) * nargs);
|
||
bzero ((PTR) tpd.arg_uses_template_parms, sizeof (int) * nargs);
|
||
for (i = 0; i < nargs; ++i)
|
||
{
|
||
tpd.current_arg = i;
|
||
for_each_template_parm (TREE_VEC_ELT (inner_args, i),
|
||
&mark_template_parm,
|
||
&tpd);
|
||
}
|
||
for (i = 0; i < ntparms; ++i)
|
||
if (tpd.parms[i] == 0)
|
||
{
|
||
/* One of the template parms was not used in the
|
||
specialization. */
|
||
if (!did_error_intro)
|
||
{
|
||
cp_error ("template parameters not used in partial specialization:");
|
||
did_error_intro = 1;
|
||
}
|
||
|
||
cp_error (" `%D'",
|
||
TREE_VALUE (TREE_VEC_ELT (inner_parms, i)));
|
||
}
|
||
|
||
/* [temp.class.spec]
|
||
|
||
The argument list of the specialization shall not be identical to
|
||
the implicit argument list of the primary template. */
|
||
if (comp_template_args (inner_args,
|
||
innermost_args (CLASSTYPE_TI_ARGS (TREE_TYPE
|
||
(maintmpl)))))
|
||
cp_error ("partial specialization `%T' does not specialize any template arguments", type);
|
||
|
||
/* [temp.class.spec]
|
||
|
||
A partially specialized non-type argument expression shall not
|
||
involve template parameters of the partial specialization except
|
||
when the argument expression is a simple identifier.
|
||
|
||
The type of a template parameter corresponding to a specialized
|
||
non-type argument shall not be dependent on a parameter of the
|
||
specialization. */
|
||
my_friendly_assert (nargs == DECL_NTPARMS (maintmpl), 0);
|
||
tpd2.parms = 0;
|
||
for (i = 0; i < nargs; ++i)
|
||
{
|
||
tree arg = TREE_VEC_ELT (inner_args, i);
|
||
if (/* These first two lines are the `non-type' bit. */
|
||
TREE_CODE_CLASS (TREE_CODE (arg)) != 't'
|
||
&& TREE_CODE (arg) != TEMPLATE_DECL
|
||
/* This next line is the `argument expression is not just a
|
||
simple identifier' condition and also the `specialized
|
||
non-type argument' bit. */
|
||
&& TREE_CODE (arg) != TEMPLATE_PARM_INDEX)
|
||
{
|
||
if (tpd.arg_uses_template_parms[i])
|
||
cp_error ("template argument `%E' involves template parameter(s)", arg);
|
||
else
|
||
{
|
||
/* Look at the corresponding template parameter,
|
||
marking which template parameters its type depends
|
||
upon. */
|
||
tree type =
|
||
TREE_TYPE (TREE_VALUE (TREE_VEC_ELT (main_inner_parms,
|
||
i)));
|
||
|
||
if (!tpd2.parms)
|
||
{
|
||
/* We haven't yet initialized TPD2. Do so now. */
|
||
tpd2.arg_uses_template_parms
|
||
= (int*) alloca (sizeof (int) * nargs);
|
||
/* The number of parameters here is the number in the
|
||
main template, which, as checked in the assertion
|
||
above, is NARGS. */
|
||
tpd2.parms = (int*) alloca (sizeof (int) * nargs);
|
||
tpd2.level =
|
||
TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (maintmpl));
|
||
}
|
||
|
||
/* Mark the template parameters. But this time, we're
|
||
looking for the template parameters of the main
|
||
template, not in the specialization. */
|
||
tpd2.current_arg = i;
|
||
tpd2.arg_uses_template_parms[i] = 0;
|
||
bzero ((PTR) tpd2.parms, sizeof (int) * nargs);
|
||
for_each_template_parm (type,
|
||
&mark_template_parm,
|
||
&tpd2);
|
||
|
||
if (tpd2.arg_uses_template_parms [i])
|
||
{
|
||
/* The type depended on some template parameters.
|
||
If they are fully specialized in the
|
||
specialization, that's OK. */
|
||
int j;
|
||
for (j = 0; j < nargs; ++j)
|
||
if (tpd2.parms[j] != 0
|
||
&& tpd.arg_uses_template_parms [j])
|
||
{
|
||
cp_error ("type `%T' of template argument `%E' depends on template parameter(s)",
|
||
type,
|
||
arg);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (retrieve_specialization (maintmpl, specargs))
|
||
/* We've already got this specialization. */
|
||
return decl;
|
||
|
||
DECL_TEMPLATE_SPECIALIZATIONS (maintmpl) = CLASSTYPE_TI_SPEC_INFO (type)
|
||
= perm_tree_cons (inner_args, inner_parms,
|
||
DECL_TEMPLATE_SPECIALIZATIONS (maintmpl));
|
||
TREE_TYPE (DECL_TEMPLATE_SPECIALIZATIONS (maintmpl)) = type;
|
||
return decl;
|
||
}
|
||
|
||
/* Check that a template declaration's use of default arguments is not
|
||
invalid. Here, PARMS are the template parameters. IS_PRIMARY is
|
||
non-zero if DECL is the thing declared by a primary template.
|
||
IS_PARTIAL is non-zero if DECL is a partial specialization. */
|
||
|
||
static void
|
||
check_default_tmpl_args (decl, parms, is_primary, is_partial)
|
||
tree decl;
|
||
tree parms;
|
||
int is_primary;
|
||
int is_partial;
|
||
{
|
||
const char *msg;
|
||
int last_level_to_check;
|
||
|
||
/* [temp.param]
|
||
|
||
A default template-argument shall not be specified in a
|
||
function template declaration or a function template definition, nor
|
||
in the template-parameter-list of the definition of a member of a
|
||
class template. */
|
||
|
||
if (current_class_type
|
||
&& !TYPE_BEING_DEFINED (current_class_type)
|
||
&& DECL_LANG_SPECIFIC (decl)
|
||
/* If this is either a friend defined in the scope of the class
|
||
or a member function. */
|
||
&& DECL_CLASS_CONTEXT (decl) == current_class_type
|
||
/* And, if it was a member function, it really was defined in
|
||
the scope of the class. */
|
||
&& (!DECL_FUNCTION_MEMBER_P (decl) || DECL_DEFINED_IN_CLASS_P (decl)))
|
||
/* We already checked these parameters when the template was
|
||
declared, so there's no need to do it again now. This function
|
||
was defined in class scope, but we're processing it's body now
|
||
that the class is complete. */
|
||
return;
|
||
|
||
if (TREE_CODE (decl) != TYPE_DECL || is_partial || !is_primary)
|
||
/* For an ordinary class template, default template arguments are
|
||
allowed at the innermost level, e.g.:
|
||
template <class T = int>
|
||
struct S {};
|
||
but, in a partial specialization, they're not allowed even
|
||
there, as we have in [temp.class.spec]:
|
||
|
||
The template parameter list of a specialization shall not
|
||
contain default template argument values.
|
||
|
||
So, for a partial specialization, or for a function template,
|
||
we look at all of them. */
|
||
;
|
||
else
|
||
/* But, for a primary class template that is not a partial
|
||
specialization we look at all template parameters except the
|
||
innermost ones. */
|
||
parms = TREE_CHAIN (parms);
|
||
|
||
/* Figure out what error message to issue. */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
msg = "default argument for template parameter in function template `%D'";
|
||
else if (is_partial)
|
||
msg = "default argument in partial specialization `%D'";
|
||
else
|
||
msg = "default argument for template parameter for class enclosing `%D'";
|
||
|
||
if (current_class_type && TYPE_BEING_DEFINED (current_class_type))
|
||
/* If we're inside a class definition, there's no need to
|
||
examine the parameters to the class itself. On the one
|
||
hand, they will be checked when the class is defined, and,
|
||
on the other, default arguments are legal in things like:
|
||
template <class T = double>
|
||
struct S { template <class U> void f(U); };
|
||
Here the default argument for `S' has no bearing on the
|
||
declaration of `f'. */
|
||
last_level_to_check = template_class_depth (current_class_type) + 1;
|
||
else
|
||
/* Check everything. */
|
||
last_level_to_check = 0;
|
||
|
||
for (; parms && TMPL_PARMS_DEPTH (parms) >= last_level_to_check;
|
||
parms = TREE_CHAIN (parms))
|
||
{
|
||
tree inner_parms = TREE_VALUE (parms);
|
||
int i, ntparms;
|
||
|
||
ntparms = TREE_VEC_LENGTH (inner_parms);
|
||
for (i = 0; i < ntparms; ++i)
|
||
if (TREE_PURPOSE (TREE_VEC_ELT (inner_parms, i)))
|
||
{
|
||
if (msg)
|
||
{
|
||
cp_error (msg, decl);
|
||
msg = 0;
|
||
}
|
||
|
||
/* Clear out the default argument so that we are not
|
||
confused later. */
|
||
TREE_PURPOSE (TREE_VEC_ELT (inner_parms, i)) = NULL_TREE;
|
||
}
|
||
|
||
/* At this point, if we're still interested in issuing messages,
|
||
they must apply to classes surrounding the object declared. */
|
||
if (msg)
|
||
msg = "default argument for template parameter for class enclosing `%D'";
|
||
}
|
||
}
|
||
|
||
/* Creates a TEMPLATE_DECL for the indicated DECL using the template
|
||
parameters given by current_template_args, or reuses a
|
||
previously existing one, if appropriate. Returns the DECL, or an
|
||
equivalent one, if it is replaced via a call to duplicate_decls.
|
||
|
||
If IS_FRIEND is non-zero, DECL is a friend declaration. */
|
||
|
||
tree
|
||
push_template_decl_real (decl, is_friend)
|
||
tree decl;
|
||
int is_friend;
|
||
{
|
||
tree tmpl;
|
||
tree args;
|
||
tree info;
|
||
tree ctx;
|
||
int primary;
|
||
int is_partial;
|
||
|
||
/* See if this is a partial specialization. */
|
||
is_partial = (TREE_CODE (decl) == TYPE_DECL && DECL_ARTIFICIAL (decl)
|
||
&& TREE_CODE (TREE_TYPE (decl)) != ENUMERAL_TYPE
|
||
&& CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (decl)));
|
||
|
||
is_friend |= (TREE_CODE (decl) == FUNCTION_DECL && DECL_FRIEND_P (decl));
|
||
|
||
if (is_friend)
|
||
/* For a friend, we want the context of the friend function, not
|
||
the type of which it is a friend. */
|
||
ctx = DECL_CONTEXT (decl);
|
||
else if (DECL_REAL_CONTEXT (decl)
|
||
&& TREE_CODE (DECL_REAL_CONTEXT (decl)) != NAMESPACE_DECL)
|
||
/* In the case of a virtual function, we want the class in which
|
||
it is defined. */
|
||
ctx = DECL_REAL_CONTEXT (decl);
|
||
else
|
||
/* Otherwise, if we're currently definining some class, the DECL
|
||
is assumed to be a member of the class. */
|
||
ctx = current_class_type;
|
||
|
||
if (ctx && TREE_CODE (ctx) == NAMESPACE_DECL)
|
||
ctx = NULL_TREE;
|
||
|
||
if (!DECL_CONTEXT (decl))
|
||
DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace);
|
||
|
||
/* For determining whether this is a primary template or not, we're really
|
||
interested in the lexical context, not the true context. */
|
||
if (is_friend)
|
||
info = current_class_type;
|
||
else
|
||
info = ctx;
|
||
|
||
/* See if this is a primary template. */
|
||
if (info && TREE_CODE (info) == FUNCTION_DECL)
|
||
primary = 0;
|
||
/* Note that template_class_depth returns 0 if given NULL_TREE, so
|
||
this next line works even when we are at global scope. */
|
||
else if (processing_template_decl > template_class_depth (info))
|
||
primary = 1;
|
||
else
|
||
primary = 0;
|
||
|
||
if (primary)
|
||
{
|
||
if (current_lang_name == lang_name_c)
|
||
cp_error ("template with C linkage");
|
||
if (TREE_CODE (decl) == TYPE_DECL && ANON_AGGRNAME_P (DECL_NAME (decl)))
|
||
cp_error ("template class without a name");
|
||
if (TREE_CODE (decl) == TYPE_DECL
|
||
&& TREE_CODE (TREE_TYPE (decl)) == ENUMERAL_TYPE)
|
||
cp_error ("template declaration of `%#T'", TREE_TYPE (decl));
|
||
}
|
||
|
||
/* Check to see that the rules regarding the use of default
|
||
arguments are not being violated. */
|
||
check_default_tmpl_args (decl, current_template_parms,
|
||
primary, is_partial);
|
||
|
||
if (is_partial)
|
||
return process_partial_specialization (decl);
|
||
|
||
args = current_template_args ();
|
||
|
||
if (!ctx
|
||
|| TREE_CODE (ctx) == FUNCTION_DECL
|
||
|| TYPE_BEING_DEFINED (ctx)
|
||
|| (is_friend && !DECL_TEMPLATE_INFO (decl)))
|
||
{
|
||
if (DECL_LANG_SPECIFIC (decl)
|
||
&& DECL_TEMPLATE_INFO (decl)
|
||
&& DECL_TI_TEMPLATE (decl))
|
||
tmpl = DECL_TI_TEMPLATE (decl);
|
||
else
|
||
{
|
||
tmpl = build_template_decl (decl, current_template_parms);
|
||
|
||
if (DECL_LANG_SPECIFIC (decl)
|
||
&& DECL_TEMPLATE_SPECIALIZATION (decl))
|
||
{
|
||
/* A specialization of a member template of a template
|
||
class. */
|
||
SET_DECL_TEMPLATE_SPECIALIZATION (tmpl);
|
||
DECL_TEMPLATE_INFO (tmpl) = DECL_TEMPLATE_INFO (decl);
|
||
DECL_TEMPLATE_INFO (decl) = NULL_TREE;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree a, t, current, parms;
|
||
int i;
|
||
|
||
if (CLASSTYPE_TEMPLATE_INSTANTIATION (ctx))
|
||
cp_error ("must specialize `%#T' before defining member `%#D'",
|
||
ctx, decl);
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
{
|
||
if ((IS_AGGR_TYPE_CODE (TREE_CODE (TREE_TYPE (decl)))
|
||
|| TREE_CODE (TREE_TYPE (decl)) == ENUMERAL_TYPE)
|
||
&& TYPE_TEMPLATE_INFO (TREE_TYPE (decl))
|
||
&& TYPE_TI_TEMPLATE (TREE_TYPE (decl)))
|
||
tmpl = TYPE_TI_TEMPLATE (TREE_TYPE (decl));
|
||
else
|
||
{
|
||
cp_error ("`%D' does not declare a template type", decl);
|
||
return decl;
|
||
}
|
||
}
|
||
else if (! DECL_TEMPLATE_INFO (decl))
|
||
{
|
||
cp_error ("template definition of non-template `%#D'", decl);
|
||
return decl;
|
||
}
|
||
else
|
||
tmpl = DECL_TI_TEMPLATE (decl);
|
||
|
||
if (is_member_template (tmpl)
|
||
&& DECL_FUNCTION_TEMPLATE_P (tmpl)
|
||
&& DECL_TEMPLATE_INFO (decl) && DECL_TI_ARGS (decl)
|
||
&& DECL_TEMPLATE_SPECIALIZATION (decl))
|
||
{
|
||
tree new_tmpl;
|
||
|
||
/* The declaration is a specialization of a member
|
||
template, declared outside the class. Therefore, the
|
||
innermost template arguments will be NULL, so we
|
||
replace them with the arguments determined by the
|
||
earlier call to check_explicit_specialization. */
|
||
args = DECL_TI_ARGS (decl);
|
||
|
||
new_tmpl
|
||
= build_template_decl (decl, current_template_parms);
|
||
DECL_TEMPLATE_RESULT (new_tmpl) = decl;
|
||
TREE_TYPE (new_tmpl) = TREE_TYPE (decl);
|
||
DECL_TI_TEMPLATE (decl) = new_tmpl;
|
||
SET_DECL_TEMPLATE_SPECIALIZATION (new_tmpl);
|
||
DECL_TEMPLATE_INFO (new_tmpl) =
|
||
perm_tree_cons (tmpl, args, NULL_TREE);
|
||
|
||
register_specialization (new_tmpl, tmpl, args);
|
||
return decl;
|
||
}
|
||
|
||
/* Make sure the template headers we got make sense. */
|
||
|
||
parms = DECL_TEMPLATE_PARMS (tmpl);
|
||
i = TMPL_PARMS_DEPTH (parms);
|
||
if (TMPL_ARGS_DEPTH (args) != i)
|
||
{
|
||
cp_error ("expected %d levels of template parms for `%#D', got %d",
|
||
i, decl, TMPL_ARGS_DEPTH (args));
|
||
}
|
||
else
|
||
for (current = decl; i > 0; --i, parms = TREE_CHAIN (parms))
|
||
{
|
||
a = TMPL_ARGS_LEVEL (args, i);
|
||
t = INNERMOST_TEMPLATE_PARMS (parms);
|
||
|
||
if (TREE_VEC_LENGTH (t) != TREE_VEC_LENGTH (a))
|
||
{
|
||
if (current == decl)
|
||
cp_error ("got %d template parameters for `%#D'",
|
||
TREE_VEC_LENGTH (a), decl);
|
||
else
|
||
cp_error ("got %d template parameters for `%#T'",
|
||
TREE_VEC_LENGTH (a), current);
|
||
cp_error (" but %d required", TREE_VEC_LENGTH (t));
|
||
}
|
||
|
||
/* Perhaps we should also check that the parms are used in the
|
||
appropriate qualifying scopes in the declarator? */
|
||
|
||
if (current == decl)
|
||
current = ctx;
|
||
else
|
||
current = TYPE_CONTEXT (current);
|
||
}
|
||
}
|
||
|
||
DECL_TEMPLATE_RESULT (tmpl) = decl;
|
||
TREE_TYPE (tmpl) = TREE_TYPE (decl);
|
||
|
||
/* Push template declarations for global functions and types. Note
|
||
that we do not try to push a global template friend declared in a
|
||
template class; such a thing may well depend on the template
|
||
parameters of the class. */
|
||
if (! ctx
|
||
&& !(is_friend && template_class_depth (current_class_type) > 0))
|
||
tmpl = pushdecl_namespace_level (tmpl);
|
||
|
||
if (primary)
|
||
DECL_PRIMARY_TEMPLATE (tmpl) = tmpl;
|
||
|
||
info = perm_tree_cons (tmpl, args, NULL_TREE);
|
||
|
||
if (TREE_CODE (decl) == TYPE_DECL && DECL_ARTIFICIAL (decl))
|
||
{
|
||
SET_TYPE_TEMPLATE_INFO (TREE_TYPE (tmpl), info);
|
||
if ((!ctx || TREE_CODE (ctx) != FUNCTION_DECL)
|
||
&& TREE_CODE (TREE_TYPE (decl)) != ENUMERAL_TYPE)
|
||
DECL_NAME (decl) = classtype_mangled_name (TREE_TYPE (decl));
|
||
}
|
||
else if (! DECL_LANG_SPECIFIC (decl))
|
||
cp_error ("template declaration of `%#D'", decl);
|
||
else
|
||
DECL_TEMPLATE_INFO (decl) = info;
|
||
|
||
return DECL_TEMPLATE_RESULT (tmpl);
|
||
}
|
||
|
||
tree
|
||
push_template_decl (decl)
|
||
tree decl;
|
||
{
|
||
return push_template_decl_real (decl, 0);
|
||
}
|
||
|
||
/* Called when a class template TYPE is redeclared with the indicated
|
||
template PARMS, e.g.:
|
||
|
||
template <class T> struct S;
|
||
template <class T> struct S {}; */
|
||
|
||
void
|
||
redeclare_class_template (type, parms)
|
||
tree type;
|
||
tree parms;
|
||
{
|
||
tree tmpl;
|
||
tree tmpl_parms;
|
||
int i;
|
||
|
||
if (!TYPE_TEMPLATE_INFO (type))
|
||
{
|
||
cp_error ("`%T' is not a template type", type);
|
||
return;
|
||
}
|
||
|
||
tmpl = TYPE_TI_TEMPLATE (type);
|
||
if (!PRIMARY_TEMPLATE_P (tmpl))
|
||
/* The type is nested in some template class. Nothing to worry
|
||
about here; there are no new template parameters for the nested
|
||
type. */
|
||
return;
|
||
|
||
parms = INNERMOST_TEMPLATE_PARMS (parms);
|
||
tmpl_parms = DECL_INNERMOST_TEMPLATE_PARMS (tmpl);
|
||
|
||
if (TREE_VEC_LENGTH (parms) != TREE_VEC_LENGTH (tmpl_parms))
|
||
{
|
||
cp_error_at ("previous declaration `%D'", tmpl);
|
||
cp_error ("used %d template parameter%s instead of %d",
|
||
TREE_VEC_LENGTH (tmpl_parms),
|
||
TREE_VEC_LENGTH (tmpl_parms) == 1 ? "" : "s",
|
||
TREE_VEC_LENGTH (parms));
|
||
return;
|
||
}
|
||
|
||
for (i = 0; i < TREE_VEC_LENGTH (tmpl_parms); ++i)
|
||
{
|
||
tree tmpl_parm = TREE_VALUE (TREE_VEC_ELT (tmpl_parms, i));
|
||
tree parm = TREE_VALUE (TREE_VEC_ELT (parms, i));
|
||
tree tmpl_default = TREE_PURPOSE (TREE_VEC_ELT (tmpl_parms, i));
|
||
tree parm_default = TREE_PURPOSE (TREE_VEC_ELT (parms, i));
|
||
|
||
if (TREE_CODE (tmpl_parm) != TREE_CODE (parm))
|
||
{
|
||
cp_error_at ("template parameter `%#D'", tmpl_parm);
|
||
cp_error ("redeclared here as `%#D'", parm);
|
||
return;
|
||
}
|
||
|
||
if (tmpl_default != NULL_TREE && parm_default != NULL_TREE)
|
||
{
|
||
/* We have in [temp.param]:
|
||
|
||
A template-parameter may not be given default arguments
|
||
by two different declarations in the same scope. */
|
||
cp_error ("redefinition of default argument for `%#D'", parm);
|
||
cp_error_at (" original definition appeared here", tmpl_parm);
|
||
return;
|
||
}
|
||
|
||
if (parm_default != NULL_TREE)
|
||
/* Update the previous template parameters (which are the ones
|
||
that will really count) with the new default value. */
|
||
TREE_PURPOSE (TREE_VEC_ELT (tmpl_parms, i)) = parm_default;
|
||
}
|
||
}
|
||
|
||
/* Attempt to convert the non-type template parameter EXPR to the
|
||
indicated TYPE. If the conversion is successful, return the
|
||
converted value. If the conversion is unsuccesful, return
|
||
NULL_TREE if we issued an error message, or error_mark_node if we
|
||
did not. We issue error messages for out-and-out bad template
|
||
parameters, but not simply because the conversion failed, since we
|
||
might be just trying to do argument deduction. By the time this
|
||
function is called, neither TYPE nor EXPR may make use of template
|
||
parameters. */
|
||
|
||
static tree
|
||
convert_nontype_argument (type, expr)
|
||
tree type;
|
||
tree expr;
|
||
{
|
||
tree expr_type = TREE_TYPE (expr);
|
||
|
||
/* A template-argument for a non-type, non-template
|
||
template-parameter shall be one of:
|
||
|
||
--an integral constant-expression of integral or enumeration
|
||
type; or
|
||
|
||
--the name of a non-type template-parameter; or
|
||
|
||
--the name of an object or function with external linkage,
|
||
including function templates and function template-ids but
|
||
excluding non-static class members, expressed as id-expression;
|
||
or
|
||
|
||
--the address of an object or function with external linkage,
|
||
including function templates and function template-ids but
|
||
excluding non-static class members, expressed as & id-expression
|
||
where the & is optional if the name refers to a function or
|
||
array; or
|
||
|
||
--a pointer to member expressed as described in _expr.unary.op_. */
|
||
|
||
/* An integral constant-expression can include const variables
|
||
or enumerators. */
|
||
if (INTEGRAL_TYPE_P (expr_type) && TREE_READONLY_DECL_P (expr))
|
||
expr = decl_constant_value (expr);
|
||
|
||
if (is_overloaded_fn (expr))
|
||
/* OK for now. We'll check that it has external linkage later.
|
||
Check this first since if expr_type is the unknown_type_node
|
||
we would otherwise complain below. */
|
||
;
|
||
else if (TYPE_PTRMEM_P (expr_type)
|
||
|| TYPE_PTRMEMFUNC_P (expr_type))
|
||
{
|
||
if (TREE_CODE (expr) != PTRMEM_CST)
|
||
goto bad_argument;
|
||
}
|
||
else if (TYPE_PTR_P (expr_type)
|
||
|| TYPE_PTRMEM_P (expr_type)
|
||
|| TREE_CODE (expr_type) == ARRAY_TYPE
|
||
|| TREE_CODE (type) == REFERENCE_TYPE
|
||
/* If expr is the address of an overloaded function, we
|
||
will get the unknown_type_node at this point. */
|
||
|| expr_type == unknown_type_node)
|
||
{
|
||
tree referent;
|
||
tree e = expr;
|
||
STRIP_NOPS (e);
|
||
|
||
if (TREE_CODE (type) == REFERENCE_TYPE
|
||
|| TREE_CODE (expr_type) == ARRAY_TYPE)
|
||
referent = e;
|
||
else
|
||
{
|
||
if (TREE_CODE (e) != ADDR_EXPR)
|
||
{
|
||
bad_argument:
|
||
cp_error ("`%E' is not a valid template argument", expr);
|
||
if (TYPE_PTR_P (expr_type))
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (expr_type)) == FUNCTION_TYPE)
|
||
cp_error ("it must be the address of a function with external linkage");
|
||
else
|
||
cp_error ("it must be the address of an object with external linkage");
|
||
}
|
||
else if (TYPE_PTRMEM_P (expr_type)
|
||
|| TYPE_PTRMEMFUNC_P (expr_type))
|
||
cp_error ("it must be a pointer-to-member of the form `&X::Y'");
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
referent = TREE_OPERAND (e, 0);
|
||
STRIP_NOPS (referent);
|
||
}
|
||
|
||
if (TREE_CODE (referent) == STRING_CST)
|
||
{
|
||
cp_error ("string literal %E is not a valid template argument",
|
||
referent);
|
||
error ("because it is the address of an object with static linkage");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (is_overloaded_fn (referent))
|
||
/* We'll check that it has external linkage later. */
|
||
;
|
||
else if (TREE_CODE (referent) != VAR_DECL)
|
||
goto bad_argument;
|
||
else if (!TREE_PUBLIC (referent))
|
||
{
|
||
cp_error ("address of non-extern `%E' cannot be used as template argument", referent);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
else if (INTEGRAL_TYPE_P (expr_type)
|
||
|| TYPE_PTRMEM_P (expr_type)
|
||
|| TYPE_PTRMEMFUNC_P (expr_type)
|
||
/* The next two are g++ extensions. */
|
||
|| TREE_CODE (expr_type) == REAL_TYPE
|
||
|| TREE_CODE (expr_type) == COMPLEX_TYPE)
|
||
{
|
||
if (! TREE_CONSTANT (expr))
|
||
{
|
||
non_constant:
|
||
cp_error ("non-constant `%E' cannot be used as template argument",
|
||
expr);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
cp_error ("object `%E' cannot be used as template argument", expr);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case INTEGER_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
/* For a non-type template-parameter of integral or enumeration
|
||
type, integral promotions (_conv.prom_) and integral
|
||
conversions (_conv.integral_) are applied. */
|
||
if (!INTEGRAL_TYPE_P (expr_type))
|
||
return error_mark_node;
|
||
|
||
/* It's safe to call digest_init in this case; we know we're
|
||
just converting one integral constant expression to another. */
|
||
expr = digest_init (type, expr, (tree*) 0);
|
||
|
||
if (TREE_CODE (expr) != INTEGER_CST)
|
||
/* Curiously, some TREE_CONSTANT integral expressions do not
|
||
simplify to integer constants. For example, `3 % 0',
|
||
remains a TRUNC_MOD_EXPR. */
|
||
goto non_constant;
|
||
|
||
return expr;
|
||
|
||
case REAL_TYPE:
|
||
case COMPLEX_TYPE:
|
||
/* These are g++ extensions. */
|
||
if (TREE_CODE (expr_type) != TREE_CODE (type))
|
||
return error_mark_node;
|
||
|
||
expr = digest_init (type, expr, (tree*) 0);
|
||
|
||
if (TREE_CODE (expr) != REAL_CST)
|
||
goto non_constant;
|
||
|
||
return expr;
|
||
|
||
case POINTER_TYPE:
|
||
{
|
||
tree type_pointed_to = TREE_TYPE (type);
|
||
|
||
if (TYPE_PTRMEM_P (type))
|
||
{
|
||
tree e;
|
||
|
||
/* For a non-type template-parameter of type pointer to data
|
||
member, qualification conversions (_conv.qual_) are
|
||
applied. */
|
||
e = perform_qualification_conversions (type, expr);
|
||
if (TREE_CODE (e) == NOP_EXPR)
|
||
/* The call to perform_qualification_conversions will
|
||
insert a NOP_EXPR over EXPR to do express conversion,
|
||
if necessary. But, that will confuse us if we use
|
||
this (converted) template parameter to instantiate
|
||
another template; then the thing will not look like a
|
||
valid template argument. So, just make a new
|
||
constant, of the appropriate type. */
|
||
e = make_ptrmem_cst (type, PTRMEM_CST_MEMBER (expr));
|
||
return e;
|
||
}
|
||
else if (TREE_CODE (type_pointed_to) == FUNCTION_TYPE)
|
||
{
|
||
/* For a non-type template-parameter of type pointer to
|
||
function, only the function-to-pointer conversion
|
||
(_conv.func_) is applied. If the template-argument
|
||
represents a set of overloaded functions (or a pointer to
|
||
such), the matching function is selected from the set
|
||
(_over.over_). */
|
||
tree fns;
|
||
tree fn;
|
||
|
||
if (TREE_CODE (expr) == ADDR_EXPR)
|
||
fns = TREE_OPERAND (expr, 0);
|
||
else
|
||
fns = expr;
|
||
|
||
fn = instantiate_type (type_pointed_to, fns, 0);
|
||
|
||
if (fn == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (!TREE_PUBLIC (fn))
|
||
{
|
||
if (really_overloaded_fn (fns))
|
||
return error_mark_node;
|
||
else
|
||
goto bad_argument;
|
||
}
|
||
|
||
expr = build_unary_op (ADDR_EXPR, fn, 0);
|
||
|
||
my_friendly_assert (same_type_p (type, TREE_TYPE (expr)),
|
||
0);
|
||
return expr;
|
||
}
|
||
else
|
||
{
|
||
/* For a non-type template-parameter of type pointer to
|
||
object, qualification conversions (_conv.qual_) and the
|
||
array-to-pointer conversion (_conv.array_) are applied.
|
||
[Note: In particular, neither the null pointer conversion
|
||
(_conv.ptr_) nor the derived-to-base conversion
|
||
(_conv.ptr_) are applied. Although 0 is a valid
|
||
template-argument for a non-type template-parameter of
|
||
integral type, it is not a valid template-argument for a
|
||
non-type template-parameter of pointer type.]
|
||
|
||
The call to decay_conversion performs the
|
||
array-to-pointer conversion, if appropriate. */
|
||
expr = decay_conversion (expr);
|
||
|
||
if (expr == error_mark_node)
|
||
return error_mark_node;
|
||
else
|
||
return perform_qualification_conversions (type, expr);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case REFERENCE_TYPE:
|
||
{
|
||
tree type_referred_to = TREE_TYPE (type);
|
||
|
||
if (TREE_CODE (type_referred_to) == FUNCTION_TYPE)
|
||
{
|
||
/* For a non-type template-parameter of type reference to
|
||
function, no conversions apply. If the
|
||
template-argument represents a set of overloaded
|
||
functions, the matching function is selected from the
|
||
set (_over.over_). */
|
||
tree fns = expr;
|
||
tree fn;
|
||
|
||
fn = instantiate_type (type_referred_to, fns, 0);
|
||
|
||
if (fn == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (!TREE_PUBLIC (fn))
|
||
{
|
||
if (really_overloaded_fn (fns))
|
||
/* Don't issue an error here; we might get a different
|
||
function if the overloading had worked out
|
||
differently. */
|
||
return error_mark_node;
|
||
else
|
||
goto bad_argument;
|
||
}
|
||
|
||
my_friendly_assert (same_type_p (type_referred_to,
|
||
TREE_TYPE (fn)),
|
||
0);
|
||
|
||
return fn;
|
||
}
|
||
else
|
||
{
|
||
/* For a non-type template-parameter of type reference to
|
||
object, no conversions apply. The type referred to by the
|
||
reference may be more cv-qualified than the (otherwise
|
||
identical) type of the template-argument. The
|
||
template-parameter is bound directly to the
|
||
template-argument, which must be an lvalue. */
|
||
if ((TYPE_MAIN_VARIANT (expr_type)
|
||
!= TYPE_MAIN_VARIANT (type_referred_to))
|
||
|| !at_least_as_qualified_p (type_referred_to,
|
||
expr_type)
|
||
|| !real_lvalue_p (expr))
|
||
return error_mark_node;
|
||
else
|
||
return expr;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
{
|
||
if (!TYPE_PTRMEMFUNC_P (type))
|
||
/* This handles templates like
|
||
template<class T, T t> void f();
|
||
when T is substituted with any class. The second template
|
||
parameter becomes invalid and the template candidate is
|
||
rejected. */
|
||
return error_mark_node;
|
||
|
||
/* For a non-type template-parameter of type pointer to member
|
||
function, no conversions apply. If the template-argument
|
||
represents a set of overloaded member functions, the
|
||
matching member function is selected from the set
|
||
(_over.over_). */
|
||
|
||
if (!TYPE_PTRMEMFUNC_P (expr_type) &&
|
||
expr_type != unknown_type_node)
|
||
return error_mark_node;
|
||
|
||
if (TREE_CODE (expr) == PTRMEM_CST)
|
||
{
|
||
/* A ptr-to-member constant. */
|
||
if (!same_type_p (type, expr_type))
|
||
return error_mark_node;
|
||
else
|
||
return expr;
|
||
}
|
||
|
||
if (TREE_CODE (expr) != ADDR_EXPR)
|
||
return error_mark_node;
|
||
|
||
expr = instantiate_type (type, expr, 0);
|
||
|
||
if (expr == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
my_friendly_assert (same_type_p (type, TREE_TYPE (expr)),
|
||
0);
|
||
return expr;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* All non-type parameters must have one of these types. */
|
||
my_friendly_abort (0);
|
||
break;
|
||
}
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Return 1 if PARM_PARMS and ARG_PARMS matches using rule for
|
||
template template parameters. Both PARM_PARMS and ARG_PARMS are
|
||
vectors of TREE_LIST nodes containing TYPE_DECL, TEMPLATE_DECL
|
||
or PARM_DECL.
|
||
|
||
ARG_PARMS may contain more parameters than PARM_PARMS. If this is
|
||
the case, then extra parameters must have default arguments.
|
||
|
||
Consider the example:
|
||
template <class T, class Allocator = allocator> class vector;
|
||
template<template <class U> class TT> class C;
|
||
|
||
C<vector> is a valid instantiation. PARM_PARMS for the above code
|
||
contains a TYPE_DECL (for U), ARG_PARMS contains two TYPE_DECLs (for
|
||
T and Allocator) and OUTER_ARGS contains the argument that is used to
|
||
substitute the TT parameter. */
|
||
|
||
static int
|
||
coerce_template_template_parms (parm_parms, arg_parms, complain,
|
||
in_decl, outer_args)
|
||
tree parm_parms, arg_parms;
|
||
int complain;
|
||
tree in_decl, outer_args;
|
||
{
|
||
int nparms, nargs, i;
|
||
tree parm, arg;
|
||
|
||
my_friendly_assert (TREE_CODE (parm_parms) == TREE_VEC, 0);
|
||
my_friendly_assert (TREE_CODE (arg_parms) == TREE_VEC, 0);
|
||
|
||
nparms = TREE_VEC_LENGTH (parm_parms);
|
||
nargs = TREE_VEC_LENGTH (arg_parms);
|
||
|
||
/* The rule here is opposite of coerce_template_parms. */
|
||
if (nargs < nparms
|
||
|| (nargs > nparms
|
||
&& TREE_PURPOSE (TREE_VEC_ELT (arg_parms, nparms)) == NULL_TREE))
|
||
return 0;
|
||
|
||
for (i = 0; i < nparms; ++i)
|
||
{
|
||
parm = TREE_VALUE (TREE_VEC_ELT (parm_parms, i));
|
||
arg = TREE_VALUE (TREE_VEC_ELT (arg_parms, i));
|
||
|
||
if (arg == NULL_TREE || arg == error_mark_node
|
||
|| parm == NULL_TREE || parm == error_mark_node)
|
||
return 0;
|
||
|
||
if (TREE_CODE (arg) != TREE_CODE (parm))
|
||
return 0;
|
||
|
||
switch (TREE_CODE (parm))
|
||
{
|
||
case TYPE_DECL:
|
||
break;
|
||
|
||
case TEMPLATE_DECL:
|
||
/* We encounter instantiations of templates like
|
||
template <template <template <class> class> class TT>
|
||
class C; */
|
||
{
|
||
tree parmparm = DECL_INNERMOST_TEMPLATE_PARMS (parm);
|
||
tree argparm = DECL_INNERMOST_TEMPLATE_PARMS (arg);
|
||
|
||
if (!coerce_template_template_parms (parmparm, argparm,
|
||
complain, in_decl,
|
||
outer_args))
|
||
return 0;
|
||
}
|
||
break;
|
||
|
||
case PARM_DECL:
|
||
/* The tsubst call is used to handle cases such as
|
||
template <class T, template <T> class TT> class D;
|
||
i.e. the parameter list of TT depends on earlier parameters. */
|
||
if (!same_type_p (tsubst (TREE_TYPE (parm), outer_args,
|
||
complain, in_decl),
|
||
TREE_TYPE (arg)))
|
||
return 0;
|
||
break;
|
||
|
||
default:
|
||
my_friendly_abort (0);
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Convert the indicated template ARG as necessary to match the
|
||
indicated template PARM. Returns the converted ARG, or
|
||
error_mark_node if the conversion was unsuccessful. Error messages
|
||
are issued if COMPLAIN is non-zero. This conversion is for the Ith
|
||
parameter in the parameter list. ARGS is the full set of template
|
||
arguments deduced so far. */
|
||
|
||
static tree
|
||
convert_template_argument (parm, arg, args, complain, i, in_decl)
|
||
tree parm;
|
||
tree arg;
|
||
tree args;
|
||
int complain;
|
||
int i;
|
||
tree in_decl;
|
||
{
|
||
tree val;
|
||
tree inner_args;
|
||
int is_type, requires_type, is_tmpl_type, requires_tmpl_type;
|
||
|
||
inner_args = innermost_args (args);
|
||
|
||
if (TREE_CODE (arg) == TREE_LIST
|
||
&& TREE_TYPE (arg) != NULL_TREE
|
||
&& TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE)
|
||
{
|
||
/* The template argument was the name of some
|
||
member function. That's usually
|
||
illegal, but static members are OK. In any
|
||
case, grab the underlying fields/functions
|
||
and issue an error later if required. */
|
||
arg = TREE_VALUE (arg);
|
||
TREE_TYPE (arg) = unknown_type_node;
|
||
}
|
||
|
||
requires_tmpl_type = TREE_CODE (parm) == TEMPLATE_DECL;
|
||
requires_type = (TREE_CODE (parm) == TYPE_DECL
|
||
|| requires_tmpl_type);
|
||
|
||
/* Check if it is a class template. If REQUIRES_TMPL_TYPE is true,
|
||
we also accept implicitly created TYPE_DECL as a valid argument.
|
||
This is necessary to handle the case where we pass a template name
|
||
to a template template parameter in a scope where we've derived from
|
||
in instantiation of that template, so the template name refers to that
|
||
instantiation. We really ought to handle this better. */
|
||
is_tmpl_type
|
||
= ((TREE_CODE (arg) == TEMPLATE_DECL
|
||
&& TREE_CODE (DECL_TEMPLATE_RESULT (arg)) == TYPE_DECL)
|
||
|| (TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM
|
||
&& !TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (arg))
|
||
|| (TREE_CODE (arg) == RECORD_TYPE
|
||
&& CLASSTYPE_TEMPLATE_INFO (arg)
|
||
&& TREE_CODE (TYPE_NAME (arg)) == TYPE_DECL
|
||
&& DECL_ARTIFICIAL (TYPE_NAME (arg))
|
||
&& requires_tmpl_type
|
||
&& is_base_of_enclosing_class (arg, current_class_type)));
|
||
if (is_tmpl_type && TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM)
|
||
arg = TYPE_STUB_DECL (arg);
|
||
else if (is_tmpl_type && TREE_CODE (arg) == RECORD_TYPE)
|
||
arg = CLASSTYPE_TI_TEMPLATE (arg);
|
||
|
||
is_type = TREE_CODE_CLASS (TREE_CODE (arg)) == 't' || is_tmpl_type;
|
||
|
||
if (requires_type && ! is_type && TREE_CODE (arg) == SCOPE_REF
|
||
&& TREE_CODE (TREE_OPERAND (arg, 0)) == TEMPLATE_TYPE_PARM)
|
||
{
|
||
cp_pedwarn ("to refer to a type member of a template parameter,");
|
||
cp_pedwarn (" use `typename %E'", arg);
|
||
|
||
arg = make_typename_type (TREE_OPERAND (arg, 0),
|
||
TREE_OPERAND (arg, 1));
|
||
is_type = 1;
|
||
}
|
||
if (is_type != requires_type)
|
||
{
|
||
if (in_decl)
|
||
{
|
||
if (complain)
|
||
{
|
||
cp_error ("type/value mismatch at argument %d in template parameter list for `%D'",
|
||
i + 1, in_decl);
|
||
if (is_type)
|
||
cp_error (" expected a constant of type `%T', got `%T'",
|
||
TREE_TYPE (parm),
|
||
(is_tmpl_type ? DECL_NAME (arg) : arg));
|
||
else
|
||
cp_error (" expected a type, got `%E'", arg);
|
||
}
|
||
}
|
||
return error_mark_node;
|
||
}
|
||
if (is_tmpl_type ^ requires_tmpl_type)
|
||
{
|
||
if (in_decl && complain)
|
||
{
|
||
cp_error ("type/value mismatch at argument %d in template parameter list for `%D'",
|
||
i + 1, in_decl);
|
||
if (is_tmpl_type)
|
||
cp_error (" expected a type, got `%T'", DECL_NAME (arg));
|
||
else
|
||
cp_error (" expected a class template, got `%T'", arg);
|
||
}
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (is_type)
|
||
{
|
||
if (requires_tmpl_type)
|
||
{
|
||
tree parmparm = DECL_INNERMOST_TEMPLATE_PARMS (parm);
|
||
tree argparm = DECL_INNERMOST_TEMPLATE_PARMS (arg);
|
||
|
||
if (coerce_template_template_parms (parmparm, argparm, complain,
|
||
in_decl, inner_args))
|
||
{
|
||
val = arg;
|
||
|
||
/* TEMPLATE_TEMPLATE_PARM node is preferred over
|
||
TEMPLATE_DECL. */
|
||
if (val != error_mark_node
|
||
&& DECL_TEMPLATE_TEMPLATE_PARM_P (val))
|
||
val = TREE_TYPE (val);
|
||
}
|
||
else
|
||
{
|
||
if (in_decl && complain)
|
||
{
|
||
cp_error ("type/value mismatch at argument %d in template parameter list for `%D'",
|
||
i + 1, in_decl);
|
||
cp_error (" expected a template of type `%D', got `%D'", parm, arg);
|
||
}
|
||
|
||
val = error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
val = groktypename (arg);
|
||
if (! processing_template_decl)
|
||
{
|
||
/* [basic.link]: A name with no linkage (notably, the
|
||
name of a class or enumeration declared in a local
|
||
scope) shall not be used to declare an entity with
|
||
linkage. This implies that names with no linkage
|
||
cannot be used as template arguments. */
|
||
tree t = no_linkage_check (val);
|
||
if (t)
|
||
{
|
||
if (ANON_AGGRNAME_P (TYPE_IDENTIFIER (t)))
|
||
cp_pedwarn
|
||
("template-argument `%T' uses anonymous type", val);
|
||
else
|
||
cp_error
|
||
("template-argument `%T' uses local type `%T'",
|
||
val, t);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
tree t = tsubst (TREE_TYPE (parm), args, complain, in_decl);
|
||
|
||
if (processing_template_decl)
|
||
arg = maybe_fold_nontype_arg (arg);
|
||
|
||
if (!uses_template_parms (arg) && !uses_template_parms (t))
|
||
/* We used to call digest_init here. However, digest_init
|
||
will report errors, which we don't want when complain
|
||
is zero. More importantly, digest_init will try too
|
||
hard to convert things: for example, `0' should not be
|
||
converted to pointer type at this point according to
|
||
the standard. Accepting this is not merely an
|
||
extension, since deciding whether or not these
|
||
conversions can occur is part of determining which
|
||
function template to call, or whether a given epxlicit
|
||
argument specification is legal. */
|
||
val = convert_nontype_argument (t, arg);
|
||
else
|
||
val = arg;
|
||
|
||
if (val == NULL_TREE)
|
||
val = error_mark_node;
|
||
else if (val == error_mark_node && complain)
|
||
cp_error ("could not convert template argument `%E' to `%T'",
|
||
arg, t);
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Convert all template arguments to their appropriate types, and
|
||
return a vector containing the innermost resulting template
|
||
arguments. If any error occurs, return error_mark_node, and, if
|
||
COMPLAIN is non-zero, issue an error message. Some error messages
|
||
are issued even if COMPLAIN is zero; for instance, if a template
|
||
argument is composed from a local class.
|
||
|
||
If REQUIRE_ALL_ARGUMENTS is non-zero, all arguments must be
|
||
provided in ARGLIST, or else trailing parameters must have default
|
||
values. If REQUIRE_ALL_ARGUMENTS is zero, we will attempt argument
|
||
deduction for any unspecified trailing arguments.
|
||
|
||
The resulting TREE_VEC is allocated on a temporary obstack, and
|
||
must be explicitly copied if it will be permanent. */
|
||
|
||
static tree
|
||
coerce_template_parms (parms, args, in_decl,
|
||
complain,
|
||
require_all_arguments)
|
||
tree parms, args;
|
||
tree in_decl;
|
||
int complain;
|
||
int require_all_arguments;
|
||
{
|
||
int nparms, nargs, i, lost = 0;
|
||
tree inner_args;
|
||
tree new_args;
|
||
tree new_inner_args;
|
||
|
||
inner_args = innermost_args (args);
|
||
nargs = NUM_TMPL_ARGS (inner_args);
|
||
nparms = TREE_VEC_LENGTH (parms);
|
||
|
||
if (nargs > nparms
|
||
|| (nargs < nparms
|
||
&& require_all_arguments
|
||
&& TREE_PURPOSE (TREE_VEC_ELT (parms, nargs)) == NULL_TREE))
|
||
{
|
||
if (complain)
|
||
{
|
||
cp_error ("wrong number of template arguments (%d, should be %d)",
|
||
nargs, nparms);
|
||
|
||
if (in_decl)
|
||
cp_error_at ("provided for `%D'", in_decl);
|
||
}
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
new_inner_args = make_temp_vec (nparms);
|
||
new_args = add_outermost_template_args (args, new_inner_args);
|
||
for (i = 0; i < nparms; i++)
|
||
{
|
||
tree arg;
|
||
tree parm;
|
||
|
||
/* Get the Ith template parameter. */
|
||
parm = TREE_VEC_ELT (parms, i);
|
||
|
||
/* Calculate the Ith argument. */
|
||
if (inner_args && TREE_CODE (inner_args) == TREE_LIST)
|
||
{
|
||
arg = TREE_VALUE (inner_args);
|
||
inner_args = TREE_CHAIN (inner_args);
|
||
}
|
||
else if (i < nargs)
|
||
arg = TREE_VEC_ELT (inner_args, i);
|
||
/* If no template argument was supplied, look for a default
|
||
value. */
|
||
else if (TREE_PURPOSE (parm) == NULL_TREE)
|
||
{
|
||
/* There was no default value. */
|
||
my_friendly_assert (!require_all_arguments, 0);
|
||
break;
|
||
}
|
||
else if (TREE_CODE (TREE_VALUE (parm)) == TYPE_DECL)
|
||
arg = tsubst (TREE_PURPOSE (parm), new_args, complain, in_decl);
|
||
else
|
||
arg = tsubst_expr (TREE_PURPOSE (parm), new_args, complain,
|
||
in_decl);
|
||
|
||
/* Now, convert the Ith argument, as necessary. */
|
||
if (arg == NULL_TREE)
|
||
/* We're out of arguments. */
|
||
{
|
||
my_friendly_assert (!require_all_arguments, 0);
|
||
break;
|
||
}
|
||
else if (arg == error_mark_node)
|
||
{
|
||
cp_error ("template argument %d is invalid", i + 1);
|
||
arg = error_mark_node;
|
||
}
|
||
else
|
||
arg = convert_template_argument (TREE_VALUE (parm),
|
||
arg, new_args, complain, i,
|
||
in_decl);
|
||
|
||
if (arg == error_mark_node)
|
||
lost++;
|
||
TREE_VEC_ELT (new_inner_args, i) = arg;
|
||
}
|
||
|
||
if (lost)
|
||
return error_mark_node;
|
||
|
||
return new_inner_args;
|
||
}
|
||
|
||
/* Returns 1 if template args OT and NT are equivalent. */
|
||
|
||
static int
|
||
template_args_equal (ot, nt)
|
||
tree ot, nt;
|
||
{
|
||
if (nt == ot)
|
||
return 1;
|
||
if (TREE_CODE (nt) != TREE_CODE (ot))
|
||
return 0;
|
||
if (TREE_CODE (nt) == TREE_VEC)
|
||
/* For member templates */
|
||
return comp_template_args (ot, nt);
|
||
else if (TREE_CODE_CLASS (TREE_CODE (ot)) == 't')
|
||
return same_type_p (ot, nt);
|
||
else
|
||
return (cp_tree_equal (ot, nt) > 0);
|
||
}
|
||
|
||
/* Returns 1 iff the OLDARGS and NEWARGS are in fact identical sets
|
||
of template arguments. Returns 0 otherwise. */
|
||
|
||
int
|
||
comp_template_args (oldargs, newargs)
|
||
tree oldargs, newargs;
|
||
{
|
||
int i;
|
||
|
||
if (TREE_VEC_LENGTH (oldargs) != TREE_VEC_LENGTH (newargs))
|
||
return 0;
|
||
|
||
for (i = 0; i < TREE_VEC_LENGTH (oldargs); ++i)
|
||
{
|
||
tree nt = TREE_VEC_ELT (newargs, i);
|
||
tree ot = TREE_VEC_ELT (oldargs, i);
|
||
|
||
if (! template_args_equal (ot, nt))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Given class template name and parameter list, produce a user-friendly name
|
||
for the instantiation. */
|
||
|
||
static char *
|
||
mangle_class_name_for_template (name, parms, arglist)
|
||
char *name;
|
||
tree parms, arglist;
|
||
{
|
||
static struct obstack scratch_obstack;
|
||
static char *scratch_firstobj;
|
||
int i, nparms;
|
||
|
||
if (!scratch_firstobj)
|
||
gcc_obstack_init (&scratch_obstack);
|
||
else
|
||
obstack_free (&scratch_obstack, scratch_firstobj);
|
||
scratch_firstobj = obstack_alloc (&scratch_obstack, 1);
|
||
|
||
#define ccat(c) obstack_1grow (&scratch_obstack, (c));
|
||
#define cat(s) obstack_grow (&scratch_obstack, (s), strlen (s))
|
||
|
||
cat (name);
|
||
ccat ('<');
|
||
nparms = TREE_VEC_LENGTH (parms);
|
||
arglist = innermost_args (arglist);
|
||
my_friendly_assert (nparms == TREE_VEC_LENGTH (arglist), 268);
|
||
for (i = 0; i < nparms; i++)
|
||
{
|
||
tree parm = TREE_VALUE (TREE_VEC_ELT (parms, i));
|
||
tree arg = TREE_VEC_ELT (arglist, i);
|
||
|
||
if (i)
|
||
ccat (',');
|
||
|
||
if (TREE_CODE (parm) == TYPE_DECL)
|
||
{
|
||
cat (type_as_string_real (arg, 0, 1));
|
||
continue;
|
||
}
|
||
else if (TREE_CODE (parm) == TEMPLATE_DECL)
|
||
{
|
||
if (TREE_CODE (arg) == TEMPLATE_DECL)
|
||
{
|
||
/* Already substituted with real template. Just output
|
||
the template name here */
|
||
tree context = DECL_CONTEXT (arg);
|
||
if (context)
|
||
{
|
||
my_friendly_assert (TREE_CODE (context) == NAMESPACE_DECL, 980422);
|
||
cat(decl_as_string (DECL_CONTEXT (arg), 0));
|
||
cat("::");
|
||
}
|
||
cat (IDENTIFIER_POINTER (DECL_NAME (arg)));
|
||
}
|
||
else
|
||
/* Output the parameter declaration */
|
||
cat (type_as_string_real (arg, 0, 1));
|
||
continue;
|
||
}
|
||
else
|
||
my_friendly_assert (TREE_CODE (parm) == PARM_DECL, 269);
|
||
|
||
if (TREE_CODE (arg) == TREE_LIST)
|
||
{
|
||
/* New list cell was built because old chain link was in
|
||
use. */
|
||
my_friendly_assert (TREE_PURPOSE (arg) == NULL_TREE, 270);
|
||
arg = TREE_VALUE (arg);
|
||
}
|
||
/* No need to check arglist against parmlist here; we did that
|
||
in coerce_template_parms, called from lookup_template_class. */
|
||
cat (expr_as_string (arg, 0));
|
||
}
|
||
{
|
||
char *bufp = obstack_next_free (&scratch_obstack);
|
||
int offset = 0;
|
||
while (bufp[offset - 1] == ' ')
|
||
offset--;
|
||
obstack_blank_fast (&scratch_obstack, offset);
|
||
|
||
/* B<C<char> >, not B<C<char>> */
|
||
if (bufp[offset - 1] == '>')
|
||
ccat (' ');
|
||
}
|
||
ccat ('>');
|
||
ccat ('\0');
|
||
return (char *) obstack_base (&scratch_obstack);
|
||
}
|
||
|
||
static tree
|
||
classtype_mangled_name (t)
|
||
tree t;
|
||
{
|
||
if (CLASSTYPE_TEMPLATE_INFO (t)
|
||
/* Specializations have already had their names set up in
|
||
lookup_template_class. */
|
||
&& !CLASSTYPE_TEMPLATE_SPECIALIZATION (t))
|
||
{
|
||
tree tmpl = most_general_template (CLASSTYPE_TI_TEMPLATE (t));
|
||
|
||
/* For non-primary templates, the template parameters are
|
||
implicit from their surrounding context. */
|
||
if (PRIMARY_TEMPLATE_P (tmpl))
|
||
{
|
||
tree name = DECL_NAME (tmpl);
|
||
char *mangled_name = mangle_class_name_for_template
|
||
(IDENTIFIER_POINTER (name),
|
||
DECL_INNERMOST_TEMPLATE_PARMS (tmpl),
|
||
CLASSTYPE_TI_ARGS (t));
|
||
tree id = get_identifier (mangled_name);
|
||
IDENTIFIER_TEMPLATE (id) = name;
|
||
return id;
|
||
}
|
||
}
|
||
|
||
return TYPE_IDENTIFIER (t);
|
||
}
|
||
|
||
static void
|
||
add_pending_template (d)
|
||
tree d;
|
||
{
|
||
tree ti;
|
||
|
||
if (TREE_CODE_CLASS (TREE_CODE (d)) == 't')
|
||
ti = CLASSTYPE_TEMPLATE_INFO (d);
|
||
else
|
||
ti = DECL_TEMPLATE_INFO (d);
|
||
|
||
if (TI_PENDING_TEMPLATE_FLAG (ti))
|
||
return;
|
||
|
||
*template_tail = perm_tree_cons
|
||
(build_srcloc_here (), d, NULL_TREE);
|
||
template_tail = &TREE_CHAIN (*template_tail);
|
||
TI_PENDING_TEMPLATE_FLAG (ti) = 1;
|
||
}
|
||
|
||
|
||
/* Return a TEMPLATE_ID_EXPR corresponding to the indicated FNS (which
|
||
may be either a _DECL or an overloaded function or an
|
||
IDENTIFIER_NODE), and ARGLIST. */
|
||
|
||
tree
|
||
lookup_template_function (fns, arglist)
|
||
tree fns, arglist;
|
||
{
|
||
tree type;
|
||
|
||
if (fns == NULL_TREE)
|
||
{
|
||
cp_error ("non-template used as template");
|
||
return error_mark_node;
|
||
}
|
||
|
||
type = TREE_TYPE (fns);
|
||
if (TREE_CODE (fns) == OVERLOAD || !type)
|
||
type = unknown_type_node;
|
||
|
||
if (processing_template_decl)
|
||
return build_min (TEMPLATE_ID_EXPR, type, fns, arglist);
|
||
else
|
||
return build (TEMPLATE_ID_EXPR, type, fns, arglist);
|
||
}
|
||
|
||
/* Within the scope of a template class S<T>, the name S gets bound
|
||
(in build_self_reference) to a TYPE_DECL for the class, not a
|
||
TEMPLATE_DECL. If DECL is a TYPE_DECL for current_class_type,
|
||
or one of its enclosing classes, and that type is a template,
|
||
return the associated TEMPLATE_DECL. Otherwise, the original
|
||
DECL is returned. */
|
||
|
||
static tree
|
||
maybe_get_template_decl_from_type_decl (decl)
|
||
tree decl;
|
||
{
|
||
return (decl != NULL_TREE
|
||
&& TREE_CODE (decl) == TYPE_DECL
|
||
&& DECL_ARTIFICIAL (decl)
|
||
&& CLASS_TYPE_P (TREE_TYPE (decl))
|
||
&& CLASSTYPE_TEMPLATE_INFO (TREE_TYPE (decl)))
|
||
? CLASSTYPE_TI_TEMPLATE (TREE_TYPE (decl)) : decl;
|
||
}
|
||
|
||
/* Given an IDENTIFIER_NODE (type TEMPLATE_DECL) and a chain of
|
||
parameters, find the desired type.
|
||
|
||
D1 is the PTYPENAME terminal, and ARGLIST is the list of arguments.
|
||
(Actually ARGLIST may be either a TREE_LIST or a TREE_VEC. It will
|
||
be a TREE_LIST if called directly from the parser, and a TREE_VEC
|
||
otherwise.) Since ARGLIST is build on the decl_obstack, we must
|
||
copy it here to keep it from being reclaimed when the decl storage
|
||
is reclaimed.
|
||
|
||
IN_DECL, if non-NULL, is the template declaration we are trying to
|
||
instantiate.
|
||
|
||
If ENTERING_SCOPE is non-zero, we are about to enter the scope of
|
||
the class we are looking up.
|
||
|
||
If the template class is really a local class in a template
|
||
function, then the FUNCTION_CONTEXT is the function in which it is
|
||
being instantiated. */
|
||
|
||
tree
|
||
lookup_template_class (d1, arglist, in_decl, context, entering_scope)
|
||
tree d1, arglist;
|
||
tree in_decl;
|
||
tree context;
|
||
int entering_scope;
|
||
{
|
||
tree template = NULL_TREE, parmlist;
|
||
tree t;
|
||
|
||
if (TREE_CODE (d1) == IDENTIFIER_NODE)
|
||
{
|
||
if (IDENTIFIER_VALUE (d1)
|
||
&& DECL_TEMPLATE_TEMPLATE_PARM_P (IDENTIFIER_VALUE (d1)))
|
||
template = IDENTIFIER_VALUE (d1);
|
||
else
|
||
{
|
||
if (context)
|
||
push_decl_namespace (context);
|
||
if (current_class_type != NULL_TREE)
|
||
template =
|
||
maybe_get_template_decl_from_type_decl
|
||
(IDENTIFIER_CLASS_VALUE (d1));
|
||
if (template == NULL_TREE)
|
||
template = lookup_name_nonclass (d1);
|
||
if (context)
|
||
pop_decl_namespace ();
|
||
}
|
||
if (template)
|
||
context = DECL_CONTEXT (template);
|
||
}
|
||
else if (TREE_CODE (d1) == TYPE_DECL && IS_AGGR_TYPE (TREE_TYPE (d1)))
|
||
{
|
||
tree type = TREE_TYPE (d1);
|
||
|
||
/* If we are declaring a constructor, say A<T>::A<T>, we will get
|
||
an implicit typename for the second A. Deal with it. */
|
||
if (TREE_CODE (type) == TYPENAME_TYPE && TREE_TYPE (type))
|
||
type = TREE_TYPE (type);
|
||
|
||
if (CLASSTYPE_TEMPLATE_INFO (type))
|
||
{
|
||
template = CLASSTYPE_TI_TEMPLATE (type);
|
||
d1 = DECL_NAME (template);
|
||
}
|
||
}
|
||
else if (TREE_CODE (d1) == ENUMERAL_TYPE
|
||
|| (TREE_CODE_CLASS (TREE_CODE (d1)) == 't'
|
||
&& IS_AGGR_TYPE (d1)))
|
||
{
|
||
template = TYPE_TI_TEMPLATE (d1);
|
||
d1 = DECL_NAME (template);
|
||
}
|
||
else if (TREE_CODE (d1) == TEMPLATE_DECL
|
||
&& TREE_CODE (DECL_RESULT (d1)) == TYPE_DECL)
|
||
{
|
||
template = d1;
|
||
d1 = DECL_NAME (template);
|
||
context = DECL_CONTEXT (template);
|
||
}
|
||
else
|
||
my_friendly_abort (272);
|
||
|
||
/* With something like `template <class T> class X class X { ... };'
|
||
we could end up with D1 having nothing but an IDENTIFIER_VALUE.
|
||
We don't want to do that, but we have to deal with the situation,
|
||
so let's give them some syntax errors to chew on instead of a
|
||
crash. */
|
||
if (! template)
|
||
{
|
||
cp_error ("`%T' is not a template", d1);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (context == NULL_TREE)
|
||
context = global_namespace;
|
||
|
||
if (TREE_CODE (template) != TEMPLATE_DECL)
|
||
{
|
||
cp_error ("non-template type `%T' used as a template", d1);
|
||
if (in_decl)
|
||
cp_error_at ("for template declaration `%D'", in_decl);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (DECL_TEMPLATE_TEMPLATE_PARM_P (template))
|
||
{
|
||
/* Create a new TEMPLATE_DECL and TEMPLATE_TEMPLATE_PARM node to store
|
||
template arguments */
|
||
|
||
tree parm = copy_template_template_parm (TREE_TYPE (template));
|
||
tree template2 = TYPE_STUB_DECL (parm);
|
||
tree arglist2;
|
||
|
||
parmlist = DECL_INNERMOST_TEMPLATE_PARMS (template);
|
||
|
||
arglist2 = coerce_template_parms (parmlist, arglist, template, 1, 1);
|
||
if (arglist2 == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
arglist2 = copy_to_permanent (arglist2);
|
||
TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (parm)
|
||
= perm_tree_cons (template2, arglist2, NULL_TREE);
|
||
TYPE_SIZE (parm) = 0;
|
||
return parm;
|
||
}
|
||
else
|
||
{
|
||
tree template_type = TREE_TYPE (template);
|
||
tree gen_tmpl;
|
||
tree type_decl;
|
||
tree found = NULL_TREE;
|
||
int arg_depth;
|
||
int parm_depth;
|
||
int is_partial_instantiation;
|
||
|
||
gen_tmpl = most_general_template (template);
|
||
parmlist = DECL_TEMPLATE_PARMS (gen_tmpl);
|
||
parm_depth = TMPL_PARMS_DEPTH (parmlist);
|
||
arg_depth = TMPL_ARGS_DEPTH (arglist);
|
||
|
||
/* We build up the coerced arguments and such on the
|
||
momentary_obstack. */
|
||
push_momentary ();
|
||
|
||
if (arg_depth == 1 && parm_depth > 1)
|
||
{
|
||
/* We've been given an incomplete set of template arguments.
|
||
For example, given:
|
||
|
||
template <class T> struct S1 {
|
||
template <class U> struct S2 {};
|
||
template <class U> struct S2<U*> {};
|
||
};
|
||
|
||
we will be called with an ARGLIST of `U*', but the
|
||
TEMPLATE will be `template <class T> template
|
||
<class U> struct S1<T>::S2'. We must fill in the missing
|
||
arguments. */
|
||
arglist
|
||
= add_outermost_template_args (TYPE_TI_ARGS (TREE_TYPE (template)),
|
||
arglist);
|
||
arg_depth = TMPL_ARGS_DEPTH (arglist);
|
||
}
|
||
|
||
/* Now we should enough arguments. */
|
||
my_friendly_assert (parm_depth == arg_depth, 0);
|
||
|
||
/* From here on, we're only interested in the most general
|
||
template. */
|
||
template = gen_tmpl;
|
||
|
||
/* Calculate the BOUND_ARGS. These will be the args that are
|
||
actually tsubst'd into the definition to create the
|
||
instantiation. */
|
||
if (parm_depth > 1)
|
||
{
|
||
/* We have multiple levels of arguments to coerce, at once. */
|
||
int i;
|
||
int saved_depth = TMPL_ARGS_DEPTH (arglist);
|
||
|
||
tree bound_args = make_temp_vec (parm_depth);
|
||
|
||
for (i = saved_depth,
|
||
t = DECL_TEMPLATE_PARMS (template);
|
||
i > 0 && t != NULL_TREE;
|
||
--i, t = TREE_CHAIN (t))
|
||
{
|
||
tree a = coerce_template_parms (TREE_VALUE (t),
|
||
arglist, template, 1, 1);
|
||
SET_TMPL_ARGS_LEVEL (bound_args, i, a);
|
||
|
||
/* We temporarily reduce the length of the ARGLIST so
|
||
that coerce_template_parms will see only the arguments
|
||
corresponding to the template parameters it is
|
||
examining. */
|
||
TREE_VEC_LENGTH (arglist)--;
|
||
}
|
||
|
||
/* Restore the ARGLIST to its full size. */
|
||
TREE_VEC_LENGTH (arglist) = saved_depth;
|
||
|
||
arglist = bound_args;
|
||
}
|
||
else
|
||
arglist
|
||
= coerce_template_parms (INNERMOST_TEMPLATE_PARMS (parmlist),
|
||
innermost_args (arglist),
|
||
template, 1, 1);
|
||
|
||
if (arglist == error_mark_node)
|
||
/* We were unable to bind the arguments. */
|
||
return error_mark_node;
|
||
|
||
/* In the scope of a template class, explicit references to the
|
||
template class refer to the type of the template, not any
|
||
instantiation of it. For example, in:
|
||
|
||
template <class T> class C { void f(C<T>); }
|
||
|
||
the `C<T>' is just the same as `C'. Outside of the
|
||
class, however, such a reference is an instantiation. */
|
||
if (comp_template_args (TYPE_TI_ARGS (template_type),
|
||
arglist))
|
||
{
|
||
found = template_type;
|
||
|
||
if (!entering_scope && PRIMARY_TEMPLATE_P (template))
|
||
{
|
||
tree ctx;
|
||
|
||
/* Note that we use DECL_CONTEXT, rather than
|
||
CP_DECL_CONTEXT, so that the termination test is
|
||
always just `ctx'. We're not interested in namepace
|
||
scopes. */
|
||
for (ctx = current_class_type;
|
||
ctx;
|
||
ctx = (TREE_CODE_CLASS (TREE_CODE (ctx)) == 't')
|
||
? TYPE_CONTEXT (ctx) : DECL_CONTEXT (ctx))
|
||
if (same_type_p (ctx, template_type))
|
||
break;
|
||
|
||
if (!ctx)
|
||
/* We're not in the scope of the class, so the
|
||
TEMPLATE_TYPE is not the type we want after
|
||
all. */
|
||
found = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
if (!found)
|
||
{
|
||
for (found = DECL_TEMPLATE_INSTANTIATIONS (template);
|
||
found; found = TREE_CHAIN (found))
|
||
if (comp_template_args (TREE_PURPOSE (found), arglist))
|
||
break;
|
||
|
||
if (found)
|
||
found = TREE_VALUE (found);
|
||
}
|
||
|
||
if (found)
|
||
{
|
||
pop_momentary ();
|
||
return found;
|
||
}
|
||
|
||
/* Since we didn't find the type, we'll have to create it.
|
||
Since we'll be saving this type on the
|
||
DECL_TEMPLATE_INSTANTIATIONS list, it must be permanent. */
|
||
push_obstacks (&permanent_obstack, &permanent_obstack);
|
||
|
||
/* This type is a "partial instantiation" if any of the template
|
||
arguments still inolve template parameters. Note that we set
|
||
IS_PARTIAL_INSTANTIATION for partial specializations as
|
||
well. */
|
||
is_partial_instantiation = uses_template_parms (arglist);
|
||
|
||
/* Create the type. */
|
||
if (TREE_CODE (template_type) == ENUMERAL_TYPE)
|
||
{
|
||
if (!is_partial_instantiation)
|
||
t = start_enum (TYPE_IDENTIFIER (template_type));
|
||
else
|
||
/* We don't want to call start_enum for this type, since
|
||
the values for the enumeration constants may involve
|
||
template parameters. And, no one should be interested
|
||
in the enumeration constants for such a type. */
|
||
t = make_node (ENUMERAL_TYPE);
|
||
}
|
||
else
|
||
{
|
||
t = make_lang_type (TREE_CODE (template_type));
|
||
CLASSTYPE_DECLARED_CLASS (t)
|
||
= CLASSTYPE_DECLARED_CLASS (template_type);
|
||
CLASSTYPE_GOT_SEMICOLON (t) = 1;
|
||
SET_CLASSTYPE_IMPLICIT_INSTANTIATION (t);
|
||
TYPE_FOR_JAVA (t) = TYPE_FOR_JAVA (template_type);
|
||
}
|
||
|
||
/* If we called start_enum above, this information will already
|
||
be set up. */
|
||
if (!TYPE_NAME (t))
|
||
{
|
||
TYPE_CONTEXT (t) = FROB_CONTEXT (context);
|
||
|
||
/* Create a stub TYPE_DECL for it. */
|
||
type_decl = build_decl (TYPE_DECL, DECL_NAME (template), t);
|
||
SET_DECL_ARTIFICIAL (type_decl);
|
||
DECL_CONTEXT (type_decl) = TYPE_CONTEXT (t);
|
||
DECL_SOURCE_FILE (type_decl)
|
||
= DECL_SOURCE_FILE (TYPE_STUB_DECL (template_type));
|
||
DECL_SOURCE_LINE (type_decl)
|
||
= DECL_SOURCE_LINE (TYPE_STUB_DECL (template_type));
|
||
TYPE_STUB_DECL (t) = TYPE_NAME (t) = type_decl;
|
||
}
|
||
else
|
||
type_decl = TYPE_NAME (t);
|
||
|
||
/* Set up the template information. We have to figure out which
|
||
template is the immediate parent if this is a full
|
||
instantiation. */
|
||
if (parm_depth == 1 || is_partial_instantiation
|
||
|| !PRIMARY_TEMPLATE_P (template))
|
||
/* This case is easy; there are no member templates involved. */
|
||
found = template;
|
||
else
|
||
{
|
||
/* This is a full instantiation of a member template. There
|
||
should be some partial instantiation of which this is an
|
||
instance. */
|
||
|
||
for (found = DECL_TEMPLATE_INSTANTIATIONS (template);
|
||
found; found = TREE_CHAIN (found))
|
||
{
|
||
int success;
|
||
tree tmpl = CLASSTYPE_TI_TEMPLATE (TREE_VALUE (found));
|
||
|
||
/* We only want partial instantiations, here, not
|
||
specializations or full instantiations. */
|
||
if (CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_VALUE (found))
|
||
|| !uses_template_parms (TREE_VALUE (found)))
|
||
continue;
|
||
|
||
/* Temporarily reduce by one the number of levels in the
|
||
ARGLIST and in FOUND so as to avoid comparing the
|
||
last set of arguments. */
|
||
TREE_VEC_LENGTH (arglist)--;
|
||
TREE_VEC_LENGTH (TREE_PURPOSE (found)) --;
|
||
|
||
/* See if the arguments match. If they do, then TMPL is
|
||
the partial instantiation we want. */
|
||
success = comp_template_args (TREE_PURPOSE (found), arglist);
|
||
|
||
/* Restore the argument vectors to their full size. */
|
||
TREE_VEC_LENGTH (arglist)++;
|
||
TREE_VEC_LENGTH (TREE_PURPOSE (found))++;
|
||
|
||
if (success)
|
||
{
|
||
found = tmpl;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!found)
|
||
my_friendly_abort (0);
|
||
}
|
||
|
||
arglist = copy_to_permanent (arglist);
|
||
SET_TYPE_TEMPLATE_INFO (t,
|
||
tree_cons (found, arglist, NULL_TREE));
|
||
DECL_TEMPLATE_INSTANTIATIONS (template)
|
||
= tree_cons (arglist, t,
|
||
DECL_TEMPLATE_INSTANTIATIONS (template));
|
||
|
||
if (TREE_CODE (t) == ENUMERAL_TYPE
|
||
&& !is_partial_instantiation)
|
||
/* Now that the type has been registered on the instantiations
|
||
list, we set up the enumerators. Because the enumeration
|
||
constants may involve the enumeration type itself, we make
|
||
sure to register the type first, and then create the
|
||
constants. That way, doing tsubst_expr for the enumeration
|
||
constants won't result in recursive calls here; we'll find
|
||
the instantiation and exit above. */
|
||
tsubst_enum (template_type, t, arglist);
|
||
|
||
/* We're done with the permanent obstack, now. */
|
||
pop_obstacks ();
|
||
/* We're also done with the momentary allocation we started
|
||
above. */
|
||
pop_momentary ();
|
||
|
||
/* Reset the name of the type, now that CLASSTYPE_TEMPLATE_INFO
|
||
is set up. */
|
||
if (TREE_CODE (t) != ENUMERAL_TYPE)
|
||
DECL_NAME (type_decl) = classtype_mangled_name (t);
|
||
DECL_ASSEMBLER_NAME (type_decl) = DECL_NAME (type_decl);
|
||
if (!is_partial_instantiation)
|
||
{
|
||
DECL_ASSEMBLER_NAME (type_decl)
|
||
= get_identifier (build_overload_name (t, 1, 1));
|
||
|
||
/* For backwards compatibility; code that uses
|
||
-fexternal-templates expects looking up a template to
|
||
instantiate it. I think DDD still relies on this.
|
||
(jason 8/20/1998) */
|
||
if (TREE_CODE (t) != ENUMERAL_TYPE
|
||
&& flag_external_templates
|
||
&& CLASSTYPE_INTERFACE_KNOWN (TREE_TYPE (template))
|
||
&& ! CLASSTYPE_INTERFACE_ONLY (TREE_TYPE (template)))
|
||
add_pending_template (t);
|
||
}
|
||
else
|
||
/* If the type makes use of template parameters, the
|
||
code that generates debugging information will crash. */
|
||
DECL_IGNORED_P (TYPE_STUB_DECL (t)) = 1;
|
||
|
||
return t;
|
||
}
|
||
}
|
||
|
||
/* For each TEMPLATE_TYPE_PARM, TEMPLATE_TEMPLATE_PARM, or
|
||
TEMPLATE_PARM_INDEX in T, call FN with the parameter and the DATA.
|
||
If FN returns non-zero, the iteration is terminated, and
|
||
for_each_template_parm returns 1. Otherwise, the iteration
|
||
continues. If FN never returns a non-zero value, the value
|
||
returned by for_each_template_parm is 0. If FN is NULL, it is
|
||
considered to be the function which always returns 1. */
|
||
|
||
static int
|
||
for_each_template_parm (t, fn, data)
|
||
tree t;
|
||
tree_fn_t fn;
|
||
void* data;
|
||
{
|
||
if (!t)
|
||
return 0;
|
||
|
||
if (TREE_CODE_CLASS (TREE_CODE (t)) == 't'
|
||
&& for_each_template_parm (TYPE_CONTEXT (t), fn, data))
|
||
return 1;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case INDIRECT_REF:
|
||
case COMPONENT_REF:
|
||
/* We assume that the object must be instantiated in order to build
|
||
the COMPONENT_REF, so we test only whether the type of the
|
||
COMPONENT_REF uses template parms. */
|
||
return for_each_template_parm (TREE_TYPE (t), fn, data);
|
||
|
||
case ARRAY_REF:
|
||
case OFFSET_REF:
|
||
return (for_each_template_parm (TREE_OPERAND (t, 0), fn, data)
|
||
|| for_each_template_parm (TREE_OPERAND (t, 1), fn, data));
|
||
|
||
case IDENTIFIER_NODE:
|
||
if (!IDENTIFIER_TEMPLATE (t))
|
||
return 0;
|
||
my_friendly_abort (42);
|
||
|
||
/* aggregates of tree nodes */
|
||
case TREE_VEC:
|
||
{
|
||
int i = TREE_VEC_LENGTH (t);
|
||
while (i--)
|
||
if (for_each_template_parm (TREE_VEC_ELT (t, i), fn, data))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
case TREE_LIST:
|
||
if (for_each_template_parm (TREE_PURPOSE (t), fn, data)
|
||
|| for_each_template_parm (TREE_VALUE (t), fn, data))
|
||
return 1;
|
||
return for_each_template_parm (TREE_CHAIN (t), fn, data);
|
||
|
||
case OVERLOAD:
|
||
if (for_each_template_parm (OVL_FUNCTION (t), fn, data))
|
||
return 1;
|
||
return for_each_template_parm (OVL_CHAIN (t), fn, data);
|
||
|
||
/* constructed type nodes */
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
return for_each_template_parm (TREE_TYPE (t), fn, data);
|
||
|
||
case RECORD_TYPE:
|
||
if (TYPE_PTRMEMFUNC_FLAG (t))
|
||
return for_each_template_parm (TYPE_PTRMEMFUNC_FN_TYPE (t),
|
||
fn, data);
|
||
/* Fall through. */
|
||
|
||
case UNION_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
if (! TYPE_TEMPLATE_INFO (t))
|
||
return 0;
|
||
return for_each_template_parm (TREE_VALUE
|
||
(TYPE_TEMPLATE_INFO (t)),
|
||
fn, data);
|
||
case METHOD_TYPE:
|
||
if (for_each_template_parm (TYPE_METHOD_BASETYPE (t), fn, data))
|
||
return 1;
|
||
/* Fall through. */
|
||
|
||
case FUNCTION_TYPE:
|
||
/* Check the parameter types. Since default arguments are not
|
||
instantiated until they are needed, the TYPE_ARG_TYPES may
|
||
contain expressions that involve template parameters. But,
|
||
no-one should be looking at them yet. And, once they're
|
||
instantiated, they don't contain template parameters, so
|
||
there's no point in looking at them then, either. */
|
||
{
|
||
tree parm;
|
||
|
||
for (parm = TYPE_ARG_TYPES (t); parm; parm = TREE_CHAIN (parm))
|
||
if (for_each_template_parm (TREE_VALUE (parm), fn, data))
|
||
return 1;
|
||
}
|
||
|
||
/* Check the return type, too. */
|
||
return for_each_template_parm (TREE_TYPE (t), fn, data);
|
||
|
||
case ARRAY_TYPE:
|
||
if (for_each_template_parm (TYPE_DOMAIN (t), fn, data))
|
||
return 1;
|
||
return for_each_template_parm (TREE_TYPE (t), fn, data);
|
||
case OFFSET_TYPE:
|
||
if (for_each_template_parm (TYPE_OFFSET_BASETYPE (t), fn, data))
|
||
return 1;
|
||
return for_each_template_parm (TREE_TYPE (t), fn, data);
|
||
|
||
/* decl nodes */
|
||
case TYPE_DECL:
|
||
return for_each_template_parm (TREE_TYPE (t), fn, data);
|
||
|
||
case TEMPLATE_DECL:
|
||
/* A template template parameter is encountered */
|
||
if (DECL_TEMPLATE_TEMPLATE_PARM_P (t))
|
||
return for_each_template_parm (TREE_TYPE (t), fn, data);
|
||
/* Already substituted template template parameter */
|
||
return 0;
|
||
|
||
case CONST_DECL:
|
||
if (for_each_template_parm (DECL_INITIAL (t), fn, data))
|
||
return 1;
|
||
goto check_type_and_context;
|
||
|
||
case FUNCTION_DECL:
|
||
case VAR_DECL:
|
||
/* ??? What about FIELD_DECLs? */
|
||
if (DECL_LANG_SPECIFIC (t) && DECL_TEMPLATE_INFO (t)
|
||
&& for_each_template_parm (DECL_TI_ARGS (t), fn, data))
|
||
return 1;
|
||
/* fall through */
|
||
case PARM_DECL:
|
||
check_type_and_context:
|
||
if (for_each_template_parm (TREE_TYPE (t), fn, data))
|
||
return 1;
|
||
if (DECL_CONTEXT (t)
|
||
&& for_each_template_parm (DECL_CONTEXT (t), fn, data))
|
||
return 1;
|
||
return 0;
|
||
|
||
case CALL_EXPR:
|
||
return (for_each_template_parm (TREE_OPERAND (t, 0), fn, data)
|
||
|| for_each_template_parm (TREE_OPERAND (t, 1), fn, data));
|
||
|
||
case ADDR_EXPR:
|
||
return for_each_template_parm (TREE_OPERAND (t, 0), fn, data);
|
||
|
||
/* template parm nodes */
|
||
case TEMPLATE_TEMPLATE_PARM:
|
||
/* Record template parameters such as `T' inside `TT<T>'. */
|
||
if (TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t)
|
||
&& for_each_template_parm (TYPE_TI_ARGS (t), fn, data))
|
||
return 1;
|
||
case TEMPLATE_TYPE_PARM:
|
||
case TEMPLATE_PARM_INDEX:
|
||
if (fn)
|
||
return (*fn)(t, data);
|
||
else
|
||
return 1;
|
||
|
||
/* simple type nodes */
|
||
case INTEGER_TYPE:
|
||
if (for_each_template_parm (TYPE_MIN_VALUE (t), fn, data))
|
||
return 1;
|
||
return for_each_template_parm (TYPE_MAX_VALUE (t), fn, data);
|
||
|
||
case REAL_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case VOID_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case NAMESPACE_DECL:
|
||
return 0;
|
||
|
||
/* constants */
|
||
case INTEGER_CST:
|
||
case REAL_CST:
|
||
case STRING_CST:
|
||
return 0;
|
||
|
||
case ERROR_MARK:
|
||
/* Non-error_mark_node ERROR_MARKs are bad things. */
|
||
my_friendly_assert (t == error_mark_node, 274);
|
||
/* NOTREACHED */
|
||
return 0;
|
||
|
||
case LOOKUP_EXPR:
|
||
case TYPENAME_TYPE:
|
||
return 1;
|
||
|
||
case PTRMEM_CST:
|
||
return for_each_template_parm (TREE_TYPE (t), fn, data);
|
||
|
||
case SCOPE_REF:
|
||
return for_each_template_parm (TREE_OPERAND (t, 0), fn, data);
|
||
|
||
case CONSTRUCTOR:
|
||
if (TREE_TYPE (t) && TYPE_PTRMEMFUNC_P (TREE_TYPE (t)))
|
||
return for_each_template_parm (TYPE_PTRMEMFUNC_FN_TYPE
|
||
(TREE_TYPE (t)), fn, data);
|
||
return for_each_template_parm (TREE_OPERAND (t, 1), fn, data);
|
||
|
||
case MODOP_EXPR:
|
||
case CAST_EXPR:
|
||
case REINTERPRET_CAST_EXPR:
|
||
case CONST_CAST_EXPR:
|
||
case STATIC_CAST_EXPR:
|
||
case DYNAMIC_CAST_EXPR:
|
||
case ARROW_EXPR:
|
||
case DOTSTAR_EXPR:
|
||
case TYPEID_EXPR:
|
||
return 1;
|
||
|
||
case SIZEOF_EXPR:
|
||
case ALIGNOF_EXPR:
|
||
return for_each_template_parm (TREE_OPERAND (t, 0), fn, data);
|
||
|
||
default:
|
||
switch (TREE_CODE_CLASS (TREE_CODE (t)))
|
||
{
|
||
case '1':
|
||
case '2':
|
||
case 'e':
|
||
case '<':
|
||
{
|
||
int i;
|
||
for (i = first_rtl_op (TREE_CODE (t)); --i >= 0;)
|
||
if (for_each_template_parm (TREE_OPERAND (t, i), fn, data))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
sorry ("testing %s for template parms",
|
||
tree_code_name [(int) TREE_CODE (t)]);
|
||
my_friendly_abort (82);
|
||
/* NOTREACHED */
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
int
|
||
uses_template_parms (t)
|
||
tree t;
|
||
{
|
||
return for_each_template_parm (t, 0, 0);
|
||
}
|
||
|
||
static struct tinst_level *current_tinst_level;
|
||
static struct tinst_level *free_tinst_level;
|
||
static int tinst_depth;
|
||
extern int max_tinst_depth;
|
||
#ifdef GATHER_STATISTICS
|
||
int depth_reached;
|
||
#endif
|
||
int tinst_level_tick;
|
||
int last_template_error_tick;
|
||
|
||
/* Print out all the template instantiations that we are currently
|
||
working on. If ERR, we are being called from cp_thing, so do
|
||
the right thing for an error message. */
|
||
|
||
static void
|
||
print_template_context (err)
|
||
int err;
|
||
{
|
||
struct tinst_level *p = current_tinst_level;
|
||
int line = lineno;
|
||
char *file = input_filename;
|
||
|
||
if (err && p)
|
||
{
|
||
if (current_function_decl != p->decl
|
||
&& current_function_decl != NULL_TREE)
|
||
/* We can get here during the processing of some synthesized
|
||
method. Then, p->decl will be the function that's causing
|
||
the synthesis. */
|
||
;
|
||
else
|
||
{
|
||
if (current_function_decl == p->decl)
|
||
/* Avoid redundancy with the the "In function" line. */;
|
||
else
|
||
fprintf (stderr, "%s: In instantiation of `%s':\n",
|
||
file, decl_as_string (p->decl, 0));
|
||
|
||
line = p->line;
|
||
file = p->file;
|
||
p = p->next;
|
||
}
|
||
}
|
||
|
||
for (; p; p = p->next)
|
||
{
|
||
fprintf (stderr, "%s:%d: instantiated from `%s'\n", file, line,
|
||
decl_as_string (p->decl, 0));
|
||
line = p->line;
|
||
file = p->file;
|
||
}
|
||
fprintf (stderr, "%s:%d: instantiated from here\n", file, line);
|
||
}
|
||
|
||
/* Called from cp_thing to print the template context for an error. */
|
||
|
||
void
|
||
maybe_print_template_context ()
|
||
{
|
||
if (last_template_error_tick == tinst_level_tick
|
||
|| current_tinst_level == 0)
|
||
return;
|
||
|
||
last_template_error_tick = tinst_level_tick;
|
||
print_template_context (1);
|
||
}
|
||
|
||
static int
|
||
push_tinst_level (d)
|
||
tree d;
|
||
{
|
||
struct tinst_level *new;
|
||
|
||
if (tinst_depth >= max_tinst_depth)
|
||
{
|
||
/* If the instantiation in question still has unbound template parms,
|
||
we don't really care if we can't instantiate it, so just return.
|
||
This happens with base instantiation for implicit `typename'. */
|
||
if (uses_template_parms (d))
|
||
return 0;
|
||
|
||
last_template_error_tick = tinst_level_tick;
|
||
error ("template instantiation depth exceeds maximum of %d",
|
||
max_tinst_depth);
|
||
error (" (use -ftemplate-depth-NN to increase the maximum)");
|
||
cp_error (" instantiating `%D'", d);
|
||
|
||
print_template_context (0);
|
||
|
||
return 0;
|
||
}
|
||
|
||
if (free_tinst_level)
|
||
{
|
||
new = free_tinst_level;
|
||
free_tinst_level = new->next;
|
||
}
|
||
else
|
||
new = (struct tinst_level *) xmalloc (sizeof (struct tinst_level));
|
||
|
||
new->decl = d;
|
||
new->line = lineno;
|
||
new->file = input_filename;
|
||
new->next = current_tinst_level;
|
||
current_tinst_level = new;
|
||
|
||
++tinst_depth;
|
||
#ifdef GATHER_STATISTICS
|
||
if (tinst_depth > depth_reached)
|
||
depth_reached = tinst_depth;
|
||
#endif
|
||
|
||
++tinst_level_tick;
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
pop_tinst_level ()
|
||
{
|
||
struct tinst_level *old = current_tinst_level;
|
||
|
||
/* Restore the filename and line number stashed away when we started
|
||
this instantiation. */
|
||
lineno = old->line;
|
||
input_filename = old->file;
|
||
extract_interface_info ();
|
||
|
||
current_tinst_level = old->next;
|
||
old->next = free_tinst_level;
|
||
free_tinst_level = old;
|
||
--tinst_depth;
|
||
++tinst_level_tick;
|
||
}
|
||
|
||
struct tinst_level *
|
||
tinst_for_decl ()
|
||
{
|
||
struct tinst_level *p = current_tinst_level;
|
||
|
||
if (p)
|
||
for (; p->next ; p = p->next )
|
||
;
|
||
return p;
|
||
}
|
||
|
||
/* DECL is a friend FUNCTION_DECL or TEMPLATE_DECL. ARGS is the
|
||
vector of template arguments, as for tsubst.
|
||
|
||
Returns an appropriate tsbust'd friend declaration. */
|
||
|
||
static tree
|
||
tsubst_friend_function (decl, args)
|
||
tree decl;
|
||
tree args;
|
||
{
|
||
tree new_friend;
|
||
int line = lineno;
|
||
char *file = input_filename;
|
||
|
||
lineno = DECL_SOURCE_LINE (decl);
|
||
input_filename = DECL_SOURCE_FILE (decl);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& DECL_TEMPLATE_INSTANTIATION (decl)
|
||
&& TREE_CODE (DECL_TI_TEMPLATE (decl)) != TEMPLATE_DECL)
|
||
/* This was a friend declared with an explicit template
|
||
argument list, e.g.:
|
||
|
||
friend void f<>(T);
|
||
|
||
to indicate that f was a template instantiation, not a new
|
||
function declaration. Now, we have to figure out what
|
||
instantiation of what template. */
|
||
{
|
||
tree template_id;
|
||
tree new_args;
|
||
tree tmpl;
|
||
|
||
template_id
|
||
= lookup_template_function (tsubst_expr (DECL_TI_TEMPLATE (decl),
|
||
args, /*complain=*/1,
|
||
NULL_TREE),
|
||
tsubst (DECL_TI_ARGS (decl),
|
||
args, /*complain=*/1,
|
||
NULL_TREE));
|
||
/* FIXME: The decl we create via the next tsubst could be
|
||
created on a temporary obstack. */
|
||
new_friend = tsubst (decl, args, /*complain=*/1, NULL_TREE);
|
||
tmpl = determine_specialization (template_id, new_friend,
|
||
&new_args,
|
||
/*need_member_template=*/0);
|
||
new_friend = instantiate_template (tmpl, new_args);
|
||
goto done;
|
||
}
|
||
|
||
new_friend = tsubst (decl, args, /*complain=*/1, NULL_TREE);
|
||
|
||
/* The NEW_FRIEND will look like an instantiation, to the
|
||
compiler, but is not an instantiation from the point of view of
|
||
the language. For example, we might have had:
|
||
|
||
template <class T> struct S {
|
||
template <class U> friend void f(T, U);
|
||
};
|
||
|
||
Then, in S<int>, template <class U> void f(int, U) is not an
|
||
instantiation of anything. */
|
||
DECL_USE_TEMPLATE (new_friend) = 0;
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
||
DECL_USE_TEMPLATE (DECL_TEMPLATE_RESULT (new_friend)) = 0;
|
||
|
||
/* The mangled name for the NEW_FRIEND is incorrect. The call to
|
||
tsubst will have resulted in a call to
|
||
set_mangled_name_for_template_decl. But, the function is not a
|
||
template instantiation and should not be mangled like one.
|
||
Therefore, we remangle the function name. We don't have to do
|
||
this if the NEW_FRIEND is a template since
|
||
set_mangled_name_for_template_decl doesn't do anything if the
|
||
function declaration still uses template arguments. */
|
||
if (TREE_CODE (new_friend) != TEMPLATE_DECL)
|
||
{
|
||
set_mangled_name_for_decl (new_friend);
|
||
DECL_RTL (new_friend) = 0;
|
||
make_decl_rtl (new_friend, NULL_PTR, 1);
|
||
}
|
||
|
||
if (DECL_NAMESPACE_SCOPE_P (new_friend))
|
||
{
|
||
tree old_decl;
|
||
tree new_friend_template_info;
|
||
tree new_friend_result_template_info;
|
||
int new_friend_is_defn;
|
||
|
||
/* We must save some information from NEW_FRIEND before calling
|
||
duplicate decls since that function will free NEW_FRIEND if
|
||
possible. */
|
||
new_friend_template_info = DECL_TEMPLATE_INFO (new_friend);
|
||
if (TREE_CODE (new_friend) == TEMPLATE_DECL)
|
||
{
|
||
/* This declaration is a `primary' template. */
|
||
DECL_PRIMARY_TEMPLATE (new_friend) = new_friend;
|
||
|
||
new_friend_is_defn
|
||
= DECL_INITIAL (DECL_RESULT (new_friend)) != NULL_TREE;
|
||
new_friend_result_template_info
|
||
= DECL_TEMPLATE_INFO (DECL_RESULT (new_friend));
|
||
}
|
||
else
|
||
{
|
||
new_friend_is_defn = DECL_INITIAL (new_friend) != NULL_TREE;
|
||
new_friend_result_template_info = NULL_TREE;
|
||
}
|
||
|
||
old_decl = pushdecl_namespace_level (new_friend);
|
||
|
||
if (old_decl != new_friend)
|
||
{
|
||
/* This new friend declaration matched an existing
|
||
declaration. For example, given:
|
||
|
||
template <class T> void f(T);
|
||
template <class U> class C {
|
||
template <class T> friend void f(T) {}
|
||
};
|
||
|
||
the friend declaration actually provides the definition
|
||
of `f', once C has been instantiated for some type. So,
|
||
old_decl will be the out-of-class template declaration,
|
||
while new_friend is the in-class definition.
|
||
|
||
But, if `f' was called before this point, the
|
||
instantiation of `f' will have DECL_TI_ARGS corresponding
|
||
to `T' but not to `U', references to which might appear
|
||
in the definition of `f'. Previously, the most general
|
||
template for an instantiation of `f' was the out-of-class
|
||
version; now it is the in-class version. Therefore, we
|
||
run through all specialization of `f', adding to their
|
||
DECL_TI_ARGS appropriately. In particular, they need a
|
||
new set of outer arguments, corresponding to the
|
||
arguments for this class instantiation.
|
||
|
||
The same situation can arise with something like this:
|
||
|
||
friend void f(int);
|
||
template <class T> class C {
|
||
friend void f(T) {}
|
||
};
|
||
|
||
when `C<int>' is instantiated. Now, `f(int)' is defined
|
||
in the class. */
|
||
|
||
if (!new_friend_is_defn)
|
||
/* On the other hand, if the in-class declaration does
|
||
*not* provide a definition, then we don't want to alter
|
||
existing definitions. We can just leave everything
|
||
alone. */
|
||
;
|
||
else
|
||
{
|
||
/* Overwrite whatever template info was there before, if
|
||
any, with the new template information pertaining to
|
||
the declaration. */
|
||
DECL_TEMPLATE_INFO (old_decl) = new_friend_template_info;
|
||
|
||
if (TREE_CODE (old_decl) != TEMPLATE_DECL)
|
||
/* duplicate_decls will take care of this case. */
|
||
;
|
||
else
|
||
{
|
||
tree t;
|
||
tree new_friend_args;
|
||
|
||
DECL_TEMPLATE_INFO (DECL_RESULT (old_decl))
|
||
= new_friend_result_template_info;
|
||
|
||
new_friend_args = TI_ARGS (new_friend_template_info);
|
||
for (t = DECL_TEMPLATE_SPECIALIZATIONS (old_decl);
|
||
t != NULL_TREE;
|
||
t = TREE_CHAIN (t))
|
||
{
|
||
tree spec = TREE_VALUE (t);
|
||
|
||
DECL_TI_ARGS (spec)
|
||
= add_outermost_template_args (new_friend_args,
|
||
DECL_TI_ARGS (spec));
|
||
DECL_TI_ARGS (spec)
|
||
= copy_to_permanent (DECL_TI_ARGS (spec));
|
||
}
|
||
|
||
/* Now, since specializations are always supposed to
|
||
hang off of the most general template, we must move
|
||
them. */
|
||
t = most_general_template (old_decl);
|
||
if (t != old_decl)
|
||
{
|
||
DECL_TEMPLATE_SPECIALIZATIONS (t)
|
||
= chainon (DECL_TEMPLATE_SPECIALIZATIONS (t),
|
||
DECL_TEMPLATE_SPECIALIZATIONS (old_decl));
|
||
DECL_TEMPLATE_SPECIALIZATIONS (old_decl) = NULL_TREE;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The information from NEW_FRIEND has been merged into OLD_DECL
|
||
by duplicate_decls. */
|
||
new_friend = old_decl;
|
||
}
|
||
}
|
||
else if (TYPE_SIZE (DECL_CONTEXT (new_friend)))
|
||
{
|
||
/* Check to see that the declaration is really present, and,
|
||
possibly obtain an improved declaration. */
|
||
tree fn = check_classfn (DECL_CONTEXT (new_friend),
|
||
new_friend);
|
||
|
||
if (fn)
|
||
new_friend = fn;
|
||
}
|
||
|
||
done:
|
||
lineno = line;
|
||
input_filename = file;
|
||
return new_friend;
|
||
}
|
||
|
||
/* FRIEND_TMPL is a friend TEMPLATE_DECL. ARGS is the vector of
|
||
template arguments, as for tsubst.
|
||
|
||
Returns an appropriate tsbust'd friend type. */
|
||
|
||
static tree
|
||
tsubst_friend_class (friend_tmpl, args)
|
||
tree friend_tmpl;
|
||
tree args;
|
||
{
|
||
tree friend_type;
|
||
tree tmpl;
|
||
|
||
/* First, we look for a class template. */
|
||
tmpl = lookup_name (DECL_NAME (friend_tmpl), /*prefer_type=*/0);
|
||
|
||
/* But, if we don't find one, it might be because we're in a
|
||
situation like this:
|
||
|
||
template <class T>
|
||
struct S {
|
||
template <class U>
|
||
friend struct S;
|
||
};
|
||
|
||
Here, in the scope of (say) S<int>, `S' is bound to a TYPE_DECL
|
||
for `S<int>', not the TEMPLATE_DECL. */
|
||
if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl))
|
||
{
|
||
tmpl = lookup_name (DECL_NAME (friend_tmpl), /*prefer_type=*/1);
|
||
tmpl = maybe_get_template_decl_from_type_decl (tmpl);
|
||
}
|
||
|
||
if (tmpl && DECL_CLASS_TEMPLATE_P (tmpl))
|
||
{
|
||
/* The friend template has already been declared. Just
|
||
check to see that the declarations match, and install any new
|
||
default parameters. We must tsubst the default parameters,
|
||
of course. We only need the innermost template parameters
|
||
because that is all that redeclare_class_template will look
|
||
at. */
|
||
tree parms
|
||
= tsubst_template_parms (DECL_TEMPLATE_PARMS (friend_tmpl),
|
||
args, /*complain=*/1);
|
||
redeclare_class_template (TREE_TYPE (tmpl), parms);
|
||
friend_type = TREE_TYPE (tmpl);
|
||
}
|
||
else
|
||
{
|
||
/* The friend template has not already been declared. In this
|
||
case, the instantiation of the template class will cause the
|
||
injection of this template into the global scope. */
|
||
tmpl = tsubst (friend_tmpl, args, /*complain=*/1, NULL_TREE);
|
||
|
||
/* The new TMPL is not an instantiation of anything, so we
|
||
forget its origins. We don't reset CLASSTYPE_TI_TEMPLATE for
|
||
the new type because that is supposed to be the corresponding
|
||
template decl, i.e., TMPL. */
|
||
DECL_USE_TEMPLATE (tmpl) = 0;
|
||
DECL_TEMPLATE_INFO (tmpl) = NULL_TREE;
|
||
CLASSTYPE_USE_TEMPLATE (TREE_TYPE (tmpl)) = 0;
|
||
|
||
/* Inject this template into the global scope. */
|
||
friend_type = TREE_TYPE (pushdecl_top_level (tmpl));
|
||
}
|
||
|
||
return friend_type;
|
||
}
|
||
|
||
static int
|
||
has_pvbases_p (t, pattern)
|
||
tree t, pattern;
|
||
{
|
||
if (!TYPE_USES_VIRTUAL_BASECLASSES (t))
|
||
return 0;
|
||
|
||
if (TYPE_USES_PVBASES (pattern))
|
||
return 1;
|
||
|
||
for (t = CLASSTYPE_VBASECLASSES (t); t; t = TREE_CHAIN (t))
|
||
if (TYPE_VIRTUAL_P (BINFO_TYPE (t)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
tree
|
||
instantiate_class_template (type)
|
||
tree type;
|
||
{
|
||
tree template, args, pattern, t;
|
||
tree typedecl;
|
||
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (TYPE_BEING_DEFINED (type) || TYPE_SIZE (type))
|
||
return type;
|
||
|
||
/* We want to allocate temporary vectors of template arguments and
|
||
template argument expressions on the momentary obstack, not on
|
||
the expression obstack. Otherwise, all the space allocated in
|
||
argument coercion and such is simply lost. */
|
||
push_momentary ();
|
||
|
||
/* Figure out which template is being instantiated. */
|
||
template = most_general_template (CLASSTYPE_TI_TEMPLATE (type));
|
||
my_friendly_assert (TREE_CODE (template) == TEMPLATE_DECL, 279);
|
||
|
||
/* Figure out which arguments are being used to do the
|
||
instantiation. */
|
||
args = CLASSTYPE_TI_ARGS (type);
|
||
PARTIAL_INSTANTIATION_P (type) = uses_template_parms (args);
|
||
|
||
if (pedantic && PARTIAL_INSTANTIATION_P (type))
|
||
/* If this is a partial instantiation, then we can't instantiate
|
||
the type; there's no telling whether or not one of the
|
||
template parameters might eventually be instantiated to some
|
||
value that results in a specialization being used. For
|
||
example, consider:
|
||
|
||
template <class T>
|
||
struct S {};
|
||
|
||
template <class U>
|
||
void f(S<U>);
|
||
|
||
template <>
|
||
struct S<int> {};
|
||
|
||
Now, the `S<U>' in `f<int>' is the specialization, not an
|
||
instantiation of the original template. */
|
||
goto end;
|
||
|
||
/* Determine what specialization of the original template to
|
||
instantiate. */
|
||
if (PARTIAL_INSTANTIATION_P (type))
|
||
/* There's no telling which specialization is appropriate at this
|
||
point. Since all peeking at the innards of this partial
|
||
instantiation are extensions (like the "implicit typename"
|
||
extension, which allows users to omit the keyword `typename' on
|
||
names that are declared as types in template base classes), we
|
||
are free to do what we please.
|
||
|
||
Trying to figure out which partial instantiation to use can
|
||
cause a crash. (Some of the template arguments don't even have
|
||
types.) So, we just use the most general version. */
|
||
t = NULL_TREE;
|
||
else
|
||
{
|
||
t = most_specialized_class (template, args);
|
||
|
||
if (t == error_mark_node)
|
||
{
|
||
const char *str = "candidates are:";
|
||
cp_error ("ambiguous class template instantiation for `%#T'", type);
|
||
for (t = DECL_TEMPLATE_SPECIALIZATIONS (template); t;
|
||
t = TREE_CHAIN (t))
|
||
{
|
||
if (get_class_bindings (TREE_VALUE (t), TREE_PURPOSE (t),
|
||
args))
|
||
{
|
||
cp_error_at ("%s %+#T", str, TREE_TYPE (t));
|
||
str = " ";
|
||
}
|
||
}
|
||
TYPE_BEING_DEFINED (type) = 1;
|
||
type = error_mark_node;
|
||
goto end;
|
||
}
|
||
}
|
||
|
||
if (t)
|
||
pattern = TREE_TYPE (t);
|
||
else
|
||
pattern = TREE_TYPE (template);
|
||
|
||
/* If the template we're instantiating is incomplete, then clearly
|
||
there's nothing we can do. */
|
||
if (TYPE_SIZE (pattern) == NULL_TREE)
|
||
goto end;
|
||
|
||
/* If this is a partial instantiation, don't tsubst anything. We will
|
||
only use this type for implicit typename, so the actual contents don't
|
||
matter. All that matters is whether a particular name is a type. */
|
||
if (PARTIAL_INSTANTIATION_P (type))
|
||
{
|
||
/* The fields set here must be kept in sync with those cleared
|
||
in begin_class_definition. */
|
||
TYPE_BINFO_BASETYPES (type) = TYPE_BINFO_BASETYPES (pattern);
|
||
TYPE_FIELDS (type) = TYPE_FIELDS (pattern);
|
||
TYPE_METHODS (type) = TYPE_METHODS (pattern);
|
||
CLASSTYPE_TAGS (type) = CLASSTYPE_TAGS (pattern);
|
||
/* Pretend that the type is complete, so that we will look
|
||
inside it during name lookup and such. */
|
||
TYPE_SIZE (type) = integer_zero_node;
|
||
goto end;
|
||
}
|
||
|
||
/* If we've recursively instantiated too many templates, stop. */
|
||
if (! push_tinst_level (type))
|
||
goto end;
|
||
|
||
/* Now we're really doing the instantiation. Mark the type as in
|
||
the process of being defined. */
|
||
TYPE_BEING_DEFINED (type) = 1;
|
||
|
||
maybe_push_to_top_level (uses_template_parms (type));
|
||
|
||
if (t)
|
||
{
|
||
/* This TYPE is actually a instantiation of of a partial
|
||
specialization. We replace the innermost set of ARGS with
|
||
the arguments appropriate for substitution. For example,
|
||
given:
|
||
|
||
template <class T> struct S {};
|
||
template <class T> struct S<T*> {};
|
||
|
||
and supposing that we are instantiating S<int*>, ARGS will
|
||
present be {int*} but we need {int}. */
|
||
tree inner_args
|
||
= get_class_bindings (TREE_VALUE (t), TREE_PURPOSE (t),
|
||
args);
|
||
|
||
/* If there were multiple levels in ARGS, replacing the
|
||
innermost level would alter CLASSTYPE_TI_ARGS, which we don't
|
||
want, so we make a copy first. */
|
||
if (TMPL_ARGS_HAVE_MULTIPLE_LEVELS (args))
|
||
{
|
||
args = copy_node (args);
|
||
SET_TMPL_ARGS_LEVEL (args, TMPL_ARGS_DEPTH (args), inner_args);
|
||
}
|
||
else
|
||
args = inner_args;
|
||
}
|
||
|
||
if (flag_external_templates)
|
||
{
|
||
if (flag_alt_external_templates)
|
||
{
|
||
CLASSTYPE_INTERFACE_ONLY (type) = interface_only;
|
||
SET_CLASSTYPE_INTERFACE_UNKNOWN_X (type, interface_unknown);
|
||
CLASSTYPE_VTABLE_NEEDS_WRITING (type)
|
||
= (! CLASSTYPE_INTERFACE_ONLY (type)
|
||
&& CLASSTYPE_INTERFACE_KNOWN (type));
|
||
}
|
||
else
|
||
{
|
||
CLASSTYPE_INTERFACE_ONLY (type) = CLASSTYPE_INTERFACE_ONLY (pattern);
|
||
SET_CLASSTYPE_INTERFACE_UNKNOWN_X
|
||
(type, CLASSTYPE_INTERFACE_UNKNOWN (pattern));
|
||
CLASSTYPE_VTABLE_NEEDS_WRITING (type)
|
||
= (! CLASSTYPE_INTERFACE_ONLY (type)
|
||
&& CLASSTYPE_INTERFACE_KNOWN (type));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
SET_CLASSTYPE_INTERFACE_UNKNOWN (type);
|
||
CLASSTYPE_VTABLE_NEEDS_WRITING (type) = 1;
|
||
}
|
||
|
||
TYPE_HAS_CONSTRUCTOR (type) = TYPE_HAS_CONSTRUCTOR (pattern);
|
||
TYPE_HAS_DESTRUCTOR (type) = TYPE_HAS_DESTRUCTOR (pattern);
|
||
TYPE_OVERLOADS_CALL_EXPR (type) = TYPE_OVERLOADS_CALL_EXPR (pattern);
|
||
TYPE_OVERLOADS_ARRAY_REF (type) = TYPE_OVERLOADS_ARRAY_REF (pattern);
|
||
TYPE_OVERLOADS_ARROW (type) = TYPE_OVERLOADS_ARROW (pattern);
|
||
TYPE_GETS_NEW (type) = TYPE_GETS_NEW (pattern);
|
||
TYPE_GETS_DELETE (type) = TYPE_GETS_DELETE (pattern);
|
||
TYPE_VEC_DELETE_TAKES_SIZE (type) = TYPE_VEC_DELETE_TAKES_SIZE (pattern);
|
||
TYPE_HAS_ASSIGN_REF (type) = TYPE_HAS_ASSIGN_REF (pattern);
|
||
TYPE_HAS_CONST_ASSIGN_REF (type) = TYPE_HAS_CONST_ASSIGN_REF (pattern);
|
||
TYPE_HAS_ABSTRACT_ASSIGN_REF (type) = TYPE_HAS_ABSTRACT_ASSIGN_REF (pattern);
|
||
TYPE_HAS_INIT_REF (type) = TYPE_HAS_INIT_REF (pattern);
|
||
TYPE_HAS_CONST_INIT_REF (type) = TYPE_HAS_CONST_INIT_REF (pattern);
|
||
TYPE_HAS_DEFAULT_CONSTRUCTOR (type) = TYPE_HAS_DEFAULT_CONSTRUCTOR (pattern);
|
||
TYPE_HAS_CONVERSION (type) = TYPE_HAS_CONVERSION (pattern);
|
||
TYPE_USES_COMPLEX_INHERITANCE (type)
|
||
= TYPE_USES_COMPLEX_INHERITANCE (pattern);
|
||
TYPE_USES_MULTIPLE_INHERITANCE (type)
|
||
= TYPE_USES_MULTIPLE_INHERITANCE (pattern);
|
||
TYPE_USES_VIRTUAL_BASECLASSES (type)
|
||
= TYPE_USES_VIRTUAL_BASECLASSES (pattern);
|
||
TYPE_PACKED (type) = TYPE_PACKED (pattern);
|
||
TYPE_ALIGN (type) = TYPE_ALIGN (pattern);
|
||
TYPE_FOR_JAVA (type) = TYPE_FOR_JAVA (pattern); /* For libjava's JArray<T> */
|
||
if (ANON_UNION_TYPE_P (pattern))
|
||
SET_ANON_UNION_TYPE_P (type);
|
||
|
||
/* We must copy the arguments to the permanent obstack since
|
||
during the tsubst'ing below they may wind up in the
|
||
DECL_TI_ARGS of some instantiated member template. */
|
||
args = copy_to_permanent (args);
|
||
|
||
if (TYPE_BINFO_BASETYPES (pattern))
|
||
{
|
||
tree base_list = NULL_TREE;
|
||
tree pbases = TYPE_BINFO_BASETYPES (pattern);
|
||
int i;
|
||
|
||
/* Substitute into each of the bases to determine the actual
|
||
basetypes. */
|
||
for (i = 0; i < TREE_VEC_LENGTH (pbases); ++i)
|
||
{
|
||
tree base;
|
||
tree access;
|
||
tree pbase;
|
||
|
||
pbase = TREE_VEC_ELT (pbases, i);
|
||
|
||
/* Substitue to figure out the base class. */
|
||
base = tsubst (BINFO_TYPE (pbase), args,
|
||
/*complain=*/1, NULL_TREE);
|
||
if (base == error_mark_node)
|
||
continue;
|
||
|
||
/* Calculate the correct access node. */
|
||
if (TREE_VIA_VIRTUAL (pbase))
|
||
{
|
||
if (TREE_VIA_PUBLIC (pbase))
|
||
access = access_public_virtual_node;
|
||
else if (TREE_VIA_PROTECTED (pbase))
|
||
access = access_protected_virtual_node;
|
||
else
|
||
access = access_private_virtual_node;
|
||
}
|
||
else
|
||
{
|
||
if (TREE_VIA_PUBLIC (pbase))
|
||
access = access_public_node;
|
||
else if (TREE_VIA_PROTECTED (pbase))
|
||
access = access_protected_node;
|
||
else
|
||
access = access_private_node;
|
||
}
|
||
|
||
base_list = tree_cons (access, base, base_list);
|
||
}
|
||
|
||
/* The list is now in reverse order; correct that. */
|
||
base_list = nreverse (base_list);
|
||
|
||
/* Now call xref_basetypes to set up all the base-class
|
||
information. */
|
||
xref_basetypes (TREE_CODE (pattern) == RECORD_TYPE
|
||
? (CLASSTYPE_DECLARED_CLASS (pattern)
|
||
? class_type_node : record_type_node)
|
||
: union_type_node,
|
||
DECL_NAME (TYPE_NAME (pattern)),
|
||
type,
|
||
base_list);
|
||
}
|
||
|
||
/* Now that our base classes are set up, enter the scope of the
|
||
class, so that name lookups into base classes, etc. will work
|
||
corectly. This is precisely analagous to what we do in
|
||
begin_class_definition when defining an ordinary non-template
|
||
class. */
|
||
pushclass (type, 1);
|
||
|
||
for (t = CLASSTYPE_TAGS (pattern); t; t = TREE_CHAIN (t))
|
||
{
|
||
tree tag = TREE_VALUE (t);
|
||
tree name = TYPE_IDENTIFIER (tag);
|
||
tree newtag;
|
||
|
||
newtag = tsubst (tag, args, /*complain=*/1, NULL_TREE);
|
||
if (TREE_CODE (newtag) != ENUMERAL_TYPE)
|
||
{
|
||
if (TYPE_LANG_SPECIFIC (tag) && CLASSTYPE_IS_TEMPLATE (tag))
|
||
/* Unfortunately, lookup_template_class sets
|
||
CLASSTYPE_IMPLICIT_INSTANTIATION for a partial
|
||
instantiation (i.e., for the type of a member template
|
||
class nested within a template class.) This behavior is
|
||
required for maybe_process_partial_specialization to work
|
||
correctly, but is not accurate in this case; the TAG is not
|
||
an instantiation of anything. (The corresponding
|
||
TEMPLATE_DECL is an instantiation, but the TYPE is not.) */
|
||
CLASSTYPE_USE_TEMPLATE (newtag) = 0;
|
||
|
||
/* Now, we call pushtag to put this NEWTAG into the scope of
|
||
TYPE. We first set up the IDENTIFIER_TYPE_VALUE to avoid
|
||
pushtag calling push_template_decl. We don't have to do
|
||
this for enums because it will already have been done in
|
||
tsubst_enum. */
|
||
if (name)
|
||
SET_IDENTIFIER_TYPE_VALUE (name, newtag);
|
||
pushtag (name, newtag, /*globalize=*/0);
|
||
}
|
||
}
|
||
|
||
/* Don't replace enum constants here. */
|
||
for (t = TYPE_FIELDS (pattern); t; t = TREE_CHAIN (t))
|
||
if (TREE_CODE (t) != CONST_DECL)
|
||
{
|
||
tree r;
|
||
|
||
/* The the file and line for this declaration, to assist in
|
||
error message reporting. Since we called push_tinst_level
|
||
above, we don't need to restore these. */
|
||
lineno = DECL_SOURCE_LINE (t);
|
||
input_filename = DECL_SOURCE_FILE (t);
|
||
|
||
r = tsubst (t, args, /*complain=*/1, NULL_TREE);
|
||
if (TREE_CODE (r) == VAR_DECL)
|
||
{
|
||
tree init;
|
||
|
||
if (DECL_DEFINED_IN_CLASS_P (r))
|
||
init = tsubst_expr (DECL_INITIAL (t), args,
|
||
/*complain=*/1, NULL_TREE);
|
||
else
|
||
init = NULL_TREE;
|
||
|
||
finish_static_data_member_decl (r, init,
|
||
/*asmspec_tree=*/NULL_TREE,
|
||
/*need_pop=*/0,
|
||
/*flags=*/0);
|
||
|
||
if (DECL_DEFINED_IN_CLASS_P (r))
|
||
check_static_variable_definition (r, TREE_TYPE (r));
|
||
}
|
||
|
||
/* R will have a TREE_CHAIN if and only if it has already been
|
||
processed by finish_member_declaration. This can happen
|
||
if, for example, it is a TYPE_DECL for a class-scoped
|
||
ENUMERAL_TYPE; such a thing will already have been added to
|
||
the field list by tsubst_enum above. */
|
||
if (!TREE_CHAIN (r))
|
||
{
|
||
set_current_access_from_decl (r);
|
||
finish_member_declaration (r);
|
||
}
|
||
}
|
||
|
||
/* After we have calculated the bases, we can now compute whether we
|
||
have polymorphic vbases. This needs to happen before we
|
||
instantiate the methods, because the constructors may take
|
||
additional arguments. */
|
||
if (flag_vtable_thunks >= 2)
|
||
TYPE_USES_PVBASES (type) = has_pvbases_p (type, pattern);
|
||
|
||
/* Set up the list (TYPE_METHODS) and vector (CLASSTYPE_METHOD_VEC)
|
||
for this instantiation. */
|
||
for (t = TYPE_METHODS (pattern); t; t = TREE_CHAIN (t))
|
||
{
|
||
tree r = tsubst (t, args, /*complain=*/1, NULL_TREE);
|
||
set_current_access_from_decl (r);
|
||
finish_member_declaration (r);
|
||
}
|
||
|
||
/* Construct the DECL_FRIENDLIST for the new class type. */
|
||
typedecl = TYPE_MAIN_DECL (type);
|
||
for (t = DECL_FRIENDLIST (TYPE_MAIN_DECL (pattern));
|
||
t != NULL_TREE;
|
||
t = TREE_CHAIN (t))
|
||
{
|
||
tree friends;
|
||
|
||
for (friends = TREE_VALUE (t);
|
||
friends != NULL_TREE;
|
||
friends = TREE_CHAIN (friends))
|
||
if (TREE_PURPOSE (friends) == error_mark_node)
|
||
add_friend (type,
|
||
tsubst_friend_function (TREE_VALUE (friends),
|
||
args));
|
||
else
|
||
add_friends (type,
|
||
tsubst_copy (TREE_PURPOSE (t), args,
|
||
/*complain=*/1, NULL_TREE),
|
||
tsubst (TREE_PURPOSE (friends), args,
|
||
/*complain=*/1, NULL_TREE));
|
||
}
|
||
|
||
for (t = CLASSTYPE_FRIEND_CLASSES (pattern);
|
||
t != NULL_TREE;
|
||
t = TREE_CHAIN (t))
|
||
{
|
||
tree friend_type = TREE_VALUE (t);
|
||
tree new_friend_type;
|
||
|
||
if (TREE_CODE (friend_type) == TEMPLATE_DECL)
|
||
new_friend_type = tsubst_friend_class (friend_type, args);
|
||
else if (uses_template_parms (friend_type))
|
||
new_friend_type = tsubst (friend_type, args, /*complain=*/1,
|
||
NULL_TREE);
|
||
else
|
||
/* The call to xref_tag_from_type does injection for friend
|
||
classes. */
|
||
new_friend_type =
|
||
xref_tag_from_type (friend_type, NULL_TREE, 1);
|
||
|
||
|
||
if (TREE_CODE (friend_type) == TEMPLATE_DECL)
|
||
/* Trick make_friend_class into realizing that the friend
|
||
we're adding is a template, not an ordinary class. It's
|
||
important that we use make_friend_class since it will
|
||
perform some error-checking and output cross-reference
|
||
information. */
|
||
++processing_template_decl;
|
||
|
||
make_friend_class (type, new_friend_type);
|
||
|
||
if (TREE_CODE (friend_type) == TEMPLATE_DECL)
|
||
--processing_template_decl;
|
||
}
|
||
|
||
/* This does injection for friend functions. */
|
||
if (!processing_template_decl)
|
||
{
|
||
t = tsubst (DECL_TEMPLATE_INJECT (template), args,
|
||
/*complain=*/1, NULL_TREE);
|
||
|
||
for (; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree d = TREE_VALUE (t);
|
||
|
||
if (TREE_CODE (d) == TYPE_DECL)
|
||
/* Already injected. */;
|
||
else
|
||
pushdecl (d);
|
||
}
|
||
}
|
||
|
||
for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
|
||
if (TREE_CODE (t) == FIELD_DECL)
|
||
{
|
||
TREE_TYPE (t) = complete_type (TREE_TYPE (t));
|
||
require_complete_type (t);
|
||
}
|
||
|
||
/* Set the file and line number information to whatever is given for
|
||
the class itself. This puts error messages involving generated
|
||
implicit functions at a predictable point, and the same point
|
||
that would be used for non-template classes. */
|
||
lineno = DECL_SOURCE_LINE (typedecl);
|
||
input_filename = DECL_SOURCE_FILE (typedecl);
|
||
|
||
unreverse_member_declarations (type);
|
||
finish_struct_1 (type, 0);
|
||
CLASSTYPE_GOT_SEMICOLON (type) = 1;
|
||
|
||
/* Clear this now so repo_template_used is happy. */
|
||
TYPE_BEING_DEFINED (type) = 0;
|
||
repo_template_used (type);
|
||
|
||
popclass ();
|
||
pop_from_top_level ();
|
||
pop_tinst_level ();
|
||
|
||
end:
|
||
pop_momentary ();
|
||
|
||
return type;
|
||
}
|
||
|
||
static int
|
||
list_eq (t1, t2)
|
||
tree t1, t2;
|
||
{
|
||
if (t1 == NULL_TREE)
|
||
return t2 == NULL_TREE;
|
||
if (t2 == NULL_TREE)
|
||
return 0;
|
||
/* Don't care if one declares its arg const and the other doesn't -- the
|
||
main variant of the arg type is all that matters. */
|
||
if (TYPE_MAIN_VARIANT (TREE_VALUE (t1))
|
||
!= TYPE_MAIN_VARIANT (TREE_VALUE (t2)))
|
||
return 0;
|
||
return list_eq (TREE_CHAIN (t1), TREE_CHAIN (t2));
|
||
}
|
||
|
||
/* If arg is a non-type template parameter that does not depend on template
|
||
arguments, fold it like we weren't in the body of a template. */
|
||
|
||
static tree
|
||
maybe_fold_nontype_arg (arg)
|
||
tree arg;
|
||
{
|
||
if (TREE_CODE_CLASS (TREE_CODE (arg)) != 't'
|
||
&& !uses_template_parms (arg))
|
||
{
|
||
/* Sometimes, one of the args was an expression involving a
|
||
template constant parameter, like N - 1. Now that we've
|
||
tsubst'd, we might have something like 2 - 1. This will
|
||
confuse lookup_template_class, so we do constant folding
|
||
here. We have to unset processing_template_decl, to
|
||
fool build_expr_from_tree() into building an actual
|
||
tree. */
|
||
|
||
int saved_processing_template_decl = processing_template_decl;
|
||
processing_template_decl = 0;
|
||
arg = fold (build_expr_from_tree (arg));
|
||
processing_template_decl = saved_processing_template_decl;
|
||
}
|
||
return arg;
|
||
}
|
||
|
||
/* Return the TREE_VEC with the arguments for the innermost template header,
|
||
where ARGS is either that or the VEC of VECs for all the
|
||
arguments. */
|
||
|
||
tree
|
||
innermost_args (args)
|
||
tree args;
|
||
{
|
||
return TMPL_ARGS_LEVEL (args, TMPL_ARGS_DEPTH (args));
|
||
}
|
||
|
||
/* Substitute ARGS into the vector of template arguments T. */
|
||
|
||
static tree
|
||
tsubst_template_arg_vector (t, args, complain)
|
||
tree t;
|
||
tree args;
|
||
int complain;
|
||
{
|
||
int len = TREE_VEC_LENGTH (t), need_new = 0, i;
|
||
tree *elts = (tree *) alloca (len * sizeof (tree));
|
||
|
||
bzero ((char *) elts, len * sizeof (tree));
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (TREE_VEC_ELT (t, i) != NULL_TREE
|
||
&& TREE_CODE (TREE_VEC_ELT (t, i)) == TREE_VEC)
|
||
elts[i] = tsubst_template_arg_vector (TREE_VEC_ELT (t, i),
|
||
args, complain);
|
||
else
|
||
elts[i] = maybe_fold_nontype_arg
|
||
(tsubst_expr (TREE_VEC_ELT (t, i), args, complain,
|
||
NULL_TREE));
|
||
|
||
if (elts[i] != TREE_VEC_ELT (t, i))
|
||
need_new = 1;
|
||
}
|
||
|
||
if (!need_new)
|
||
return t;
|
||
|
||
t = make_temp_vec (len);
|
||
for (i = 0; i < len; i++)
|
||
TREE_VEC_ELT (t, i) = elts[i];
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return the result of substituting ARGS into the template parameters
|
||
given by PARMS. If there are m levels of ARGS and m + n levels of
|
||
PARMS, then the result will contain n levels of PARMS. For
|
||
example, if PARMS is `template <class T> template <class U>
|
||
template <T*, U, class V>' and ARGS is {{int}, {double}} then the
|
||
result will be `template <int*, double, class V>'. */
|
||
|
||
static tree
|
||
tsubst_template_parms (parms, args, complain)
|
||
tree parms;
|
||
tree args;
|
||
int complain;
|
||
{
|
||
tree r;
|
||
tree* new_parms = &r;
|
||
|
||
for (new_parms = &r;
|
||
TMPL_PARMS_DEPTH (parms) > TMPL_ARGS_DEPTH (args);
|
||
new_parms = &(TREE_CHAIN (*new_parms)),
|
||
parms = TREE_CHAIN (parms))
|
||
{
|
||
tree new_vec =
|
||
make_tree_vec (TREE_VEC_LENGTH (TREE_VALUE (parms)));
|
||
int i;
|
||
|
||
for (i = 0; i < TREE_VEC_LENGTH (new_vec); ++i)
|
||
{
|
||
tree default_value =
|
||
TREE_PURPOSE (TREE_VEC_ELT (TREE_VALUE (parms), i));
|
||
tree parm_decl =
|
||
TREE_VALUE (TREE_VEC_ELT (TREE_VALUE (parms), i));
|
||
|
||
TREE_VEC_ELT (new_vec, i)
|
||
= build_tree_list (tsubst (default_value, args, complain,
|
||
NULL_TREE),
|
||
tsubst (parm_decl, args, complain,
|
||
NULL_TREE));
|
||
}
|
||
|
||
*new_parms =
|
||
tree_cons (build_int_2 (0, (TMPL_PARMS_DEPTH (parms)
|
||
- TMPL_ARGS_DEPTH (args))),
|
||
new_vec, NULL_TREE);
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Substitute the ARGS into the indicated aggregate (or enumeration)
|
||
type T. If T is not an aggregate or enumeration type, it is
|
||
handled as if by tsubst. IN_DECL is as for tsubst. If
|
||
ENTERING_SCOPE is non-zero, T is the context for a template which
|
||
we are presently tsubst'ing. Return the subsituted value. */
|
||
|
||
static tree
|
||
tsubst_aggr_type (t, args, complain, in_decl, entering_scope)
|
||
tree t;
|
||
tree args;
|
||
int complain;
|
||
tree in_decl;
|
||
int entering_scope;
|
||
{
|
||
if (t == NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case RECORD_TYPE:
|
||
if (TYPE_PTRMEMFUNC_P (t))
|
||
{
|
||
tree r = build_ptrmemfunc_type
|
||
(tsubst (TYPE_PTRMEMFUNC_FN_TYPE (t), args, complain, in_decl));
|
||
return cp_build_qualified_type (r, TYPE_QUALS (t));
|
||
}
|
||
|
||
/* else fall through */
|
||
case ENUMERAL_TYPE:
|
||
case UNION_TYPE:
|
||
if (TYPE_TEMPLATE_INFO (t))
|
||
{
|
||
tree argvec;
|
||
tree context;
|
||
tree r;
|
||
|
||
/* First, determine the context for the type we are looking
|
||
up. */
|
||
if (TYPE_CONTEXT (t) != NULL_TREE)
|
||
context = tsubst_aggr_type (TYPE_CONTEXT (t), args,
|
||
complain,
|
||
in_decl, /*entering_scope=*/1);
|
||
else
|
||
context = NULL_TREE;
|
||
|
||
/* Then, figure out what arguments are appropriate for the
|
||
type we are trying to find. For example, given:
|
||
|
||
template <class T> struct S;
|
||
template <class T, class U> void f(T, U) { S<U> su; }
|
||
|
||
and supposing that we are instantiating f<int, double>,
|
||
then our ARGS will be {int, double}, but, when looking up
|
||
S we only want {double}. */
|
||
push_momentary ();
|
||
argvec = tsubst_template_arg_vector (TYPE_TI_ARGS (t), args,
|
||
complain);
|
||
|
||
r = lookup_template_class (t, argvec, in_decl, context,
|
||
entering_scope);
|
||
pop_momentary ();
|
||
|
||
return cp_build_qualified_type (r, TYPE_QUALS (t));
|
||
}
|
||
else
|
||
/* This is not a template type, so there's nothing to do. */
|
||
return t;
|
||
|
||
default:
|
||
return tsubst (t, args, complain, in_decl);
|
||
}
|
||
}
|
||
|
||
/* Substitute the ARGS into the T, which is a _DECL. TYPE is the
|
||
(already computed) substitution of ARGS into TREE_TYPE (T), if
|
||
appropriate. Return the result of the substitution. IN_DECL is as
|
||
for tsubst. */
|
||
|
||
static tree
|
||
tsubst_decl (t, args, type, in_decl)
|
||
tree t;
|
||
tree args;
|
||
tree type;
|
||
tree in_decl;
|
||
{
|
||
int saved_lineno;
|
||
char* saved_filename;
|
||
tree r = NULL_TREE;
|
||
|
||
/* Set the filename and linenumber to improve error-reporting. */
|
||
saved_lineno = lineno;
|
||
saved_filename = input_filename;
|
||
lineno = DECL_SOURCE_LINE (t);
|
||
input_filename = DECL_SOURCE_FILE (t);
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case TEMPLATE_DECL:
|
||
{
|
||
/* We can get here when processing a member template function
|
||
of a template class. */
|
||
tree decl = DECL_TEMPLATE_RESULT (t);
|
||
tree spec;
|
||
int is_template_template_parm = DECL_TEMPLATE_TEMPLATE_PARM_P (t);
|
||
|
||
if (!is_template_template_parm)
|
||
{
|
||
/* We might already have an instance of this template.
|
||
The ARGS are for the surrounding class type, so the
|
||
full args contain the tsubst'd args for the context,
|
||
plus the innermost args from the template decl. */
|
||
tree tmpl_args = DECL_CLASS_TEMPLATE_P (t)
|
||
? CLASSTYPE_TI_ARGS (TREE_TYPE (t))
|
||
: DECL_TI_ARGS (DECL_RESULT (t));
|
||
tree full_args;
|
||
|
||
push_momentary ();
|
||
full_args = tsubst_template_arg_vector (tmpl_args, args,
|
||
/*complain=*/1);
|
||
|
||
/* tsubst_template_arg_vector doesn't copy the vector if
|
||
nothing changed. But, *something* should have
|
||
changed. */
|
||
my_friendly_assert (full_args != tmpl_args, 0);
|
||
|
||
spec = retrieve_specialization (t, full_args);
|
||
pop_momentary ();
|
||
if (spec != NULL_TREE)
|
||
{
|
||
r = spec;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Make a new template decl. It will be similar to the
|
||
original, but will record the current template arguments.
|
||
We also create a new function declaration, which is just
|
||
like the old one, but points to this new template, rather
|
||
than the old one. */
|
||
r = copy_node (t);
|
||
copy_lang_decl (r);
|
||
my_friendly_assert (DECL_LANG_SPECIFIC (r) != 0, 0);
|
||
TREE_CHAIN (r) = NULL_TREE;
|
||
|
||
if (is_template_template_parm)
|
||
{
|
||
tree new_decl = tsubst (decl, args, /*complain=*/1, in_decl);
|
||
DECL_RESULT (r) = new_decl;
|
||
TREE_TYPE (r) = TREE_TYPE (new_decl);
|
||
break;
|
||
}
|
||
|
||
DECL_CONTEXT (r)
|
||
= tsubst_aggr_type (DECL_CONTEXT (t), args, /*complain=*/1,
|
||
in_decl, /*entering_scope=*/1);
|
||
DECL_CLASS_CONTEXT (r)
|
||
= tsubst_aggr_type (DECL_CLASS_CONTEXT (t), args,
|
||
/*complain=*/1, in_decl,
|
||
/*entering_scope=*/1);
|
||
DECL_TEMPLATE_INFO (r) = build_tree_list (t, args);
|
||
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
{
|
||
tree new_type = tsubst (TREE_TYPE (t), args,
|
||
/*complain=*/1, in_decl);
|
||
TREE_TYPE (r) = new_type;
|
||
CLASSTYPE_TI_TEMPLATE (new_type) = r;
|
||
DECL_RESULT (r) = TYPE_MAIN_DECL (new_type);
|
||
DECL_TI_ARGS (r) = CLASSTYPE_TI_ARGS (new_type);
|
||
}
|
||
else
|
||
{
|
||
tree new_decl = tsubst (decl, args, /*complain=*/1, in_decl);
|
||
DECL_RESULT (r) = new_decl;
|
||
DECL_TI_TEMPLATE (new_decl) = r;
|
||
TREE_TYPE (r) = TREE_TYPE (new_decl);
|
||
DECL_TI_ARGS (r) = DECL_TI_ARGS (new_decl);
|
||
}
|
||
|
||
SET_DECL_IMPLICIT_INSTANTIATION (r);
|
||
DECL_TEMPLATE_INSTANTIATIONS (r) = NULL_TREE;
|
||
DECL_TEMPLATE_SPECIALIZATIONS (r) = NULL_TREE;
|
||
|
||
/* The template parameters for this new template are all the
|
||
template parameters for the old template, except the
|
||
outermost level of parameters. */
|
||
DECL_TEMPLATE_PARMS (r)
|
||
= tsubst_template_parms (DECL_TEMPLATE_PARMS (t), args,
|
||
/*complain=*/1);
|
||
|
||
if (PRIMARY_TEMPLATE_P (t))
|
||
DECL_PRIMARY_TEMPLATE (r) = r;
|
||
|
||
/* We don't partially instantiate partial specializations. */
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
break;
|
||
|
||
for (spec = DECL_TEMPLATE_SPECIALIZATIONS (t);
|
||
spec != NULL_TREE;
|
||
spec = TREE_CHAIN (spec))
|
||
{
|
||
/* It helps to consider example here. Consider:
|
||
|
||
template <class T>
|
||
struct S {
|
||
template <class U>
|
||
void f(U u);
|
||
|
||
template <>
|
||
void f(T* t) {}
|
||
};
|
||
|
||
Now, for example, we are instantiating S<int>::f(U u).
|
||
We want to make a template:
|
||
|
||
template <class U>
|
||
void S<int>::f(U);
|
||
|
||
It will have a specialization, for the case U = int*, of
|
||
the form:
|
||
|
||
template <>
|
||
void S<int>::f<int*>(int*);
|
||
|
||
This specialization will be an instantiation of
|
||
the specialization given in the declaration of S, with
|
||
argument list int*. */
|
||
|
||
tree fn = TREE_VALUE (spec);
|
||
tree spec_args;
|
||
tree new_fn;
|
||
|
||
if (!DECL_TEMPLATE_SPECIALIZATION (fn))
|
||
/* Instantiations are on the same list, but they're of
|
||
no concern to us. */
|
||
continue;
|
||
|
||
if (TREE_CODE (fn) != TEMPLATE_DECL)
|
||
/* A full specialization. There's no need to record
|
||
that here. */
|
||
continue;
|
||
|
||
spec_args = tsubst (DECL_TI_ARGS (fn), args,
|
||
/*complain=*/1, in_decl);
|
||
new_fn = tsubst (DECL_RESULT (most_general_template (fn)),
|
||
spec_args, /*complain=*/1, in_decl);
|
||
DECL_TI_TEMPLATE (new_fn) = fn;
|
||
register_specialization (new_fn, r,
|
||
innermost_args (spec_args));
|
||
}
|
||
|
||
/* Record this partial instantiation. */
|
||
register_specialization (r, t,
|
||
DECL_TI_ARGS (DECL_RESULT (r)));
|
||
|
||
}
|
||
break;
|
||
|
||
case FUNCTION_DECL:
|
||
{
|
||
tree ctx;
|
||
tree argvec = NULL_TREE;
|
||
tree *friends;
|
||
tree gen_tmpl;
|
||
int member;
|
||
int args_depth;
|
||
int parms_depth;
|
||
|
||
/* Nobody should be tsubst'ing into non-template functions. */
|
||
my_friendly_assert (DECL_TEMPLATE_INFO (t) != NULL_TREE, 0);
|
||
|
||
if (TREE_CODE (DECL_TI_TEMPLATE (t)) == TEMPLATE_DECL)
|
||
{
|
||
tree spec;
|
||
|
||
/* Allocate template arguments on the momentary obstack,
|
||
in case we don't need to keep them. */
|
||
push_momentary ();
|
||
|
||
/* Calculate the most general template of which R is a
|
||
specialization, and the complete set of arguments used to
|
||
specialize R. */
|
||
gen_tmpl = most_general_template (DECL_TI_TEMPLATE (t));
|
||
argvec
|
||
= tsubst_template_arg_vector (DECL_TI_ARGS
|
||
(DECL_TEMPLATE_RESULT (gen_tmpl)),
|
||
args, /*complain=*/1);
|
||
|
||
/* Check to see if we already have this specialization. */
|
||
spec = retrieve_specialization (gen_tmpl, argvec);
|
||
|
||
if (spec)
|
||
{
|
||
r = spec;
|
||
pop_momentary ();
|
||
break;
|
||
}
|
||
|
||
/* We're going to need to keep the ARGVEC, so we copy it
|
||
here. */
|
||
argvec = copy_to_permanent (argvec);
|
||
pop_momentary ();
|
||
|
||
/* Here, we deal with the peculiar case:
|
||
|
||
template <class T> struct S {
|
||
template <class U> friend void f();
|
||
};
|
||
template <class U> friend void f() {}
|
||
template S<int>;
|
||
template void f<double>();
|
||
|
||
Here, the ARGS for the instantiation of will be {int,
|
||
double}. But, we only need as many ARGS as there are
|
||
levels of template parameters in CODE_PATTERN. We are
|
||
careful not to get fooled into reducing the ARGS in
|
||
situations like:
|
||
|
||
template <class T> struct S { template <class U> void f(U); }
|
||
template <class T> template <> void S<T>::f(int) {}
|
||
|
||
which we can spot because the pattern will be a
|
||
specialization in this case. */
|
||
args_depth = TMPL_ARGS_DEPTH (args);
|
||
parms_depth =
|
||
TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (DECL_TI_TEMPLATE (t)));
|
||
if (args_depth > parms_depth
|
||
&& !DECL_TEMPLATE_SPECIALIZATION (t))
|
||
{
|
||
my_friendly_assert (DECL_FRIEND_P (t), 0);
|
||
|
||
if (parms_depth > 1)
|
||
{
|
||
int i;
|
||
|
||
args = make_temp_vec (parms_depth);
|
||
for (i = 0; i < parms_depth; ++i)
|
||
TREE_VEC_ELT (args, i) =
|
||
TREE_VEC_ELT (args, i + (args_depth - parms_depth));
|
||
}
|
||
else
|
||
args = TREE_VEC_ELT (args, args_depth - parms_depth);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This special case arises when we have something like this:
|
||
|
||
template <class T> struct S {
|
||
friend void f<int>(int, double);
|
||
};
|
||
|
||
Here, the DECL_TI_TEMPLATE for the friend declaration
|
||
will be a LOOKUP_EXPR or an IDENTIFIER_NODE. We are
|
||
being called from tsubst_friend_function, and we want
|
||
only to create a new decl (R) with appropriate types so
|
||
that we can call determine_specialization. */
|
||
my_friendly_assert ((TREE_CODE (DECL_TI_TEMPLATE (t))
|
||
== LOOKUP_EXPR)
|
||
|| (TREE_CODE (DECL_TI_TEMPLATE (t))
|
||
== IDENTIFIER_NODE), 0);
|
||
gen_tmpl = NULL_TREE;
|
||
}
|
||
|
||
if (DECL_CLASS_SCOPE_P (t))
|
||
{
|
||
if (DECL_NAME (t) == constructor_name (DECL_CONTEXT (t)))
|
||
member = 2;
|
||
else
|
||
member = 1;
|
||
ctx = tsubst_aggr_type (DECL_CLASS_CONTEXT (t), args,
|
||
/*complain=*/1, t,
|
||
/*entering_scope=*/1);
|
||
}
|
||
else
|
||
{
|
||
member = 0;
|
||
ctx = NULL_TREE;
|
||
}
|
||
type = tsubst (type, args, /*complain=*/1, in_decl);
|
||
|
||
/* We do NOT check for matching decls pushed separately at this
|
||
point, as they may not represent instantiations of this
|
||
template, and in any case are considered separate under the
|
||
discrete model. Instead, see add_maybe_template. */
|
||
|
||
r = copy_node (t);
|
||
copy_lang_decl (r);
|
||
DECL_USE_TEMPLATE (r) = 0;
|
||
TREE_TYPE (r) = type;
|
||
|
||
DECL_CONTEXT (r)
|
||
= tsubst_aggr_type (DECL_CONTEXT (t), args, /*complain=*/1, t,
|
||
/*entering_scope=*/1);
|
||
DECL_CLASS_CONTEXT (r) = ctx;
|
||
|
||
if (member && IDENTIFIER_TYPENAME_P (DECL_NAME (r)))
|
||
/* Type-conversion operator. Reconstruct the name, in
|
||
case it's the name of one of the template's parameters. */
|
||
DECL_NAME (r) = build_typename_overload (TREE_TYPE (type));
|
||
|
||
DECL_ARGUMENTS (r) = tsubst (DECL_ARGUMENTS (t), args,
|
||
/*complain=*/1, t);
|
||
DECL_MAIN_VARIANT (r) = r;
|
||
DECL_RESULT (r) = NULL_TREE;
|
||
|
||
TREE_STATIC (r) = 0;
|
||
TREE_PUBLIC (r) = TREE_PUBLIC (t);
|
||
DECL_EXTERNAL (r) = 1;
|
||
DECL_INTERFACE_KNOWN (r) = 0;
|
||
DECL_DEFER_OUTPUT (r) = 0;
|
||
TREE_CHAIN (r) = NULL_TREE;
|
||
DECL_PENDING_INLINE_INFO (r) = 0;
|
||
TREE_USED (r) = 0;
|
||
|
||
/* Set up the DECL_TEMPLATE_INFO for R and compute its mangled
|
||
name. There's no need to do this in the special friend
|
||
case mentioned above where GEN_TMPL is NULL. */
|
||
if (gen_tmpl)
|
||
{
|
||
/* The ARGVEC was built on the momentary obstack. Make it
|
||
permanent now. */
|
||
argvec = copy_to_permanent (argvec);
|
||
DECL_TEMPLATE_INFO (r)
|
||
= perm_tree_cons (gen_tmpl, argvec, NULL_TREE);
|
||
SET_DECL_IMPLICIT_INSTANTIATION (r);
|
||
register_specialization (r, gen_tmpl, argvec);
|
||
|
||
|
||
if (DECL_CONSTRUCTOR_P (r) || DECL_DESTRUCTOR_P (r))
|
||
{
|
||
maybe_retrofit_in_chrg (r);
|
||
grok_ctor_properties (ctx, r);
|
||
}
|
||
|
||
/* Set the mangled name for R. */
|
||
if (DECL_DESTRUCTOR_P (t))
|
||
DECL_ASSEMBLER_NAME (r) =
|
||
build_destructor_name (ctx, DECL_DESTRUCTOR_FOR_PVBASE_P (r));
|
||
else
|
||
{
|
||
/* Instantiations of template functions must be mangled
|
||
specially, in order to conform to 14.5.5.1
|
||
[temp.over.link]. */
|
||
tree tmpl = DECL_TI_TEMPLATE (t);
|
||
|
||
/* TMPL will be NULL if this is a specialization of a
|
||
member function of a template class. */
|
||
if (name_mangling_version < 1
|
||
|| tmpl == NULL_TREE
|
||
|| (member && !is_member_template (tmpl)
|
||
&& !DECL_TEMPLATE_INFO (tmpl)))
|
||
set_mangled_name_for_decl (r);
|
||
else
|
||
set_mangled_name_for_template_decl (r);
|
||
}
|
||
|
||
DECL_RTL (r) = 0;
|
||
make_decl_rtl (r, NULL_PTR, 1);
|
||
|
||
/* Like grokfndecl. If we don't do this, pushdecl will
|
||
mess up our TREE_CHAIN because it doesn't find a
|
||
previous decl. Sigh. */
|
||
if (member
|
||
&& ! uses_template_parms (r)
|
||
&& (IDENTIFIER_GLOBAL_VALUE (DECL_ASSEMBLER_NAME (r))
|
||
== NULL_TREE))
|
||
SET_IDENTIFIER_GLOBAL_VALUE (DECL_ASSEMBLER_NAME (r), r);
|
||
}
|
||
|
||
/* Copy the list of befriending classes. */
|
||
for (friends = &DECL_BEFRIENDING_CLASSES (r);
|
||
*friends;
|
||
friends = &TREE_CHAIN (*friends))
|
||
{
|
||
*friends = copy_node (*friends);
|
||
TREE_VALUE (*friends) = tsubst (TREE_VALUE (*friends),
|
||
args, /*complain=*/1,
|
||
in_decl);
|
||
}
|
||
|
||
#if 0
|
||
/* This has now moved further up. */
|
||
if (DECL_CONSTRUCTOR_P (r))
|
||
{
|
||
maybe_retrofit_in_chrg (r);
|
||
grok_ctor_properties (ctx, r);
|
||
}
|
||
#endif
|
||
if (IDENTIFIER_OPNAME_P (DECL_NAME (r)))
|
||
grok_op_properties (r, DECL_VIRTUAL_P (r), DECL_FRIEND_P (r));
|
||
}
|
||
break;
|
||
|
||
case PARM_DECL:
|
||
{
|
||
r = copy_node (t);
|
||
TREE_TYPE (r) = type;
|
||
c_apply_type_quals_to_decl (CP_TYPE_QUALS (type), r);
|
||
|
||
if (TREE_CODE (DECL_INITIAL (r)) != TEMPLATE_PARM_INDEX)
|
||
DECL_INITIAL (r) = TREE_TYPE (r);
|
||
else
|
||
DECL_INITIAL (r) = tsubst (DECL_INITIAL (r), args,
|
||
/*complain=*/1, in_decl);
|
||
|
||
DECL_CONTEXT (r) = NULL_TREE;
|
||
#ifdef PROMOTE_PROTOTYPES
|
||
if ((TREE_CODE (type) == INTEGER_TYPE
|
||
|| TREE_CODE (type) == ENUMERAL_TYPE)
|
||
&& TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))
|
||
DECL_ARG_TYPE (r) = integer_type_node;
|
||
#endif
|
||
if (TREE_CHAIN (t))
|
||
TREE_CHAIN (r) = tsubst (TREE_CHAIN (t), args,
|
||
/*complain=*/1, TREE_CHAIN (t));
|
||
}
|
||
break;
|
||
|
||
case FIELD_DECL:
|
||
{
|
||
r = copy_node (t);
|
||
copy_lang_decl (r);
|
||
TREE_TYPE (r) = type;
|
||
c_apply_type_quals_to_decl (CP_TYPE_QUALS (type), r);
|
||
|
||
/* We don't have to set DECL_CONTEXT here; it is set by
|
||
finish_member_declaration. */
|
||
DECL_INITIAL (r) = tsubst_expr (DECL_INITIAL (t), args,
|
||
/*complain=*/1, in_decl);
|
||
TREE_CHAIN (r) = NULL_TREE;
|
||
if (TREE_CODE (type) == VOID_TYPE)
|
||
cp_error_at ("instantiation of `%D' as type void", r);
|
||
}
|
||
break;
|
||
|
||
case USING_DECL:
|
||
{
|
||
r = copy_node (t);
|
||
DECL_INITIAL (r)
|
||
= tsubst_copy (DECL_INITIAL (t), args, /*complain=*/1, in_decl);
|
||
TREE_CHAIN (r) = NULL_TREE;
|
||
}
|
||
break;
|
||
|
||
case VAR_DECL:
|
||
{
|
||
tree argvec;
|
||
tree gen_tmpl;
|
||
tree spec;
|
||
tree tmpl;
|
||
tree ctx = tsubst_aggr_type (DECL_CONTEXT (t), args,
|
||
/*complain=*/1,
|
||
in_decl, /*entering_scope=*/1);
|
||
|
||
/* Nobody should be tsubst'ing into non-template variables. */
|
||
my_friendly_assert (DECL_LANG_SPECIFIC (t)
|
||
&& DECL_TEMPLATE_INFO (t) != NULL_TREE, 0);
|
||
|
||
/* Check to see if we already have this specialization. */
|
||
tmpl = DECL_TI_TEMPLATE (t);
|
||
gen_tmpl = most_general_template (tmpl);
|
||
argvec = tsubst (DECL_TI_ARGS (t), args, /*complain=*/1, in_decl);
|
||
spec = retrieve_specialization (gen_tmpl, argvec);
|
||
|
||
if (spec)
|
||
{
|
||
r = spec;
|
||
break;
|
||
}
|
||
|
||
r = copy_node (t);
|
||
TREE_TYPE (r) = type;
|
||
c_apply_type_quals_to_decl (CP_TYPE_QUALS (type), r);
|
||
DECL_CONTEXT (r) = ctx;
|
||
|
||
/* Don't try to expand the initializer until someone tries to use
|
||
this variable; otherwise we run into circular dependencies. */
|
||
DECL_INITIAL (r) = NULL_TREE;
|
||
DECL_RTL (r) = 0;
|
||
DECL_SIZE (r) = 0;
|
||
copy_lang_decl (r);
|
||
DECL_CLASS_CONTEXT (r) = DECL_CONTEXT (r);
|
||
|
||
/* A static data member declaration is always marked external
|
||
when it is declared in-class, even if an initializer is
|
||
present. We mimic the non-template processing here. */
|
||
DECL_EXTERNAL (r) = 1;
|
||
|
||
DECL_TEMPLATE_INFO (r) = perm_tree_cons (tmpl, argvec, NULL_TREE);
|
||
SET_DECL_IMPLICIT_INSTANTIATION (r);
|
||
register_specialization (r, gen_tmpl, argvec);
|
||
|
||
TREE_CHAIN (r) = NULL_TREE;
|
||
if (TREE_CODE (type) == VOID_TYPE)
|
||
cp_error_at ("instantiation of `%D' as type void", r);
|
||
}
|
||
break;
|
||
|
||
case TYPE_DECL:
|
||
if (t == TYPE_NAME (TREE_TYPE (t)))
|
||
r = TYPE_NAME (type);
|
||
else
|
||
{
|
||
r = copy_node (t);
|
||
TREE_TYPE (r) = type;
|
||
DECL_CONTEXT (r) = current_class_type;
|
||
TREE_CHAIN (r) = NULL_TREE;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
my_friendly_abort (0);
|
||
}
|
||
|
||
/* Restore the file and line information. */
|
||
lineno = saved_lineno;
|
||
input_filename = saved_filename;
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Substitue into the ARG_TYPES of a function type. */
|
||
|
||
static tree
|
||
tsubst_arg_types (arg_types, args, complain, in_decl)
|
||
tree arg_types;
|
||
tree args;
|
||
int complain;
|
||
tree in_decl;
|
||
{
|
||
tree remaining_arg_types;
|
||
tree type;
|
||
|
||
if (!arg_types || arg_types == void_list_node)
|
||
return arg_types;
|
||
|
||
remaining_arg_types = tsubst_arg_types (TREE_CHAIN (arg_types),
|
||
args, complain, in_decl);
|
||
if (remaining_arg_types == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
type = tsubst (TREE_VALUE (arg_types), args, complain, in_decl);
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Do array-to-pointer, function-to-pointer conversion, and ignore
|
||
top-level qualifiers as required. */
|
||
type = TYPE_MAIN_VARIANT (type_decays_to (type));
|
||
|
||
/* Note that we do not substitute into default arguments here. The
|
||
standard mandates that they be instantiated only when needed,
|
||
which is done in build_over_call. */
|
||
return hash_tree_cons (TREE_PURPOSE (arg_types), type,
|
||
remaining_arg_types);
|
||
|
||
}
|
||
|
||
/* Substitute into a FUNCTION_TYPE or METHOD_TYPE. This routine does
|
||
*not* handle the exception-specification for FNTYPE, because the
|
||
initial substitution of explicitly provided template parameters
|
||
during argument deduction forbids substitution into the
|
||
exception-specification:
|
||
|
||
[temp.deduct]
|
||
|
||
All references in the function type of the function template to the
|
||
corresponding template parameters are replaced by the specified tem-
|
||
plate argument values. If a substitution in a template parameter or
|
||
in the function type of the function template results in an invalid
|
||
type, type deduction fails. [Note: The equivalent substitution in
|
||
exception specifications is done only when the function is instanti-
|
||
ated, at which point a program is ill-formed if the substitution
|
||
results in an invalid type.] */
|
||
|
||
static tree
|
||
tsubst_function_type (t, args, complain, in_decl)
|
||
tree t;
|
||
tree args;
|
||
int complain;
|
||
tree in_decl;
|
||
{
|
||
tree return_type;
|
||
tree arg_types;
|
||
tree fntype;
|
||
|
||
/* The TYPE_CONTEXT is not used for function/method types. */
|
||
my_friendly_assert (TYPE_CONTEXT (t) == NULL_TREE, 0);
|
||
|
||
/* Substitue the return type. */
|
||
return_type = tsubst (TREE_TYPE (t), args, complain, in_decl);
|
||
if (return_type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Substitue the argument types. */
|
||
arg_types = tsubst_arg_types (TYPE_ARG_TYPES (t), args,
|
||
complain, in_decl);
|
||
if (arg_types == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Construct a new type node and return it. */
|
||
if (TREE_CODE (t) == FUNCTION_TYPE)
|
||
fntype = build_function_type (return_type, arg_types);
|
||
else
|
||
{
|
||
tree r = TREE_TYPE (TREE_VALUE (arg_types));
|
||
if (! IS_AGGR_TYPE (r))
|
||
{
|
||
/* [temp.deduct]
|
||
|
||
Type deduction may fail for any of the following
|
||
reasons:
|
||
|
||
-- Attempting to create "pointer to member of T" when T
|
||
is not a class type. */
|
||
if (complain)
|
||
cp_error ("creating pointer to member function of non-class type `%T'",
|
||
r);
|
||
return error_mark_node;
|
||
}
|
||
|
||
fntype = build_cplus_method_type (r, return_type, TREE_CHAIN
|
||
(arg_types));
|
||
}
|
||
fntype = build_qualified_type (fntype, TYPE_QUALS (t));
|
||
fntype = build_type_attribute_variant (fntype, TYPE_ATTRIBUTES (t));
|
||
|
||
return fntype;
|
||
}
|
||
|
||
/* Substitute into the PARMS of a call-declarator. */
|
||
|
||
static tree
|
||
tsubst_call_declarator_parms (parms, args, complain, in_decl)
|
||
tree parms;
|
||
tree args;
|
||
int complain;
|
||
tree in_decl;
|
||
{
|
||
tree new_parms;
|
||
tree type;
|
||
tree defarg;
|
||
|
||
if (!parms || parms == void_list_node)
|
||
return parms;
|
||
|
||
new_parms = tsubst_call_declarator_parms (TREE_CHAIN (parms),
|
||
args, complain, in_decl);
|
||
|
||
/* Figure out the type of this parameter. */
|
||
type = tsubst (TREE_VALUE (parms), args, complain, in_decl);
|
||
|
||
/* Figure out the default argument as well. Note that we use
|
||
tsubst_expr since the default argument is really an expression. */
|
||
defarg = tsubst_expr (TREE_PURPOSE (parms), args, complain, in_decl);
|
||
|
||
/* Chain this parameter on to the front of those we have already
|
||
processed. We don't use hash_tree_cons because that function
|
||
doesn't check TREE_PARMLIST. */
|
||
new_parms = tree_cons (defarg, type, new_parms);
|
||
|
||
/* And note that these are parameters. */
|
||
TREE_PARMLIST (new_parms) = 1;
|
||
|
||
return new_parms;
|
||
}
|
||
|
||
/* Take the tree structure T and replace template parameters used
|
||
therein with the argument vector ARGS. IN_DECL is an associated
|
||
decl for diagnostics. If an error occurs, returns ERROR_MARK_NODE.
|
||
An appropriate error message is issued only if COMPLAIN is
|
||
non-zero. Note that we must be relatively non-tolerant of
|
||
extensions here, in order to preserve conformance; if we allow
|
||
substitutions that should not be allowed, we may allow argument
|
||
deductions that should not succeed, and therefore report ambiguous
|
||
overload situations where there are none. In theory, we could
|
||
allow the substitution, but indicate that it should have failed,
|
||
and allow our caller to make sure that the right thing happens, but
|
||
we don't try to do this yet.
|
||
|
||
This function is used for dealing with types, decls and the like;
|
||
for expressions, use tsubst_expr or tsubst_copy. */
|
||
|
||
tree
|
||
tsubst (t, args, complain, in_decl)
|
||
tree t, args;
|
||
int complain;
|
||
tree in_decl;
|
||
{
|
||
tree type, r;
|
||
|
||
if (t == NULL_TREE || t == error_mark_node
|
||
|| t == integer_type_node
|
||
|| t == void_type_node
|
||
|| t == char_type_node
|
||
|| TREE_CODE (t) == NAMESPACE_DECL)
|
||
return t;
|
||
|
||
if (TREE_CODE (t) == IDENTIFIER_NODE)
|
||
type = IDENTIFIER_TYPE_VALUE (t);
|
||
else
|
||
type = TREE_TYPE (t);
|
||
if (type == unknown_type_node)
|
||
my_friendly_abort (42);
|
||
|
||
if (type && TREE_CODE (t) != FUNCTION_DECL
|
||
&& TREE_CODE (t) != TYPENAME_TYPE
|
||
&& TREE_CODE (t) != TEMPLATE_DECL
|
||
&& TREE_CODE (t) != IDENTIFIER_NODE
|
||
&& TREE_CODE (t) != FUNCTION_TYPE
|
||
&& TREE_CODE (t) != METHOD_TYPE)
|
||
type = tsubst (type, args, complain, in_decl);
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
|
||
return tsubst_decl (t, args, type, in_decl);
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
return tsubst_aggr_type (t, args, complain, in_decl,
|
||
/*entering_scope=*/0);
|
||
|
||
case ERROR_MARK:
|
||
case IDENTIFIER_NODE:
|
||
case OP_IDENTIFIER:
|
||
case VOID_TYPE:
|
||
case REAL_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case INTEGER_CST:
|
||
case REAL_CST:
|
||
case STRING_CST:
|
||
return t;
|
||
|
||
case INTEGER_TYPE:
|
||
if (t == integer_type_node)
|
||
return t;
|
||
|
||
if (TREE_CODE (TYPE_MIN_VALUE (t)) == INTEGER_CST
|
||
&& TREE_CODE (TYPE_MAX_VALUE (t)) == INTEGER_CST)
|
||
return t;
|
||
|
||
{
|
||
tree max, omax = TREE_OPERAND (TYPE_MAX_VALUE (t), 0);
|
||
|
||
max = tsubst_expr (omax, args, complain, in_decl);
|
||
if (max == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* See if we can reduce this expression to something simpler. */
|
||
max = maybe_fold_nontype_arg (max);
|
||
if (!processing_template_decl && TREE_READONLY_DECL_P (max))
|
||
max = decl_constant_value (max);
|
||
|
||
if (processing_template_decl
|
||
/* When providing explicit arguments to a template
|
||
function, but leaving some arguments for subsequent
|
||
deduction, MAX may be template-dependent even if we're
|
||
not PROCESSING_TEMPLATE_DECL. */
|
||
|| TREE_CODE (max) != INTEGER_CST)
|
||
{
|
||
tree itype = make_node (INTEGER_TYPE);
|
||
TYPE_MIN_VALUE (itype) = size_zero_node;
|
||
TYPE_MAX_VALUE (itype) = build_min (MINUS_EXPR, sizetype, max,
|
||
integer_one_node);
|
||
return itype;
|
||
}
|
||
|
||
if (integer_zerop (omax))
|
||
{
|
||
/* Still allow an explicit array of size zero. */
|
||
if (pedantic)
|
||
pedwarn ("creating array with size zero");
|
||
}
|
||
else if (integer_zerop (max) || INT_CST_LT (max, integer_zero_node))
|
||
{
|
||
/* [temp.deduct]
|
||
|
||
Type deduction may fail for any of the following
|
||
reasons:
|
||
|
||
Attempting to create an array with a size that is
|
||
zero or negative. */
|
||
if (complain)
|
||
cp_error ("creating array with size `%E'", max);
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
max = fold (build_binary_op (MINUS_EXPR, max, integer_one_node));
|
||
if (!TREE_PERMANENT (max) && !allocation_temporary_p ())
|
||
max = copy_to_permanent (max);
|
||
return build_index_type (max);
|
||
}
|
||
|
||
case TEMPLATE_TYPE_PARM:
|
||
case TEMPLATE_TEMPLATE_PARM:
|
||
case TEMPLATE_PARM_INDEX:
|
||
{
|
||
int idx;
|
||
int level;
|
||
int levels;
|
||
|
||
r = NULL_TREE;
|
||
|
||
if (TREE_CODE (t) == TEMPLATE_TYPE_PARM
|
||
|| TREE_CODE (t) == TEMPLATE_TEMPLATE_PARM)
|
||
{
|
||
idx = TEMPLATE_TYPE_IDX (t);
|
||
level = TEMPLATE_TYPE_LEVEL (t);
|
||
}
|
||
else
|
||
{
|
||
idx = TEMPLATE_PARM_IDX (t);
|
||
level = TEMPLATE_PARM_LEVEL (t);
|
||
}
|
||
|
||
if (TREE_VEC_LENGTH (args) > 0)
|
||
{
|
||
tree arg = NULL_TREE;
|
||
|
||
levels = TMPL_ARGS_DEPTH (args);
|
||
if (level <= levels)
|
||
arg = TMPL_ARG (args, level, idx);
|
||
|
||
if (arg == error_mark_node)
|
||
return error_mark_node;
|
||
else if (arg != NULL_TREE)
|
||
{
|
||
if (TREE_CODE (t) == TEMPLATE_TYPE_PARM)
|
||
{
|
||
my_friendly_assert (TREE_CODE_CLASS (TREE_CODE (arg))
|
||
== 't', 0);
|
||
return cp_build_qualified_type
|
||
(arg, CP_TYPE_QUALS (arg) | CP_TYPE_QUALS (t));
|
||
}
|
||
else if (TREE_CODE (t) == TEMPLATE_TEMPLATE_PARM)
|
||
{
|
||
if (TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t))
|
||
{
|
||
/* We are processing a type constructed from
|
||
a template template parameter */
|
||
tree argvec = tsubst (TYPE_TI_ARGS (t),
|
||
args, complain, in_decl);
|
||
if (argvec == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* We can get a TEMPLATE_TEMPLATE_PARM here when
|
||
we are resolving nested-types in the signature of
|
||
a member function templates.
|
||
Otherwise ARG is a TEMPLATE_DECL and is the real
|
||
template to be instantiated. */
|
||
if (TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM)
|
||
arg = TYPE_NAME (arg);
|
||
|
||
r = lookup_template_class (DECL_NAME (arg),
|
||
argvec, in_decl,
|
||
DECL_CONTEXT (arg),
|
||
/*entering_scope=*/0);
|
||
return cp_build_qualified_type (r, TYPE_QUALS (t));
|
||
}
|
||
else
|
||
/* We are processing a template argument list. */
|
||
return arg;
|
||
}
|
||
else
|
||
return arg;
|
||
}
|
||
}
|
||
else
|
||
my_friendly_abort (981018);
|
||
|
||
if (level == 1)
|
||
/* This can happen during the attempted tsubst'ing in
|
||
unify. This means that we don't yet have any information
|
||
about the template parameter in question. */
|
||
return t;
|
||
|
||
/* If we get here, we must have been looking at a parm for a
|
||
more deeply nested template. Make a new version of this
|
||
template parameter, but with a lower level. */
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case TEMPLATE_TYPE_PARM:
|
||
case TEMPLATE_TEMPLATE_PARM:
|
||
r = copy_node (t);
|
||
TEMPLATE_TYPE_PARM_INDEX (r)
|
||
= reduce_template_parm_level (TEMPLATE_TYPE_PARM_INDEX (t),
|
||
r, levels);
|
||
TYPE_STUB_DECL (r) = TYPE_NAME (r) = TEMPLATE_TYPE_DECL (r);
|
||
TYPE_MAIN_VARIANT (r) = r;
|
||
TYPE_POINTER_TO (r) = NULL_TREE;
|
||
TYPE_REFERENCE_TO (r) = NULL_TREE;
|
||
|
||
if (TREE_CODE (t) == TEMPLATE_TEMPLATE_PARM
|
||
&& TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t))
|
||
{
|
||
tree argvec = tsubst (TYPE_TI_ARGS (t), args,
|
||
complain, in_decl);
|
||
if (argvec == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (r)
|
||
= perm_tree_cons (TYPE_NAME (t), argvec, NULL_TREE);
|
||
}
|
||
break;
|
||
|
||
case TEMPLATE_PARM_INDEX:
|
||
r = reduce_template_parm_level (t, type, levels);
|
||
break;
|
||
|
||
default:
|
||
my_friendly_abort (0);
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
case TREE_LIST:
|
||
{
|
||
tree purpose, value, chain, result;
|
||
|
||
if (t == void_list_node)
|
||
return t;
|
||
|
||
purpose = TREE_PURPOSE (t);
|
||
if (purpose)
|
||
{
|
||
purpose = tsubst (purpose, args, complain, in_decl);
|
||
if (purpose == error_mark_node)
|
||
return error_mark_node;
|
||
}
|
||
value = TREE_VALUE (t);
|
||
if (value)
|
||
{
|
||
value = tsubst (value, args, complain, in_decl);
|
||
if (value == error_mark_node)
|
||
return error_mark_node;
|
||
}
|
||
chain = TREE_CHAIN (t);
|
||
if (chain && chain != void_type_node)
|
||
{
|
||
chain = tsubst (chain, args, complain, in_decl);
|
||
if (chain == error_mark_node)
|
||
return error_mark_node;
|
||
}
|
||
if (purpose == TREE_PURPOSE (t)
|
||
&& value == TREE_VALUE (t)
|
||
&& chain == TREE_CHAIN (t))
|
||
return t;
|
||
result = hash_tree_cons (purpose, value, chain);
|
||
TREE_PARMLIST (result) = TREE_PARMLIST (t);
|
||
return result;
|
||
}
|
||
case TREE_VEC:
|
||
if (type != NULL_TREE)
|
||
{
|
||
/* A binfo node. We always need to make a copy, of the node
|
||
itself and of its BINFO_BASETYPES. */
|
||
|
||
t = copy_node (t);
|
||
|
||
/* Make sure type isn't a typedef copy. */
|
||
type = BINFO_TYPE (TYPE_BINFO (type));
|
||
|
||
TREE_TYPE (t) = complete_type (type);
|
||
if (IS_AGGR_TYPE (type))
|
||
{
|
||
BINFO_VTABLE (t) = TYPE_BINFO_VTABLE (type);
|
||
BINFO_VIRTUALS (t) = TYPE_BINFO_VIRTUALS (type);
|
||
if (TYPE_BINFO_BASETYPES (type) != NULL_TREE)
|
||
BINFO_BASETYPES (t) = copy_node (TYPE_BINFO_BASETYPES (type));
|
||
}
|
||
return t;
|
||
}
|
||
|
||
/* Otherwise, a vector of template arguments. */
|
||
return tsubst_template_arg_vector (t, args, complain);
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
{
|
||
enum tree_code code;
|
||
|
||
if (type == TREE_TYPE (t))
|
||
return t;
|
||
|
||
code = TREE_CODE (t);
|
||
|
||
|
||
/* [temp.deduct]
|
||
|
||
Type deduction may fail for any of the following
|
||
reasons:
|
||
|
||
-- Attempting to create a pointer to reference type.
|
||
-- Attempting to create a reference to a reference type or
|
||
a reference to void. */
|
||
if (TREE_CODE (type) == REFERENCE_TYPE
|
||
|| (code == REFERENCE_TYPE && TREE_CODE (type) == VOID_TYPE))
|
||
{
|
||
static int last_line = 0;
|
||
static char* last_file = 0;
|
||
|
||
/* We keep track of the last time we issued this error
|
||
message to avoid spewing a ton of messages during a
|
||
single bad template instantiation. */
|
||
if (complain && (last_line != lineno ||
|
||
last_file != input_filename))
|
||
{
|
||
if (TREE_CODE (type) == VOID_TYPE)
|
||
cp_error ("forming reference to void");
|
||
else
|
||
cp_error ("forming %s to reference type `%T'",
|
||
(code == POINTER_TYPE) ? "pointer" : "reference",
|
||
type);
|
||
last_line = lineno;
|
||
last_file = input_filename;
|
||
}
|
||
|
||
return error_mark_node;
|
||
}
|
||
else if (code == POINTER_TYPE)
|
||
r = build_pointer_type (type);
|
||
else
|
||
r = build_reference_type (type);
|
||
r = cp_build_qualified_type (r, TYPE_QUALS (t));
|
||
|
||
/* Will this ever be needed for TYPE_..._TO values? */
|
||
layout_type (r);
|
||
return r;
|
||
}
|
||
case OFFSET_TYPE:
|
||
{
|
||
r = tsubst (TYPE_OFFSET_BASETYPE (t), args, complain, in_decl);
|
||
if (r == error_mark_node || !IS_AGGR_TYPE (r))
|
||
{
|
||
/* [temp.deduct]
|
||
|
||
Type deduction may fail for any of the following
|
||
reasons:
|
||
|
||
-- Attempting to create "pointer to member of T" when T
|
||
is not a class type. */
|
||
if (complain)
|
||
cp_error ("creating pointer to member of non-class type `%T'",
|
||
r);
|
||
return error_mark_node;
|
||
}
|
||
return build_offset_type (r, type);
|
||
}
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
{
|
||
tree fntype;
|
||
tree raises;
|
||
|
||
fntype = tsubst_function_type (t, args, complain, in_decl);
|
||
if (fntype == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Substitue the exception specification. */
|
||
raises = TYPE_RAISES_EXCEPTIONS (t);
|
||
if (raises)
|
||
{
|
||
raises = tsubst (raises, args, complain, in_decl);
|
||
if (raises == error_mark_node)
|
||
return raises;
|
||
fntype = build_exception_variant (fntype, raises);
|
||
}
|
||
return fntype;
|
||
}
|
||
case ARRAY_TYPE:
|
||
{
|
||
tree domain = tsubst (TYPE_DOMAIN (t), args, complain, in_decl);
|
||
if (domain == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* As an optimization, we avoid regenerating the array type if
|
||
it will obviously be the same as T. */
|
||
if (type == TREE_TYPE (t) && domain == TYPE_DOMAIN (t))
|
||
return t;
|
||
|
||
/* These checks should match the ones in grokdeclarator.
|
||
|
||
[temp.deduct]
|
||
|
||
The deduction may fail for any of the following reasons:
|
||
|
||
-- Attempting to create an array with an element type that
|
||
is void, a function type, or a reference type. */
|
||
if (TREE_CODE (type) == VOID_TYPE
|
||
|| TREE_CODE (type) == FUNCTION_TYPE
|
||
|| TREE_CODE (type) == REFERENCE_TYPE)
|
||
{
|
||
if (complain)
|
||
cp_error ("creating array of `%T'", type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
r = build_cplus_array_type (type, domain);
|
||
return r;
|
||
}
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
{
|
||
tree e1 = tsubst (TREE_OPERAND (t, 0), args, complain,
|
||
in_decl);
|
||
tree e2 = tsubst (TREE_OPERAND (t, 1), args, complain,
|
||
in_decl);
|
||
|
||
if (e1 == error_mark_node || e2 == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return fold (build (TREE_CODE (t), TREE_TYPE (t), e1, e2));
|
||
}
|
||
|
||
case NEGATE_EXPR:
|
||
case NOP_EXPR:
|
||
{
|
||
tree e = tsubst (TREE_OPERAND (t, 0), args, complain,
|
||
in_decl);
|
||
if (e == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return fold (build (TREE_CODE (t), TREE_TYPE (t), e));
|
||
}
|
||
|
||
case TYPENAME_TYPE:
|
||
{
|
||
tree ctx = tsubst_aggr_type (TYPE_CONTEXT (t), args, complain,
|
||
in_decl, /*entering_scope=*/1);
|
||
tree f = tsubst_copy (TYPENAME_TYPE_FULLNAME (t), args,
|
||
complain, in_decl);
|
||
|
||
if (ctx == error_mark_node || f == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (!IS_AGGR_TYPE (ctx))
|
||
{
|
||
if (complain)
|
||
cp_error ("`%T' is not a class, struct, or union type",
|
||
ctx);
|
||
return error_mark_node;
|
||
}
|
||
else if (!uses_template_parms (ctx) && !TYPE_BEING_DEFINED (ctx))
|
||
{
|
||
/* Normally, make_typename_type does not require that the CTX
|
||
have complete type in order to allow things like:
|
||
|
||
template <class T> struct S { typename S<T>::X Y; };
|
||
|
||
But, such constructs have already been resolved by this
|
||
point, so here CTX really should have complete type, unless
|
||
it's a partial instantiation. */
|
||
ctx = complete_type (ctx);
|
||
if (!TYPE_SIZE (ctx))
|
||
{
|
||
if (complain)
|
||
incomplete_type_error (NULL_TREE, ctx);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
f = make_typename_type (ctx, f);
|
||
if (f == error_mark_node)
|
||
return f;
|
||
return cp_build_qualified_type (f,
|
||
CP_TYPE_QUALS (f)
|
||
| CP_TYPE_QUALS (t));
|
||
}
|
||
|
||
case INDIRECT_REF:
|
||
{
|
||
tree e = tsubst (TREE_OPERAND (t, 0), args, complain,
|
||
in_decl);
|
||
if (e == error_mark_node)
|
||
return error_mark_node;
|
||
return make_pointer_declarator (type, e);
|
||
}
|
||
|
||
case ADDR_EXPR:
|
||
{
|
||
tree e = tsubst (TREE_OPERAND (t, 0), args, complain,
|
||
in_decl);
|
||
if (e == error_mark_node)
|
||
return error_mark_node;
|
||
return make_reference_declarator (type, e);
|
||
}
|
||
|
||
case ARRAY_REF:
|
||
{
|
||
tree e1 = tsubst (TREE_OPERAND (t, 0), args, complain,
|
||
in_decl);
|
||
tree e2 = tsubst_expr (TREE_OPERAND (t, 1), args, complain,
|
||
in_decl);
|
||
if (e1 == error_mark_node || e2 == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return build_parse_node (ARRAY_REF, e1, e2, tsubst_expr);
|
||
}
|
||
|
||
case CALL_EXPR:
|
||
{
|
||
tree e1 = tsubst (TREE_OPERAND (t, 0), args, complain,
|
||
in_decl);
|
||
tree e2 = tsubst_call_declarator_parms (TREE_OPERAND (t, 1), args,
|
||
complain, in_decl);
|
||
tree e3 = tsubst (TREE_TYPE (t), args, complain, in_decl);
|
||
|
||
if (e1 == error_mark_node || e2 == error_mark_node
|
||
|| e3 == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return make_call_declarator (e1, e2, TREE_OPERAND (t, 2), e3);
|
||
}
|
||
|
||
case SCOPE_REF:
|
||
{
|
||
tree e1 = tsubst (TREE_OPERAND (t, 0), args, complain,
|
||
in_decl);
|
||
tree e2 = tsubst (TREE_OPERAND (t, 1), args, complain, in_decl);
|
||
if (e1 == error_mark_node || e2 == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return build_parse_node (TREE_CODE (t), e1, e2);
|
||
}
|
||
|
||
case TYPEOF_TYPE:
|
||
{
|
||
tree e1 = tsubst_expr (TYPE_FIELDS (t), args, complain,
|
||
in_decl);
|
||
if (e1 == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return TREE_TYPE (e1);
|
||
}
|
||
|
||
default:
|
||
sorry ("use of `%s' in template",
|
||
tree_code_name [(int) TREE_CODE (t)]);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
void
|
||
do_pushlevel ()
|
||
{
|
||
emit_line_note (input_filename, lineno);
|
||
pushlevel (0);
|
||
clear_last_expr ();
|
||
push_momentary ();
|
||
expand_start_bindings (0);
|
||
}
|
||
|
||
tree
|
||
do_poplevel ()
|
||
{
|
||
tree t;
|
||
int saved_warn_unused = 0;
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
saved_warn_unused = warn_unused;
|
||
warn_unused = 0;
|
||
}
|
||
expand_end_bindings (getdecls (), kept_level_p (), 0);
|
||
if (processing_template_decl)
|
||
warn_unused = saved_warn_unused;
|
||
t = poplevel (kept_level_p (), 1, 0);
|
||
pop_momentary ();
|
||
return t;
|
||
}
|
||
|
||
/* Like tsubst, but deals with expressions. This function just replaces
|
||
template parms; to finish processing the resultant expression, use
|
||
tsubst_expr. */
|
||
|
||
tree
|
||
tsubst_copy (t, args, complain, in_decl)
|
||
tree t, args;
|
||
int complain;
|
||
tree in_decl;
|
||
{
|
||
enum tree_code code;
|
||
tree r;
|
||
|
||
if (t == NULL_TREE || t == error_mark_node)
|
||
return t;
|
||
|
||
code = TREE_CODE (t);
|
||
|
||
switch (code)
|
||
{
|
||
case PARM_DECL:
|
||
return do_identifier (DECL_NAME (t), 0, NULL_TREE);
|
||
|
||
case CONST_DECL:
|
||
{
|
||
tree enum_type;
|
||
tree v;
|
||
|
||
if (!DECL_CONTEXT (t))
|
||
/* This is a global enumeration constant. */
|
||
return t;
|
||
|
||
/* Unfortunately, we cannot just call lookup_name here.
|
||
Consider:
|
||
|
||
template <int I> int f() {
|
||
enum E { a = I };
|
||
struct S { void g() { E e = a; } };
|
||
};
|
||
|
||
When we instantiate f<7>::S::g(), say, lookup_name is not
|
||
clever enough to find f<7>::a. */
|
||
enum_type
|
||
= tsubst_aggr_type (TREE_TYPE (t), args, complain, in_decl,
|
||
/*entering_scope=*/0);
|
||
|
||
for (v = TYPE_VALUES (enum_type);
|
||
v != NULL_TREE;
|
||
v = TREE_CHAIN (v))
|
||
if (TREE_PURPOSE (v) == DECL_NAME (t))
|
||
return TREE_VALUE (v);
|
||
|
||
/* We didn't find the name. That should never happen; if
|
||
name-lookup found it during preliminary parsing, we
|
||
should find it again here during instantiation. */
|
||
my_friendly_abort (0);
|
||
}
|
||
return t;
|
||
|
||
case FIELD_DECL:
|
||
if (DECL_CONTEXT (t))
|
||
{
|
||
tree ctx;
|
||
|
||
ctx = tsubst_aggr_type (DECL_CONTEXT (t), args, complain, in_decl,
|
||
/*entering_scope=*/1);
|
||
if (ctx != DECL_CONTEXT (t))
|
||
return lookup_field (ctx, DECL_NAME (t), 0, 0);
|
||
}
|
||
return t;
|
||
|
||
case VAR_DECL:
|
||
case FUNCTION_DECL:
|
||
if (DECL_LANG_SPECIFIC (t) && DECL_TEMPLATE_INFO (t))
|
||
t = tsubst (t, args, complain, in_decl);
|
||
mark_used (t);
|
||
return t;
|
||
|
||
case TEMPLATE_DECL:
|
||
if (is_member_template (t))
|
||
return tsubst (t, args, complain, in_decl);
|
||
else
|
||
return t;
|
||
|
||
case LOOKUP_EXPR:
|
||
{
|
||
/* We must tsbust into a LOOKUP_EXPR in case the names to
|
||
which it refers is a conversion operator; in that case the
|
||
name will change. We avoid making unnecessary copies,
|
||
however. */
|
||
|
||
tree id = tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl);
|
||
|
||
if (id != TREE_OPERAND (t, 0))
|
||
{
|
||
r = build_nt (LOOKUP_EXPR, id);
|
||
LOOKUP_EXPR_GLOBAL (r) = LOOKUP_EXPR_GLOBAL (t);
|
||
t = r;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
case CAST_EXPR:
|
||
case REINTERPRET_CAST_EXPR:
|
||
case CONST_CAST_EXPR:
|
||
case STATIC_CAST_EXPR:
|
||
case DYNAMIC_CAST_EXPR:
|
||
case NOP_EXPR:
|
||
return build1
|
||
(code, tsubst (TREE_TYPE (t), args, complain, in_decl),
|
||
tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl));
|
||
|
||
case INDIRECT_REF:
|
||
case PREDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
case NEGATE_EXPR:
|
||
case TRUTH_NOT_EXPR:
|
||
case BIT_NOT_EXPR:
|
||
case ADDR_EXPR:
|
||
case CONVERT_EXPR: /* Unary + */
|
||
case SIZEOF_EXPR:
|
||
case ALIGNOF_EXPR:
|
||
case ARROW_EXPR:
|
||
case THROW_EXPR:
|
||
case TYPEID_EXPR:
|
||
return build1
|
||
(code, tsubst (TREE_TYPE (t), args, complain, in_decl),
|
||
tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl));
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
case BIT_AND_EXPR:
|
||
case BIT_ANDTC_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case LSHIFT_EXPR:
|
||
case RROTATE_EXPR:
|
||
case LROTATE_EXPR:
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
case MAX_EXPR:
|
||
case MIN_EXPR:
|
||
case LE_EXPR:
|
||
case GE_EXPR:
|
||
case LT_EXPR:
|
||
case GT_EXPR:
|
||
case COMPONENT_REF:
|
||
case ARRAY_REF:
|
||
case COMPOUND_EXPR:
|
||
case SCOPE_REF:
|
||
case DOTSTAR_EXPR:
|
||
case MEMBER_REF:
|
||
return build_nt
|
||
(code, tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl),
|
||
tsubst_copy (TREE_OPERAND (t, 1), args, complain, in_decl));
|
||
|
||
case CALL_EXPR:
|
||
{
|
||
tree fn = TREE_OPERAND (t, 0);
|
||
if (is_overloaded_fn (fn))
|
||
fn = tsubst_copy (get_first_fn (fn), args, complain, in_decl);
|
||
else
|
||
/* Sometimes FN is a LOOKUP_EXPR. */
|
||
fn = tsubst_copy (fn, args, complain, in_decl);
|
||
return build_nt
|
||
(code, fn, tsubst_copy (TREE_OPERAND (t, 1), args, complain,
|
||
in_decl),
|
||
NULL_TREE);
|
||
}
|
||
|
||
case METHOD_CALL_EXPR:
|
||
{
|
||
tree name = TREE_OPERAND (t, 0);
|
||
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
||
{
|
||
name = tsubst_copy (TREE_OPERAND (name, 0), args,
|
||
complain, in_decl);
|
||
name = build1 (BIT_NOT_EXPR, NULL_TREE, name);
|
||
}
|
||
else if (TREE_CODE (name) == SCOPE_REF
|
||
&& TREE_CODE (TREE_OPERAND (name, 1)) == BIT_NOT_EXPR)
|
||
{
|
||
tree base = tsubst_copy (TREE_OPERAND (name, 0), args,
|
||
complain, in_decl);
|
||
name = TREE_OPERAND (name, 1);
|
||
name = tsubst_copy (TREE_OPERAND (name, 0), args,
|
||
complain, in_decl);
|
||
name = build1 (BIT_NOT_EXPR, NULL_TREE, name);
|
||
name = build_nt (SCOPE_REF, base, name);
|
||
}
|
||
else
|
||
name = tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl);
|
||
return build_nt
|
||
(code, name, tsubst_copy (TREE_OPERAND (t, 1), args,
|
||
complain, in_decl),
|
||
tsubst_copy (TREE_OPERAND (t, 2), args, complain, in_decl),
|
||
NULL_TREE);
|
||
}
|
||
|
||
case BIND_EXPR:
|
||
case COND_EXPR:
|
||
case MODOP_EXPR:
|
||
{
|
||
r = build_nt
|
||
(code, tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl),
|
||
tsubst_copy (TREE_OPERAND (t, 1), args, complain, in_decl),
|
||
tsubst_copy (TREE_OPERAND (t, 2), args, complain, in_decl));
|
||
|
||
if (code == BIND_EXPR && !processing_template_decl)
|
||
{
|
||
/* This processing should really occur in tsubst_expr,
|
||
However, tsubst_expr does not recurse into expressions,
|
||
since it assumes that there aren't any statements
|
||
inside them. Instead, it simply calls
|
||
build_expr_from_tree. So, we need to expand the
|
||
BIND_EXPR here. */
|
||
tree rtl_expr = begin_stmt_expr ();
|
||
tree block = tsubst_expr (TREE_OPERAND (r, 1), args,
|
||
complain, in_decl);
|
||
r = finish_stmt_expr (rtl_expr, block);
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
case NEW_EXPR:
|
||
{
|
||
r = build_nt
|
||
(code, tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl),
|
||
tsubst_copy (TREE_OPERAND (t, 1), args, complain, in_decl),
|
||
tsubst_copy (TREE_OPERAND (t, 2), args, complain, in_decl));
|
||
NEW_EXPR_USE_GLOBAL (r) = NEW_EXPR_USE_GLOBAL (t);
|
||
return r;
|
||
}
|
||
|
||
case DELETE_EXPR:
|
||
{
|
||
r = build_nt
|
||
(code, tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl),
|
||
tsubst_copy (TREE_OPERAND (t, 1), args, complain, in_decl));
|
||
DELETE_EXPR_USE_GLOBAL (r) = DELETE_EXPR_USE_GLOBAL (t);
|
||
DELETE_EXPR_USE_VEC (r) = DELETE_EXPR_USE_VEC (t);
|
||
return r;
|
||
}
|
||
|
||
case TEMPLATE_ID_EXPR:
|
||
{
|
||
/* Substituted template arguments */
|
||
tree targs = tsubst_copy (TREE_OPERAND (t, 1), args, complain,
|
||
in_decl);
|
||
|
||
if (targs && TREE_CODE (targs) == TREE_LIST)
|
||
{
|
||
tree chain;
|
||
for (chain = targs; chain; chain = TREE_CHAIN (chain))
|
||
TREE_VALUE (chain) = maybe_fold_nontype_arg (TREE_VALUE (chain));
|
||
}
|
||
else if (targs)
|
||
{
|
||
int i;
|
||
for (i = 0; i < TREE_VEC_LENGTH (targs); ++i)
|
||
TREE_VEC_ELT (targs, i)
|
||
= maybe_fold_nontype_arg (TREE_VEC_ELT (targs, i));
|
||
}
|
||
|
||
return lookup_template_function
|
||
(tsubst_copy (TREE_OPERAND (t, 0), args, complain, in_decl), targs);
|
||
}
|
||
|
||
case TREE_LIST:
|
||
{
|
||
tree purpose, value, chain;
|
||
|
||
if (t == void_list_node)
|
||
return t;
|
||
|
||
purpose = TREE_PURPOSE (t);
|
||
if (purpose)
|
||
purpose = tsubst_copy (purpose, args, complain, in_decl);
|
||
value = TREE_VALUE (t);
|
||
if (value)
|
||
value = tsubst_copy (value, args, complain, in_decl);
|
||
chain = TREE_CHAIN (t);
|
||
if (chain && chain != void_type_node)
|
||
chain = tsubst_copy (chain, args, complain, in_decl);
|
||
if (purpose == TREE_PURPOSE (t)
|
||
&& value == TREE_VALUE (t)
|
||
&& chain == TREE_CHAIN (t))
|
||
return t;
|
||
return tree_cons (purpose, value, chain);
|
||
}
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case INTEGER_TYPE:
|
||
case TEMPLATE_TYPE_PARM:
|
||
case TEMPLATE_TEMPLATE_PARM:
|
||
case TEMPLATE_PARM_INDEX:
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case OFFSET_TYPE:
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
case ARRAY_TYPE:
|
||
case TYPENAME_TYPE:
|
||
case TYPE_DECL:
|
||
return tsubst (t, args, complain, in_decl);
|
||
|
||
case IDENTIFIER_NODE:
|
||
if (IDENTIFIER_TYPENAME_P (t)
|
||
/* Make sure it's not just a variable named `__opr', for instance,
|
||
which can occur in some existing code. */
|
||
&& TREE_TYPE (t))
|
||
return build_typename_overload
|
||
(tsubst (TREE_TYPE (t), args, complain, in_decl));
|
||
else
|
||
return t;
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
r = build
|
||
(CONSTRUCTOR, tsubst (TREE_TYPE (t), args, complain, in_decl),
|
||
NULL_TREE, tsubst_copy (CONSTRUCTOR_ELTS (t), args,
|
||
complain, in_decl));
|
||
TREE_HAS_CONSTRUCTOR (r) = TREE_HAS_CONSTRUCTOR (t);
|
||
return r;
|
||
}
|
||
|
||
default:
|
||
return t;
|
||
}
|
||
}
|
||
|
||
/* Like tsubst_copy, but also does semantic processing and RTL expansion. */
|
||
|
||
tree
|
||
tsubst_expr (t, args, complain, in_decl)
|
||
tree t, args;
|
||
int complain;
|
||
tree in_decl;
|
||
{
|
||
if (t == NULL_TREE || t == error_mark_node)
|
||
return t;
|
||
|
||
if (processing_template_decl)
|
||
return tsubst_copy (t, args, complain, in_decl);
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case RETURN_STMT:
|
||
lineno = TREE_COMPLEXITY (t);
|
||
finish_return_stmt (tsubst_expr (RETURN_EXPR (t),
|
||
args, complain, in_decl));
|
||
break;
|
||
|
||
case EXPR_STMT:
|
||
lineno = TREE_COMPLEXITY (t);
|
||
finish_expr_stmt (tsubst_expr (EXPR_STMT_EXPR (t),
|
||
args, complain, in_decl));
|
||
break;
|
||
|
||
case DECL_STMT:
|
||
{
|
||
int i = suspend_momentary ();
|
||
tree dcl, init;
|
||
|
||
lineno = TREE_COMPLEXITY (t);
|
||
emit_line_note (input_filename, lineno);
|
||
dcl = start_decl
|
||
(tsubst (TREE_OPERAND (t, 0), args, complain, in_decl),
|
||
tsubst (TREE_OPERAND (t, 1), args, complain, in_decl),
|
||
TREE_OPERAND (t, 2) != 0, NULL_TREE, NULL_TREE);
|
||
init = tsubst_expr (TREE_OPERAND (t, 2), args, complain, in_decl);
|
||
cp_finish_decl
|
||
(dcl, init, NULL_TREE, 1, /*init ? LOOKUP_ONLYCONVERTING :*/ 0);
|
||
resume_momentary (i);
|
||
return dcl;
|
||
}
|
||
|
||
case FOR_STMT:
|
||
{
|
||
tree tmp;
|
||
lineno = TREE_COMPLEXITY (t);
|
||
|
||
begin_for_stmt ();
|
||
for (tmp = FOR_INIT_STMT (t); tmp; tmp = TREE_CHAIN (tmp))
|
||
tsubst_expr (tmp, args, complain, in_decl);
|
||
finish_for_init_stmt (NULL_TREE);
|
||
finish_for_cond (tsubst_expr (FOR_COND (t), args,
|
||
complain, in_decl),
|
||
NULL_TREE);
|
||
tmp = tsubst_expr (FOR_EXPR (t), args, complain, in_decl);
|
||
finish_for_expr (tmp, NULL_TREE);
|
||
tsubst_expr (FOR_BODY (t), args, complain, in_decl);
|
||
finish_for_stmt (tmp, NULL_TREE);
|
||
}
|
||
break;
|
||
|
||
case WHILE_STMT:
|
||
{
|
||
lineno = TREE_COMPLEXITY (t);
|
||
begin_while_stmt ();
|
||
finish_while_stmt_cond (tsubst_expr (WHILE_COND (t),
|
||
args, complain, in_decl),
|
||
NULL_TREE);
|
||
tsubst_expr (WHILE_BODY (t), args, complain, in_decl);
|
||
finish_while_stmt (NULL_TREE);
|
||
}
|
||
break;
|
||
|
||
case DO_STMT:
|
||
{
|
||
lineno = TREE_COMPLEXITY (t);
|
||
begin_do_stmt ();
|
||
tsubst_expr (DO_BODY (t), args, complain, in_decl);
|
||
finish_do_body (NULL_TREE);
|
||
finish_do_stmt (tsubst_expr (DO_COND (t), args,
|
||
complain, in_decl),
|
||
NULL_TREE);
|
||
}
|
||
break;
|
||
|
||
case IF_STMT:
|
||
{
|
||
tree tmp;
|
||
|
||
lineno = TREE_COMPLEXITY (t);
|
||
begin_if_stmt ();
|
||
finish_if_stmt_cond (tsubst_expr (IF_COND (t),
|
||
args, complain, in_decl),
|
||
NULL_TREE);
|
||
|
||
if (tmp = THEN_CLAUSE (t), tmp)
|
||
{
|
||
tsubst_expr (tmp, args, complain, in_decl);
|
||
finish_then_clause (NULL_TREE);
|
||
}
|
||
|
||
if (tmp = ELSE_CLAUSE (t), tmp)
|
||
{
|
||
begin_else_clause ();
|
||
tsubst_expr (tmp, args, complain, in_decl);
|
||
finish_else_clause (NULL_TREE);
|
||
}
|
||
|
||
finish_if_stmt ();
|
||
}
|
||
break;
|
||
|
||
case COMPOUND_STMT:
|
||
{
|
||
tree substmt;
|
||
|
||
lineno = TREE_COMPLEXITY (t);
|
||
begin_compound_stmt (COMPOUND_STMT_NO_SCOPE (t));
|
||
for (substmt = COMPOUND_BODY (t);
|
||
substmt != NULL_TREE;
|
||
substmt = TREE_CHAIN (substmt))
|
||
tsubst_expr (substmt, args, complain, in_decl);
|
||
return finish_compound_stmt (COMPOUND_STMT_NO_SCOPE (t),
|
||
NULL_TREE);
|
||
}
|
||
break;
|
||
|
||
case BREAK_STMT:
|
||
lineno = TREE_COMPLEXITY (t);
|
||
finish_break_stmt ();
|
||
break;
|
||
|
||
case CONTINUE_STMT:
|
||
lineno = TREE_COMPLEXITY (t);
|
||
finish_continue_stmt ();
|
||
break;
|
||
|
||
case SWITCH_STMT:
|
||
{
|
||
tree val, tmp;
|
||
|
||
lineno = TREE_COMPLEXITY (t);
|
||
begin_switch_stmt ();
|
||
val = tsubst_expr (SWITCH_COND (t), args, complain, in_decl);
|
||
finish_switch_cond (val);
|
||
|
||
if (tmp = TREE_OPERAND (t, 1), tmp)
|
||
tsubst_expr (tmp, args, complain, in_decl);
|
||
|
||
finish_switch_stmt (val, NULL_TREE);
|
||
}
|
||
break;
|
||
|
||
case CASE_LABEL:
|
||
finish_case_label (tsubst_expr (CASE_LOW (t), args, complain, in_decl),
|
||
tsubst_expr (CASE_HIGH (t), args, complain, in_decl));
|
||
break;
|
||
|
||
case LABEL_DECL:
|
||
t = define_label (DECL_SOURCE_FILE (t), DECL_SOURCE_LINE (t),
|
||
DECL_NAME (t));
|
||
if (t)
|
||
expand_label (t);
|
||
break;
|
||
|
||
case GOTO_STMT:
|
||
lineno = TREE_COMPLEXITY (t);
|
||
t = GOTO_DESTINATION (t);
|
||
if (TREE_CODE (t) != IDENTIFIER_NODE)
|
||
/* Computed goto's must be tsubst'd into. On the other hand,
|
||
non-computed gotos must not be; the identifier in question
|
||
will have no binding. */
|
||
t = tsubst_expr (t, args, complain, in_decl);
|
||
finish_goto_stmt (t);
|
||
break;
|
||
|
||
case ASM_STMT:
|
||
lineno = TREE_COMPLEXITY (t);
|
||
finish_asm_stmt (tsubst_expr (ASM_CV_QUAL (t), args, complain, in_decl),
|
||
tsubst_expr (ASM_STRING (t), args, complain, in_decl),
|
||
tsubst_expr (ASM_OUTPUTS (t), args, complain, in_decl),
|
||
tsubst_expr (ASM_INPUTS (t), args, complain, in_decl),
|
||
tsubst_expr (ASM_CLOBBERS (t), args, complain,
|
||
in_decl));
|
||
break;
|
||
|
||
case TRY_BLOCK:
|
||
lineno = TREE_COMPLEXITY (t);
|
||
begin_try_block ();
|
||
tsubst_expr (TRY_STMTS (t), args, complain, in_decl);
|
||
finish_try_block (NULL_TREE);
|
||
{
|
||
tree handler = TRY_HANDLERS (t);
|
||
for (; handler; handler = TREE_CHAIN (handler))
|
||
tsubst_expr (handler, args, complain, in_decl);
|
||
}
|
||
finish_handler_sequence (NULL_TREE);
|
||
break;
|
||
|
||
case HANDLER:
|
||
lineno = TREE_COMPLEXITY (t);
|
||
begin_handler ();
|
||
if (HANDLER_PARMS (t))
|
||
{
|
||
tree d = HANDLER_PARMS (t);
|
||
expand_start_catch_block
|
||
(tsubst (TREE_OPERAND (d, 1), args, complain, in_decl),
|
||
tsubst (TREE_OPERAND (d, 0), args, complain, in_decl));
|
||
}
|
||
else
|
||
expand_start_catch_block (NULL_TREE, NULL_TREE);
|
||
finish_handler_parms (NULL_TREE);
|
||
tsubst_expr (HANDLER_BODY (t), args, complain, in_decl);
|
||
finish_handler (NULL_TREE);
|
||
break;
|
||
|
||
case TAG_DEFN:
|
||
lineno = TREE_COMPLEXITY (t);
|
||
t = TREE_TYPE (t);
|
||
if (TREE_CODE (t) == ENUMERAL_TYPE)
|
||
tsubst (t, args, complain, NULL_TREE);
|
||
break;
|
||
|
||
default:
|
||
return build_expr_from_tree (tsubst_copy (t, args, complain, in_decl));
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Instantiate the indicated variable or function template TMPL with
|
||
the template arguments in TARG_PTR. */
|
||
|
||
tree
|
||
instantiate_template (tmpl, targ_ptr)
|
||
tree tmpl, targ_ptr;
|
||
{
|
||
tree fndecl;
|
||
tree gen_tmpl;
|
||
tree spec;
|
||
int i, len;
|
||
struct obstack *old_fmp_obstack;
|
||
extern struct obstack *function_maybepermanent_obstack;
|
||
tree inner_args;
|
||
|
||
if (tmpl == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 283);
|
||
|
||
/* Check to see if we already have this specialization. */
|
||
spec = retrieve_specialization (tmpl, targ_ptr);
|
||
if (spec != NULL_TREE)
|
||
return spec;
|
||
|
||
if (DECL_TEMPLATE_INFO (tmpl))
|
||
{
|
||
/* The TMPL is a partial instantiation. To get a full set of
|
||
arguments we must add the arguments used to perform the
|
||
partial instantiation. */
|
||
targ_ptr = add_outermost_template_args (DECL_TI_ARGS (tmpl),
|
||
targ_ptr);
|
||
gen_tmpl = most_general_template (tmpl);
|
||
|
||
/* Check to see if we already have this specialization. */
|
||
spec = retrieve_specialization (gen_tmpl, targ_ptr);
|
||
if (spec != NULL_TREE)
|
||
return spec;
|
||
}
|
||
else
|
||
gen_tmpl = tmpl;
|
||
|
||
push_obstacks (&permanent_obstack, &permanent_obstack);
|
||
old_fmp_obstack = function_maybepermanent_obstack;
|
||
function_maybepermanent_obstack = &permanent_obstack;
|
||
|
||
len = DECL_NTPARMS (gen_tmpl);
|
||
inner_args = innermost_args (targ_ptr);
|
||
i = len;
|
||
while (i--)
|
||
{
|
||
tree t = TREE_VEC_ELT (inner_args, i);
|
||
if (TREE_CODE_CLASS (TREE_CODE (t)) == 't')
|
||
{
|
||
tree nt = target_type (t);
|
||
if (IS_AGGR_TYPE (nt) && decl_function_context (TYPE_MAIN_DECL (nt)))
|
||
{
|
||
cp_error ("type `%T' composed from a local class is not a valid template-argument", t);
|
||
cp_error (" trying to instantiate `%D'", gen_tmpl);
|
||
fndecl = error_mark_node;
|
||
goto out;
|
||
}
|
||
}
|
||
}
|
||
targ_ptr = copy_to_permanent (targ_ptr);
|
||
|
||
/* substitute template parameters */
|
||
fndecl = tsubst (DECL_RESULT (gen_tmpl), targ_ptr, /*complain=*/1, gen_tmpl);
|
||
/* The DECL_TI_TEMPLATE should always be the immediate parent
|
||
template, not the most general template. */
|
||
DECL_TI_TEMPLATE (fndecl) = tmpl;
|
||
|
||
if (flag_external_templates)
|
||
add_pending_template (fndecl);
|
||
|
||
out:
|
||
function_maybepermanent_obstack = old_fmp_obstack;
|
||
pop_obstacks ();
|
||
|
||
return fndecl;
|
||
}
|
||
|
||
/* Push the name of the class template into the scope of the instantiation. */
|
||
|
||
void
|
||
overload_template_name (type)
|
||
tree type;
|
||
{
|
||
tree id = DECL_NAME (CLASSTYPE_TI_TEMPLATE (type));
|
||
tree decl;
|
||
|
||
if (IDENTIFIER_CLASS_VALUE (id)
|
||
&& TREE_TYPE (IDENTIFIER_CLASS_VALUE (id)) == type)
|
||
return;
|
||
|
||
decl = build_decl (TYPE_DECL, id, type);
|
||
SET_DECL_ARTIFICIAL (decl);
|
||
pushdecl_class_level (decl);
|
||
}
|
||
|
||
/* The FN is a TEMPLATE_DECL for a function. The ARGS are the
|
||
arguments that are being used when calling it. TARGS is a vector
|
||
into which the deduced template arguments are placed.
|
||
|
||
Return zero for success, 2 for an incomplete match that doesn't resolve
|
||
all the types, and 1 for complete failure. An error message will be
|
||
printed only for an incomplete match.
|
||
|
||
If FN is a conversion operator, RETURN_TYPE is the type desired as
|
||
the result of the conversion operator.
|
||
|
||
TPARMS is a vector of template parameters.
|
||
|
||
The EXPLICIT_TARGS are explicit template arguments provided via a
|
||
template-id.
|
||
|
||
The parameter STRICT is one of:
|
||
|
||
DEDUCE_CALL:
|
||
We are deducing arguments for a function call, as in
|
||
[temp.deduct.call].
|
||
|
||
DEDUCE_CONV:
|
||
We are deducing arguments for a conversion function, as in
|
||
[temp.deduct.conv].
|
||
|
||
DEDUCE_EXACT:
|
||
We are deducing arguments when calculating the partial
|
||
ordering between specializations of function or class
|
||
templates, as in [temp.func.order] and [temp.class.order],
|
||
when doing an explicit instantiation as in [temp.explicit],
|
||
when determining an explicit specialization as in
|
||
[temp.expl.spec], or when taking the address of a function
|
||
template, as in [temp.deduct.funcaddr].
|
||
|
||
The other arguments are as for type_unification. */
|
||
|
||
int
|
||
fn_type_unification (fn, explicit_targs, targs, args, return_type,
|
||
strict)
|
||
tree fn, explicit_targs, targs, args, return_type;
|
||
unification_kind_t strict;
|
||
{
|
||
tree parms;
|
||
tree fntype;
|
||
|
||
my_friendly_assert (TREE_CODE (fn) == TEMPLATE_DECL, 0);
|
||
|
||
fntype = TREE_TYPE (fn);
|
||
if (explicit_targs)
|
||
{
|
||
/* [temp.deduct]
|
||
|
||
The specified template arguments must match the template
|
||
parameters in kind (i.e., type, nontype, template), and there
|
||
must not be more arguments than there are parameters;
|
||
otherwise type deduction fails.
|
||
|
||
Nontype arguments must match the types of the corresponding
|
||
nontype template parameters, or must be convertible to the
|
||
types of the corresponding nontype parameters as specified in
|
||
_temp.arg.nontype_, otherwise type deduction fails.
|
||
|
||
All references in the function type of the function template
|
||
to the corresponding template parameters are replaced by the
|
||
specified template argument values. If a substitution in a
|
||
template parameter or in the function type of the function
|
||
template results in an invalid type, type deduction fails. */
|
||
int i;
|
||
tree converted_args;
|
||
|
||
converted_args
|
||
= (coerce_template_parms (DECL_INNERMOST_TEMPLATE_PARMS (fn),
|
||
explicit_targs, NULL_TREE, /*complain=*/0,
|
||
/*require_all_arguments=*/0));
|
||
if (converted_args == error_mark_node)
|
||
return 1;
|
||
|
||
fntype = tsubst (fntype, converted_args, /*complain=*/0, NULL_TREE);
|
||
if (fntype == error_mark_node)
|
||
return 1;
|
||
|
||
/* Place the explicitly specified arguments in TARGS. */
|
||
for (i = 0; i < TREE_VEC_LENGTH (targs); i++)
|
||
TREE_VEC_ELT (targs, i) = TREE_VEC_ELT (converted_args, i);
|
||
}
|
||
|
||
parms = TYPE_ARG_TYPES (fntype);
|
||
|
||
if (DECL_CONV_FN_P (fn))
|
||
{
|
||
/* This is a template conversion operator. Use the return types
|
||
as well as the argument types. We use it instead of 'this', since
|
||
we could be comparing conversions from different classes. */
|
||
parms = scratch_tree_cons (NULL_TREE, TREE_TYPE (fntype),
|
||
TREE_CHAIN (parms));
|
||
args = scratch_tree_cons (NULL_TREE, return_type, TREE_CHAIN (args));
|
||
}
|
||
|
||
/* We allow incomplete unification without an error message here
|
||
because the standard doesn't seem to explicitly prohibit it. Our
|
||
callers must be ready to deal with unification failures in any
|
||
event. */
|
||
return type_unification_real (DECL_INNERMOST_TEMPLATE_PARMS (fn),
|
||
targs, parms, args, /*subr=*/0,
|
||
strict, /*allow_incomplete*/1);
|
||
}
|
||
|
||
/* Adjust types before performing type deduction, as described in
|
||
[temp.deduct.call] and [temp.deduct.conv]. The rules in these two
|
||
sections are symmetric. PARM is the type of a function parameter
|
||
or the return type of the conversion function. ARG is the type of
|
||
the argument passed to the call, or the type of the value
|
||
intialized with the result of the conversion function. */
|
||
|
||
static void
|
||
maybe_adjust_types_for_deduction (strict, parm, arg)
|
||
unification_kind_t strict;
|
||
tree* parm;
|
||
tree* arg;
|
||
{
|
||
switch (strict)
|
||
{
|
||
case DEDUCE_CALL:
|
||
break;
|
||
|
||
case DEDUCE_CONV:
|
||
{
|
||
/* Swap PARM and ARG throughout the remainder of this
|
||
function; the handling is precisely symmetric since PARM
|
||
will initialize ARG rather than vice versa. */
|
||
tree* temp = parm;
|
||
parm = arg;
|
||
arg = temp;
|
||
break;
|
||
}
|
||
|
||
case DEDUCE_EXACT:
|
||
/* There is nothing to do in this case. */
|
||
return;
|
||
|
||
default:
|
||
my_friendly_abort (0);
|
||
}
|
||
|
||
if (TREE_CODE (*parm) != REFERENCE_TYPE)
|
||
{
|
||
/* [temp.deduct.call]
|
||
|
||
If P is not a reference type:
|
||
|
||
--If A is an array type, the pointer type produced by the
|
||
array-to-pointer standard conversion (_conv.array_) is
|
||
used in place of A for type deduction; otherwise,
|
||
|
||
--If A is a function type, the pointer type produced by
|
||
the function-to-pointer standard conversion
|
||
(_conv.func_) is used in place of A for type deduction;
|
||
otherwise,
|
||
|
||
--If A is a cv-qualified type, the top level
|
||
cv-qualifiers of A's type are ignored for type
|
||
deduction. */
|
||
if (TREE_CODE (*arg) == ARRAY_TYPE)
|
||
*arg = build_pointer_type (TREE_TYPE (*arg));
|
||
else if (TREE_CODE (*arg) == FUNCTION_TYPE)
|
||
*arg = build_pointer_type (*arg);
|
||
else
|
||
*arg = TYPE_MAIN_VARIANT (*arg);
|
||
}
|
||
|
||
/* [temp.deduct.call]
|
||
|
||
If P is a cv-qualified type, the top level cv-qualifiers
|
||
of P's type are ignored for type deduction. If P is a
|
||
reference type, the type referred to by P is used for
|
||
type deduction. */
|
||
*parm = TYPE_MAIN_VARIANT (*parm);
|
||
if (TREE_CODE (*parm) == REFERENCE_TYPE)
|
||
*parm = TREE_TYPE (*parm);
|
||
}
|
||
|
||
/* Like type_unfication.
|
||
|
||
If SUBR is 1, we're being called recursively (to unify the
|
||
arguments of a function or method parameter of a function
|
||
template). */
|
||
|
||
static int
|
||
type_unification_real (tparms, targs, parms, args, subr,
|
||
strict, allow_incomplete)
|
||
tree tparms, targs, parms, args;
|
||
int subr;
|
||
unification_kind_t strict;
|
||
int allow_incomplete;
|
||
{
|
||
tree parm, arg;
|
||
int i;
|
||
int ntparms = TREE_VEC_LENGTH (tparms);
|
||
int sub_strict;
|
||
|
||
my_friendly_assert (TREE_CODE (tparms) == TREE_VEC, 289);
|
||
my_friendly_assert (parms == NULL_TREE
|
||
|| TREE_CODE (parms) == TREE_LIST, 290);
|
||
/* ARGS could be NULL (via a call from parse.y to
|
||
build_x_function_call). */
|
||
if (args)
|
||
my_friendly_assert (TREE_CODE (args) == TREE_LIST, 291);
|
||
my_friendly_assert (ntparms > 0, 292);
|
||
|
||
switch (strict)
|
||
{
|
||
case DEDUCE_CALL:
|
||
sub_strict = UNIFY_ALLOW_MORE_CV_QUAL | UNIFY_ALLOW_DERIVED;
|
||
break;
|
||
|
||
case DEDUCE_CONV:
|
||
sub_strict = UNIFY_ALLOW_LESS_CV_QUAL;
|
||
break;
|
||
|
||
case DEDUCE_EXACT:
|
||
sub_strict = UNIFY_ALLOW_NONE;
|
||
break;
|
||
|
||
default:
|
||
my_friendly_abort (0);
|
||
}
|
||
|
||
while (parms
|
||
&& parms != void_list_node
|
||
&& args
|
||
&& args != void_list_node)
|
||
{
|
||
parm = TREE_VALUE (parms);
|
||
parms = TREE_CHAIN (parms);
|
||
arg = TREE_VALUE (args);
|
||
args = TREE_CHAIN (args);
|
||
|
||
if (arg == error_mark_node)
|
||
return 1;
|
||
if (arg == unknown_type_node)
|
||
/* We can't deduce anything from this, but we might get all the
|
||
template args from other function args. */
|
||
continue;
|
||
|
||
/* Conversions will be performed on a function argument that
|
||
corresponds with a function parameter that contains only
|
||
non-deducible template parameters and explicitly specified
|
||
template parameters. */
|
||
if (! uses_template_parms (parm))
|
||
{
|
||
tree type;
|
||
|
||
if (TREE_CODE_CLASS (TREE_CODE (arg)) != 't')
|
||
type = TREE_TYPE (arg);
|
||
else
|
||
{
|
||
type = arg;
|
||
arg = NULL_TREE;
|
||
}
|
||
|
||
if (strict == DEDUCE_EXACT)
|
||
{
|
||
if (same_type_p (parm, type))
|
||
continue;
|
||
}
|
||
else
|
||
/* It might work; we shouldn't check now, because we might
|
||
get into infinite recursion. Overload resolution will
|
||
handle it. */
|
||
continue;
|
||
|
||
return 1;
|
||
}
|
||
|
||
if (TREE_CODE_CLASS (TREE_CODE (arg)) != 't')
|
||
{
|
||
my_friendly_assert (TREE_TYPE (arg) != NULL_TREE, 293);
|
||
if (type_unknown_p (arg))
|
||
{
|
||
/* [temp.deduct.type] A template-argument can be deduced from
|
||
a pointer to function or pointer to member function
|
||
argument if the set of overloaded functions does not
|
||
contain function templates and at most one of a set of
|
||
overloaded functions provides a unique match. */
|
||
|
||
if (resolve_overloaded_unification
|
||
(tparms, targs, parm, arg, strict, sub_strict)
|
||
!= 0)
|
||
return 1;
|
||
continue;
|
||
}
|
||
arg = TREE_TYPE (arg);
|
||
}
|
||
|
||
if (!subr)
|
||
maybe_adjust_types_for_deduction (strict, &parm, &arg);
|
||
|
||
switch (unify (tparms, targs, parm, arg, sub_strict))
|
||
{
|
||
case 0:
|
||
break;
|
||
case 1:
|
||
return 1;
|
||
}
|
||
}
|
||
/* Fail if we've reached the end of the parm list, and more args
|
||
are present, and the parm list isn't variadic. */
|
||
if (args && args != void_list_node && parms == void_list_node)
|
||
return 1;
|
||
/* Fail if parms are left and they don't have default values. */
|
||
if (parms
|
||
&& parms != void_list_node
|
||
&& TREE_PURPOSE (parms) == NULL_TREE)
|
||
return 1;
|
||
if (!subr)
|
||
for (i = 0; i < ntparms; i++)
|
||
if (TREE_VEC_ELT (targs, i) == NULL_TREE)
|
||
{
|
||
if (!allow_incomplete)
|
||
error ("incomplete type unification");
|
||
return 2;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Subroutine of type_unification_real. Args are like the variables at the
|
||
call site. ARG is an overloaded function (or template-id); we try
|
||
deducing template args from each of the overloads, and if only one
|
||
succeeds, we go with that. Modifies TARGS and returns 0 on success. */
|
||
|
||
static int
|
||
resolve_overloaded_unification (tparms, targs, parm, arg, strict,
|
||
sub_strict)
|
||
tree tparms, targs, parm, arg;
|
||
unification_kind_t strict;
|
||
int sub_strict;
|
||
{
|
||
tree tempargs = copy_node (targs);
|
||
int good = 0;
|
||
|
||
if (TREE_CODE (arg) == ADDR_EXPR)
|
||
arg = TREE_OPERAND (arg, 0);
|
||
|
||
if (TREE_CODE (arg) == COMPONENT_REF)
|
||
/* Handle `&x' where `x' is some static or non-static member
|
||
function name. */
|
||
arg = TREE_OPERAND (arg, 1);
|
||
|
||
if (TREE_CODE (arg) == OFFSET_REF)
|
||
arg = TREE_OPERAND (arg, 1);
|
||
|
||
/* Strip baselink information. */
|
||
while (TREE_CODE (arg) == TREE_LIST)
|
||
arg = TREE_VALUE (arg);
|
||
|
||
if (TREE_CODE (arg) == TEMPLATE_ID_EXPR)
|
||
{
|
||
/* If we got some explicit template args, we need to plug them into
|
||
the affected templates before we try to unify, in case the
|
||
explicit args will completely resolve the templates in question. */
|
||
|
||
tree expl_subargs = TREE_OPERAND (arg, 1);
|
||
arg = TREE_OPERAND (arg, 0);
|
||
|
||
for (; arg; arg = OVL_NEXT (arg))
|
||
{
|
||
tree fn = OVL_CURRENT (arg);
|
||
tree subargs, elem;
|
||
|
||
if (TREE_CODE (fn) != TEMPLATE_DECL)
|
||
continue;
|
||
|
||
subargs = get_bindings_overload (fn, DECL_RESULT (fn), expl_subargs);
|
||
if (subargs)
|
||
{
|
||
elem = tsubst (TREE_TYPE (fn), subargs, /*complain=*/0,
|
||
NULL_TREE);
|
||
if (TREE_CODE (elem) == METHOD_TYPE)
|
||
elem = build_ptrmemfunc_type (build_pointer_type (elem));
|
||
good += try_one_overload (tparms, targs, tempargs, parm, elem,
|
||
strict, sub_strict);
|
||
}
|
||
}
|
||
}
|
||
else if (TREE_CODE (arg) == OVERLOAD)
|
||
{
|
||
for (; arg; arg = OVL_NEXT (arg))
|
||
{
|
||
tree type = TREE_TYPE (OVL_CURRENT (arg));
|
||
if (TREE_CODE (type) == METHOD_TYPE)
|
||
type = build_ptrmemfunc_type (build_pointer_type (type));
|
||
good += try_one_overload (tparms, targs, tempargs, parm,
|
||
type,
|
||
strict, sub_strict);
|
||
}
|
||
}
|
||
else
|
||
my_friendly_abort (981006);
|
||
|
||
/* [temp.deduct.type] A template-argument can be deduced from a pointer
|
||
to function or pointer to member function argument if the set of
|
||
overloaded functions does not contain function templates and at most
|
||
one of a set of overloaded functions provides a unique match.
|
||
|
||
So if we found multiple possibilities, we return success but don't
|
||
deduce anything. */
|
||
|
||
if (good == 1)
|
||
{
|
||
int i = TREE_VEC_LENGTH (targs);
|
||
for (; i--; )
|
||
if (TREE_VEC_ELT (tempargs, i))
|
||
TREE_VEC_ELT (targs, i) = TREE_VEC_ELT (tempargs, i);
|
||
}
|
||
if (good)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Subroutine of resolve_overloaded_unification; does deduction for a single
|
||
overload. Fills TARGS with any deduced arguments, or error_mark_node if
|
||
different overloads deduce different arguments for a given parm.
|
||
Returns 1 on success. */
|
||
|
||
static int
|
||
try_one_overload (tparms, orig_targs, targs, parm, arg, strict,
|
||
sub_strict)
|
||
tree tparms, orig_targs, targs, parm, arg;
|
||
unification_kind_t strict;
|
||
int sub_strict;
|
||
{
|
||
int nargs;
|
||
tree tempargs;
|
||
int i;
|
||
|
||
/* [temp.deduct.type] A template-argument can be deduced from a pointer
|
||
to function or pointer to member function argument if the set of
|
||
overloaded functions does not contain function templates and at most
|
||
one of a set of overloaded functions provides a unique match.
|
||
|
||
So if this is a template, just return success. */
|
||
|
||
if (uses_template_parms (arg))
|
||
return 1;
|
||
|
||
maybe_adjust_types_for_deduction (strict, &parm, &arg);
|
||
|
||
/* We don't copy orig_targs for this because if we have already deduced
|
||
some template args from previous args, unify would complain when we
|
||
try to deduce a template parameter for the same argument, even though
|
||
there isn't really a conflict. */
|
||
nargs = TREE_VEC_LENGTH (targs);
|
||
tempargs = make_scratch_vec (nargs);
|
||
|
||
if (unify (tparms, tempargs, parm, arg, sub_strict) != 0)
|
||
return 0;
|
||
|
||
/* First make sure we didn't deduce anything that conflicts with
|
||
explicitly specified args. */
|
||
for (i = nargs; i--; )
|
||
{
|
||
tree elt = TREE_VEC_ELT (tempargs, i);
|
||
tree oldelt = TREE_VEC_ELT (orig_targs, i);
|
||
|
||
if (elt == NULL_TREE)
|
||
continue;
|
||
else if (uses_template_parms (elt))
|
||
{
|
||
/* Since we're unifying against ourselves, we will fill in template
|
||
args used in the function parm list with our own template parms.
|
||
Discard them. */
|
||
TREE_VEC_ELT (tempargs, i) = NULL_TREE;
|
||
continue;
|
||
}
|
||
else if (oldelt && ! template_args_equal (oldelt, elt))
|
||
return 0;
|
||
}
|
||
|
||
for (i = nargs; i--; )
|
||
{
|
||
tree elt = TREE_VEC_ELT (tempargs, i);
|
||
|
||
if (elt)
|
||
TREE_VEC_ELT (targs, i) = elt;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* PARM is a template class (perhaps with unbound template
|
||
parameters). ARG is a fully instantiated type. If ARG can be
|
||
bound to PARM, return ARG, otherwise return NULL_TREE. TPARMS and
|
||
TARGS are as for unify. */
|
||
|
||
static tree
|
||
try_class_unification (tparms, targs, parm, arg)
|
||
tree tparms;
|
||
tree targs;
|
||
tree parm;
|
||
tree arg;
|
||
{
|
||
int i;
|
||
tree copy_of_targs;
|
||
|
||
if (!CLASSTYPE_TEMPLATE_INFO (arg)
|
||
|| CLASSTYPE_TI_TEMPLATE (arg) != CLASSTYPE_TI_TEMPLATE (parm))
|
||
return NULL_TREE;
|
||
|
||
/* We need to make a new template argument vector for the call to
|
||
unify. If we used TARGS, we'd clutter it up with the result of
|
||
the attempted unification, even if this class didn't work out.
|
||
We also don't want to commit ourselves to all the unifications
|
||
we've already done, since unification is supposed to be done on
|
||
an argument-by-argument basis. In other words, consider the
|
||
following pathological case:
|
||
|
||
template <int I, int J, int K>
|
||
struct S {};
|
||
|
||
template <int I, int J>
|
||
struct S<I, J, 2> : public S<I, I, I>, S<J, J, J> {};
|
||
|
||
template <int I, int J, int K>
|
||
void f(S<I, J, K>, S<I, I, I>);
|
||
|
||
void g() {
|
||
S<0, 0, 0> s0;
|
||
S<0, 1, 2> s2;
|
||
|
||
f(s0, s2);
|
||
}
|
||
|
||
Now, by the time we consider the unification involving `s2', we
|
||
already know that we must have `f<0, 0, 0>'. But, even though
|
||
`S<0, 1, 2>' is derived from `S<0, 0, 0>', the code is not legal
|
||
because there are two ways to unify base classes of S<0, 1, 2>
|
||
with S<I, I, I>. If we kept the already deduced knowledge, we
|
||
would reject the possibility I=1. */
|
||
push_momentary ();
|
||
copy_of_targs = make_temp_vec (TREE_VEC_LENGTH (targs));
|
||
i = unify (tparms, copy_of_targs, CLASSTYPE_TI_ARGS (parm),
|
||
CLASSTYPE_TI_ARGS (arg), UNIFY_ALLOW_NONE);
|
||
pop_momentary ();
|
||
|
||
/* If unification failed, we're done. */
|
||
if (i != 0)
|
||
return NULL_TREE;
|
||
else
|
||
return arg;
|
||
}
|
||
|
||
/* Subroutine of get_template_base. RVAL, if non-NULL, is a base we
|
||
have alreay discovered to be satisfactory. ARG_BINFO is the binfo
|
||
for the base class of ARG that we are currently examining. */
|
||
|
||
static tree
|
||
get_template_base_recursive (tparms, targs, parm,
|
||
arg_binfo, rval, flags)
|
||
tree tparms;
|
||
tree targs;
|
||
tree arg_binfo;
|
||
tree rval;
|
||
tree parm;
|
||
int flags;
|
||
{
|
||
tree binfos;
|
||
int i, n_baselinks;
|
||
tree arg = BINFO_TYPE (arg_binfo);
|
||
|
||
if (!(flags & GTB_IGNORE_TYPE))
|
||
{
|
||
tree r = try_class_unification (tparms, targs,
|
||
parm, arg);
|
||
|
||
/* If there is more than one satisfactory baseclass, then:
|
||
|
||
[temp.deduct.call]
|
||
|
||
If they yield more than one possible deduced A, the type
|
||
deduction fails.
|
||
|
||
applies. */
|
||
if (r && rval && !same_type_p (r, rval))
|
||
return error_mark_node;
|
||
else if (r)
|
||
rval = r;
|
||
}
|
||
|
||
binfos = BINFO_BASETYPES (arg_binfo);
|
||
n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
|
||
|
||
/* Process base types. */
|
||
for (i = 0; i < n_baselinks; i++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
||
int this_virtual;
|
||
|
||
/* Skip this base, if we've already seen it. */
|
||
if (BINFO_MARKED (base_binfo))
|
||
continue;
|
||
|
||
this_virtual =
|
||
(flags & GTB_VIA_VIRTUAL) || TREE_VIA_VIRTUAL (base_binfo);
|
||
|
||
/* When searching for a non-virtual, we cannot mark virtually
|
||
found binfos. */
|
||
if (! this_virtual)
|
||
SET_BINFO_MARKED (base_binfo);
|
||
|
||
rval = get_template_base_recursive (tparms, targs,
|
||
parm,
|
||
base_binfo,
|
||
rval,
|
||
GTB_VIA_VIRTUAL * this_virtual);
|
||
|
||
/* If we discovered more than one matching base class, we can
|
||
stop now. */
|
||
if (rval == error_mark_node)
|
||
return error_mark_node;
|
||
}
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* Given a template type PARM and a class type ARG, find the unique
|
||
base type in ARG that is an instance of PARM. We do not examine
|
||
ARG itself; only its base-classes. If there is no appropriate base
|
||
class, return NULL_TREE. If there is more than one, return
|
||
error_mark_node. PARM may be the type of a partial specialization,
|
||
as well as a plain template type. Used by unify. */
|
||
|
||
static tree
|
||
get_template_base (tparms, targs, parm, arg)
|
||
tree tparms;
|
||
tree targs;
|
||
tree parm;
|
||
tree arg;
|
||
{
|
||
tree rval;
|
||
tree arg_binfo;
|
||
|
||
my_friendly_assert (IS_AGGR_TYPE_CODE (TREE_CODE (arg)), 92);
|
||
|
||
arg_binfo = TYPE_BINFO (complete_type (arg));
|
||
rval = get_template_base_recursive (tparms, targs,
|
||
parm, arg_binfo,
|
||
NULL_TREE,
|
||
GTB_IGNORE_TYPE);
|
||
|
||
/* Since get_template_base_recursive marks the bases classes, we
|
||
must unmark them here. */
|
||
dfs_walk (arg_binfo, dfs_unmark, markedp, 0);
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* Returns the level of DECL, which declares a template parameter. */
|
||
|
||
static int
|
||
template_decl_level (decl)
|
||
tree decl;
|
||
{
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case TYPE_DECL:
|
||
case TEMPLATE_DECL:
|
||
return TEMPLATE_TYPE_LEVEL (TREE_TYPE (decl));
|
||
|
||
case PARM_DECL:
|
||
return TEMPLATE_PARM_LEVEL (DECL_INITIAL (decl));
|
||
|
||
default:
|
||
my_friendly_abort (0);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Decide whether ARG can be unified with PARM, considering only the
|
||
cv-qualifiers of each type, given STRICT as documented for unify.
|
||
Returns non-zero iff the unification is OK on that basis.*/
|
||
|
||
static int
|
||
check_cv_quals_for_unify (strict, arg, parm)
|
||
int strict;
|
||
tree arg;
|
||
tree parm;
|
||
{
|
||
return !((!(strict & UNIFY_ALLOW_MORE_CV_QUAL)
|
||
&& !at_least_as_qualified_p (arg, parm))
|
||
|| (!(strict & UNIFY_ALLOW_LESS_CV_QUAL)
|
||
&& (!at_least_as_qualified_p (parm, arg))));
|
||
}
|
||
|
||
/* Takes parameters as for type_unification. Returns 0 if the
|
||
type deduction suceeds, 1 otherwise. The parameter STRICT is a
|
||
bitwise or of the following flags:
|
||
|
||
UNIFY_ALLOW_NONE:
|
||
Require an exact match between PARM and ARG.
|
||
UNIFY_ALLOW_MORE_CV_QUAL:
|
||
Allow the deduced ARG to be more cv-qualified than ARG.
|
||
UNIFY_ALLOW_LESS_CV_QUAL:
|
||
Allow the deduced ARG to be less cv-qualified than ARG.
|
||
UNIFY_ALLOW_DERIVED:
|
||
Allow the deduced ARG to be a template base class of ARG,
|
||
or a pointer to a template base class of the type pointed to by
|
||
ARG.
|
||
UNIFY_ALLOW_INTEGER:
|
||
Allow any integral type to be deduced. See the TEMPLATE_PARM_INDEX
|
||
case for more information. */
|
||
|
||
static int
|
||
unify (tparms, targs, parm, arg, strict)
|
||
tree tparms, targs, parm, arg;
|
||
int strict;
|
||
{
|
||
int idx;
|
||
tree targ;
|
||
tree tparm;
|
||
|
||
/* I don't think this will do the right thing with respect to types.
|
||
But the only case I've seen it in so far has been array bounds, where
|
||
signedness is the only information lost, and I think that will be
|
||
okay. */
|
||
while (TREE_CODE (parm) == NOP_EXPR)
|
||
parm = TREE_OPERAND (parm, 0);
|
||
|
||
if (arg == error_mark_node)
|
||
return 1;
|
||
if (arg == unknown_type_node)
|
||
/* We can't deduce anything from this, but we might get all the
|
||
template args from other function args. */
|
||
return 0;
|
||
|
||
/* If PARM uses template parameters, then we can't bail out here,
|
||
even if ARG == PARM, since we won't record unifications for the
|
||
template parameters. We might need them if we're trying to
|
||
figure out which of two things is more specialized. */
|
||
if (arg == parm && !uses_template_parms (parm))
|
||
return 0;
|
||
|
||
/* Immediately reject some pairs that won't unify because of
|
||
cv-qualification mismatches. */
|
||
if (TREE_CODE (arg) == TREE_CODE (parm)
|
||
&& TREE_CODE_CLASS (TREE_CODE (arg)) == 't'
|
||
/* We check the cv-qualifiers when unifying with template type
|
||
parameters below. We want to allow ARG `const T' to unify with
|
||
PARM `T' for example, when computing which of two templates
|
||
is more specialized, for example. */
|
||
&& TREE_CODE (arg) != TEMPLATE_TYPE_PARM
|
||
&& !check_cv_quals_for_unify (strict, arg, parm))
|
||
return 1;
|
||
|
||
switch (TREE_CODE (parm))
|
||
{
|
||
case TYPENAME_TYPE:
|
||
/* In a type which contains a nested-name-specifier, template
|
||
argument values cannot be deduced for template parameters used
|
||
within the nested-name-specifier. */
|
||
return 0;
|
||
|
||
case TEMPLATE_TYPE_PARM:
|
||
case TEMPLATE_TEMPLATE_PARM:
|
||
tparm = TREE_VALUE (TREE_VEC_ELT (tparms, 0));
|
||
|
||
if (TEMPLATE_TYPE_LEVEL (parm)
|
||
!= template_decl_level (tparm))
|
||
/* The PARM is not one we're trying to unify. Just check
|
||
to see if it matches ARG. */
|
||
return (TREE_CODE (arg) == TREE_CODE (parm)
|
||
&& same_type_p (parm, arg)) ? 0 : 1;
|
||
idx = TEMPLATE_TYPE_IDX (parm);
|
||
targ = TREE_VEC_ELT (targs, idx);
|
||
tparm = TREE_VALUE (TREE_VEC_ELT (tparms, idx));
|
||
|
||
/* Check for mixed types and values. */
|
||
if ((TREE_CODE (parm) == TEMPLATE_TYPE_PARM
|
||
&& TREE_CODE (tparm) != TYPE_DECL)
|
||
|| (TREE_CODE (parm) == TEMPLATE_TEMPLATE_PARM
|
||
&& TREE_CODE (tparm) != TEMPLATE_DECL))
|
||
return 1;
|
||
|
||
if (TREE_CODE (parm) == TEMPLATE_TEMPLATE_PARM)
|
||
{
|
||
if (TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (parm))
|
||
{
|
||
/* We arrive here when PARM does not involve template
|
||
specialization. */
|
||
|
||
/* ARG must be constructed from a template class. */
|
||
if (TREE_CODE (arg) != RECORD_TYPE || !CLASSTYPE_TEMPLATE_INFO (arg))
|
||
return 1;
|
||
|
||
{
|
||
tree parmtmpl = TYPE_TI_TEMPLATE (parm);
|
||
tree parmvec = TYPE_TI_ARGS (parm);
|
||
tree argvec = CLASSTYPE_TI_ARGS (arg);
|
||
tree argtmplvec
|
||
= DECL_INNERMOST_TEMPLATE_PARMS (CLASSTYPE_TI_TEMPLATE (arg));
|
||
int i;
|
||
|
||
/* The parameter and argument roles have to be switched here
|
||
in order to handle default arguments properly. For example,
|
||
template<template <class> class TT> void f(TT<int>)
|
||
should be able to accept vector<int> which comes from
|
||
template <class T, class Allocator = allocator>
|
||
class vector. */
|
||
|
||
if (coerce_template_parms (argtmplvec, parmvec, parmtmpl, 0, 1)
|
||
== error_mark_node)
|
||
return 1;
|
||
|
||
/* Deduce arguments T, i from TT<T> or TT<i>.
|
||
We check each element of PARMVEC and ARGVEC individually
|
||
rather than the whole TREE_VEC since they can have
|
||
different number of elements. */
|
||
|
||
for (i = 0; i < TREE_VEC_LENGTH (parmvec); ++i)
|
||
{
|
||
tree t = TREE_VEC_ELT (parmvec, i);
|
||
|
||
if (unify (tparms, targs, t,
|
||
TREE_VEC_ELT (argvec, i),
|
||
UNIFY_ALLOW_NONE))
|
||
return 1;
|
||
}
|
||
}
|
||
arg = CLASSTYPE_TI_TEMPLATE (arg);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If PARM is `const T' and ARG is only `int', we don't have
|
||
a match unless we are allowing additional qualification.
|
||
If ARG is `const int' and PARM is just `T' that's OK;
|
||
that binds `const int' to `T'. */
|
||
if (!check_cv_quals_for_unify (strict | UNIFY_ALLOW_LESS_CV_QUAL,
|
||
arg, parm))
|
||
return 1;
|
||
|
||
/* Consider the case where ARG is `const volatile int' and
|
||
PARM is `const T'. Then, T should be `volatile int'. */
|
||
arg =
|
||
cp_build_qualified_type (arg,
|
||
CP_TYPE_QUALS (arg)
|
||
& ~CP_TYPE_QUALS (parm));
|
||
}
|
||
|
||
/* Simple cases: Value already set, does match or doesn't. */
|
||
if (targ != NULL_TREE && same_type_p (targ, arg))
|
||
return 0;
|
||
else if (targ)
|
||
return 1;
|
||
|
||
/* Make sure that ARG is not a variable-sized array. (Note that
|
||
were talking about variable-sized arrays (like `int[n]'),
|
||
rather than arrays of unknown size (like `int[]').) We'll
|
||
get very confused by such a type since the bound of the array
|
||
will not be computable in an instantiation. Besides, such
|
||
types are not allowed in ISO C++, so we can do as we please
|
||
here. */
|
||
if (TREE_CODE (arg) == ARRAY_TYPE
|
||
&& !uses_template_parms (arg)
|
||
&& (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (arg)))
|
||
!= INTEGER_CST))
|
||
return 1;
|
||
|
||
TREE_VEC_ELT (targs, idx) = arg;
|
||
return 0;
|
||
|
||
case TEMPLATE_PARM_INDEX:
|
||
tparm = TREE_VALUE (TREE_VEC_ELT (tparms, 0));
|
||
|
||
if (TEMPLATE_PARM_LEVEL (parm)
|
||
!= template_decl_level (tparm))
|
||
/* The PARM is not one we're trying to unify. Just check
|
||
to see if it matches ARG. */
|
||
return (TREE_CODE (arg) == TREE_CODE (parm)
|
||
&& cp_tree_equal (parm, arg) > 0) ? 0 : 1;
|
||
|
||
idx = TEMPLATE_PARM_IDX (parm);
|
||
targ = TREE_VEC_ELT (targs, idx);
|
||
|
||
if (targ)
|
||
{
|
||
int i = (cp_tree_equal (targ, arg) > 0);
|
||
if (i == 1)
|
||
return 0;
|
||
else if (i == 0)
|
||
return 1;
|
||
else
|
||
my_friendly_abort (42);
|
||
}
|
||
|
||
/* [temp.deduct.type] If, in the declaration of a function template
|
||
with a non-type template-parameter, the non-type
|
||
template-parameter is used in an expression in the function
|
||
parameter-list and, if the corresponding template-argument is
|
||
deduced, the template-argument type shall match the type of the
|
||
template-parameter exactly, except that a template-argument
|
||
deduced from an array bound may be of any integral type. */
|
||
if (same_type_p (TREE_TYPE (arg), TREE_TYPE (parm)))
|
||
/* OK */;
|
||
else if ((strict & UNIFY_ALLOW_INTEGER)
|
||
&& (TREE_CODE (TREE_TYPE (parm)) == INTEGER_TYPE
|
||
|| TREE_CODE (TREE_TYPE (parm)) == BOOLEAN_TYPE))
|
||
/* OK */;
|
||
else
|
||
return 1;
|
||
|
||
TREE_VEC_ELT (targs, idx) = copy_to_permanent (arg);
|
||
return 0;
|
||
|
||
case POINTER_TYPE:
|
||
{
|
||
int sub_strict;
|
||
|
||
if (TREE_CODE (arg) == RECORD_TYPE && TYPE_PTRMEMFUNC_FLAG (arg))
|
||
return (unify (tparms, targs, parm,
|
||
TYPE_PTRMEMFUNC_FN_TYPE (arg), strict));
|
||
|
||
if (TREE_CODE (arg) != POINTER_TYPE)
|
||
return 1;
|
||
|
||
/* [temp.deduct.call]
|
||
|
||
A can be another pointer or pointer to member type that can
|
||
be converted to the deduced A via a qualification
|
||
conversion (_conv.qual_).
|
||
|
||
We pass down STRICT here rather than UNIFY_ALLOW_NONE.
|
||
This will allow for additional cv-qualification of the
|
||
pointed-to types if appropriate. In general, this is a bit
|
||
too generous; we are only supposed to allow qualification
|
||
conversions and this method will allow an ARG of char** and
|
||
a deduced ARG of const char**. However, overload
|
||
resolution will subsequently invalidate the candidate, so
|
||
this is probably OK. */
|
||
sub_strict = strict;
|
||
|
||
if (TREE_CODE (TREE_TYPE (arg)) != RECORD_TYPE
|
||
|| TYPE_PTRMEMFUNC_FLAG (TREE_TYPE (arg)))
|
||
/* The derived-to-base conversion only persists through one
|
||
level of pointers. */
|
||
sub_strict &= ~UNIFY_ALLOW_DERIVED;
|
||
|
||
return unify (tparms, targs, TREE_TYPE (parm), TREE_TYPE
|
||
(arg), sub_strict);
|
||
}
|
||
|
||
case REFERENCE_TYPE:
|
||
if (TREE_CODE (arg) != REFERENCE_TYPE)
|
||
return 1;
|
||
return unify (tparms, targs, TREE_TYPE (parm), TREE_TYPE (arg),
|
||
UNIFY_ALLOW_NONE);
|
||
|
||
case ARRAY_TYPE:
|
||
if (TREE_CODE (arg) != ARRAY_TYPE)
|
||
return 1;
|
||
if ((TYPE_DOMAIN (parm) == NULL_TREE)
|
||
!= (TYPE_DOMAIN (arg) == NULL_TREE))
|
||
return 1;
|
||
if (TYPE_DOMAIN (parm) != NULL_TREE
|
||
&& unify (tparms, targs, TYPE_DOMAIN (parm),
|
||
TYPE_DOMAIN (arg), UNIFY_ALLOW_NONE) != 0)
|
||
return 1;
|
||
return unify (tparms, targs, TREE_TYPE (parm), TREE_TYPE (arg),
|
||
UNIFY_ALLOW_NONE);
|
||
|
||
case REAL_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case INTEGER_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case VOID_TYPE:
|
||
if (TREE_CODE (arg) != TREE_CODE (parm))
|
||
return 1;
|
||
|
||
if (TREE_CODE (parm) == INTEGER_TYPE
|
||
&& TREE_CODE (TYPE_MAX_VALUE (parm)) != INTEGER_CST)
|
||
{
|
||
if (TYPE_MIN_VALUE (parm) && TYPE_MIN_VALUE (arg)
|
||
&& unify (tparms, targs, TYPE_MIN_VALUE (parm),
|
||
TYPE_MIN_VALUE (arg), UNIFY_ALLOW_INTEGER))
|
||
return 1;
|
||
if (TYPE_MAX_VALUE (parm) && TYPE_MAX_VALUE (arg)
|
||
&& unify (tparms, targs, TYPE_MAX_VALUE (parm),
|
||
TYPE_MAX_VALUE (arg), UNIFY_ALLOW_INTEGER))
|
||
return 1;
|
||
}
|
||
/* We use the TYPE_MAIN_VARIANT since we have already
|
||
checked cv-qualification at the top of the
|
||
function. */
|
||
else if (!same_type_p (TYPE_MAIN_VARIANT (arg),
|
||
TYPE_MAIN_VARIANT (parm)))
|
||
return 1;
|
||
|
||
/* As far as unification is concerned, this wins. Later checks
|
||
will invalidate it if necessary. */
|
||
return 0;
|
||
|
||
/* Types INTEGER_CST and MINUS_EXPR can come from array bounds. */
|
||
/* Type INTEGER_CST can come from ordinary constant template args. */
|
||
case INTEGER_CST:
|
||
while (TREE_CODE (arg) == NOP_EXPR)
|
||
arg = TREE_OPERAND (arg, 0);
|
||
|
||
if (TREE_CODE (arg) != INTEGER_CST)
|
||
return 1;
|
||
return !tree_int_cst_equal (parm, arg);
|
||
|
||
case TREE_VEC:
|
||
{
|
||
int i;
|
||
if (TREE_CODE (arg) != TREE_VEC)
|
||
return 1;
|
||
if (TREE_VEC_LENGTH (parm) != TREE_VEC_LENGTH (arg))
|
||
return 1;
|
||
for (i = TREE_VEC_LENGTH (parm) - 1; i >= 0; i--)
|
||
if (unify (tparms, targs,
|
||
TREE_VEC_ELT (parm, i), TREE_VEC_ELT (arg, i),
|
||
UNIFY_ALLOW_NONE))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
if (TYPE_PTRMEMFUNC_FLAG (parm))
|
||
return unify (tparms, targs, TYPE_PTRMEMFUNC_FN_TYPE (parm),
|
||
arg, strict);
|
||
|
||
if (TREE_CODE (arg) != TREE_CODE (parm))
|
||
return 1;
|
||
|
||
if (CLASSTYPE_TEMPLATE_INFO (parm))
|
||
{
|
||
tree t = NULL_TREE;
|
||
|
||
if (strict & UNIFY_ALLOW_DERIVED)
|
||
{
|
||
/* First, we try to unify the PARM and ARG directly. */
|
||
t = try_class_unification (tparms, targs,
|
||
parm, arg);
|
||
|
||
if (!t)
|
||
{
|
||
/* Fallback to the special case allowed in
|
||
[temp.deduct.call]:
|
||
|
||
If P is a class, and P has the form
|
||
template-id, then A can be a derived class of
|
||
the deduced A. Likewise, if P is a pointer to
|
||
a class of the form template-id, A can be a
|
||
pointer to a derived class pointed to by the
|
||
deduced A. */
|
||
t = get_template_base (tparms, targs,
|
||
parm, arg);
|
||
|
||
if (! t || t == error_mark_node)
|
||
return 1;
|
||
}
|
||
}
|
||
else if (CLASSTYPE_TEMPLATE_INFO (arg)
|
||
&& (CLASSTYPE_TI_TEMPLATE (parm)
|
||
== CLASSTYPE_TI_TEMPLATE (arg)))
|
||
/* Perhaps PARM is something like S<U> and ARG is S<int>.
|
||
Then, we should unify `int' and `U'. */
|
||
t = arg;
|
||
else
|
||
/* There's no chance of unication succeeding. */
|
||
return 1;
|
||
|
||
return unify (tparms, targs, CLASSTYPE_TI_ARGS (parm),
|
||
CLASSTYPE_TI_ARGS (t), UNIFY_ALLOW_NONE);
|
||
}
|
||
else if (!same_type_p (TYPE_MAIN_VARIANT (parm),
|
||
TYPE_MAIN_VARIANT (arg)))
|
||
return 1;
|
||
return 0;
|
||
|
||
case METHOD_TYPE:
|
||
case FUNCTION_TYPE:
|
||
if (TREE_CODE (arg) != TREE_CODE (parm))
|
||
return 1;
|
||
|
||
if (unify (tparms, targs, TREE_TYPE (parm),
|
||
TREE_TYPE (arg), UNIFY_ALLOW_NONE))
|
||
return 1;
|
||
return type_unification_real (tparms, targs, TYPE_ARG_TYPES (parm),
|
||
TYPE_ARG_TYPES (arg), 1,
|
||
DEDUCE_EXACT, 0);
|
||
|
||
case OFFSET_TYPE:
|
||
if (TREE_CODE (arg) != OFFSET_TYPE)
|
||
return 1;
|
||
if (unify (tparms, targs, TYPE_OFFSET_BASETYPE (parm),
|
||
TYPE_OFFSET_BASETYPE (arg), UNIFY_ALLOW_NONE))
|
||
return 1;
|
||
return unify (tparms, targs, TREE_TYPE (parm), TREE_TYPE (arg),
|
||
strict);
|
||
|
||
case CONST_DECL:
|
||
if (arg != decl_constant_value (parm))
|
||
return 1;
|
||
return 0;
|
||
|
||
case TEMPLATE_DECL:
|
||
/* Matched cases are handled by the ARG == PARM test above. */
|
||
return 1;
|
||
|
||
case MINUS_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (parm, 1)) == INTEGER_CST)
|
||
{
|
||
/* We handle this case specially, since it comes up with
|
||
arrays. In particular, something like:
|
||
|
||
template <int N> void f(int (&x)[N]);
|
||
|
||
Here, we are trying to unify the range type, which
|
||
looks like [0 ... (N - 1)]. */
|
||
tree t, t1, t2;
|
||
t1 = TREE_OPERAND (parm, 0);
|
||
t2 = TREE_OPERAND (parm, 1);
|
||
|
||
/* Should this be a regular fold? */
|
||
t = maybe_fold_nontype_arg (build (PLUS_EXPR,
|
||
integer_type_node,
|
||
arg, t2));
|
||
|
||
return unify (tparms, targs, t1, t, strict);
|
||
}
|
||
/* else fall through */
|
||
|
||
default:
|
||
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (parm))))
|
||
/* We're looking at an expression. This can happen with
|
||
something like:
|
||
|
||
template <int I>
|
||
void foo(S<I>, S<I + 2>);
|
||
|
||
This is a "nondeduced context":
|
||
|
||
[deduct.type]
|
||
|
||
The nondeduced contexts are:
|
||
|
||
--A type that is a template-id in which one or more of
|
||
the template-arguments is an expression that references
|
||
a template-parameter.
|
||
|
||
In these cases, we assume deduction succeeded, but don't
|
||
actually infer any unifications. */
|
||
return 0;
|
||
else
|
||
sorry ("use of `%s' in template type unification",
|
||
tree_code_name [(int) TREE_CODE (parm)]);
|
||
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Called if RESULT is explicitly instantiated, or is a member of an
|
||
explicitly instantiated class, or if using -frepo and the
|
||
instantiation of RESULT has been assigned to this file. */
|
||
|
||
void
|
||
mark_decl_instantiated (result, extern_p)
|
||
tree result;
|
||
int extern_p;
|
||
{
|
||
if (TREE_CODE (result) != FUNCTION_DECL)
|
||
/* The TREE_PUBLIC flag for function declarations will have been
|
||
set correctly by tsubst. */
|
||
TREE_PUBLIC (result) = 1;
|
||
|
||
if (! extern_p)
|
||
{
|
||
DECL_INTERFACE_KNOWN (result) = 1;
|
||
DECL_NOT_REALLY_EXTERN (result) = 1;
|
||
|
||
/* Always make artificials weak. */
|
||
if (DECL_ARTIFICIAL (result) && flag_weak)
|
||
comdat_linkage (result);
|
||
/* For WIN32 we also want to put explicit instantiations in
|
||
linkonce sections. */
|
||
else if (TREE_PUBLIC (result))
|
||
maybe_make_one_only (result);
|
||
}
|
||
else if (TREE_CODE (result) == FUNCTION_DECL)
|
||
mark_inline_for_output (result);
|
||
}
|
||
|
||
/* Given two function templates PAT1 and PAT2, and explicit template
|
||
arguments EXPLICIT_ARGS return:
|
||
|
||
1 if PAT1 is more specialized than PAT2 as described in [temp.func.order].
|
||
-1 if PAT2 is more specialized than PAT1.
|
||
0 if neither is more specialized. */
|
||
|
||
int
|
||
more_specialized (pat1, pat2, explicit_args)
|
||
tree pat1, pat2, explicit_args;
|
||
{
|
||
tree targs;
|
||
int winner = 0;
|
||
|
||
targs = get_bindings_overload (pat1, DECL_RESULT (pat2), explicit_args);
|
||
if (targs)
|
||
--winner;
|
||
|
||
targs = get_bindings_overload (pat2, DECL_RESULT (pat1), explicit_args);
|
||
if (targs)
|
||
++winner;
|
||
|
||
return winner;
|
||
}
|
||
|
||
/* Given two class template specialization list nodes PAT1 and PAT2, return:
|
||
|
||
1 if PAT1 is more specialized than PAT2 as described in [temp.class.order].
|
||
-1 if PAT2 is more specialized than PAT1.
|
||
0 if neither is more specialized. */
|
||
|
||
int
|
||
more_specialized_class (pat1, pat2)
|
||
tree pat1, pat2;
|
||
{
|
||
tree targs;
|
||
int winner = 0;
|
||
|
||
targs = get_class_bindings (TREE_VALUE (pat1), TREE_PURPOSE (pat1),
|
||
TREE_PURPOSE (pat2));
|
||
if (targs)
|
||
--winner;
|
||
|
||
targs = get_class_bindings (TREE_VALUE (pat2), TREE_PURPOSE (pat2),
|
||
TREE_PURPOSE (pat1));
|
||
if (targs)
|
||
++winner;
|
||
|
||
return winner;
|
||
}
|
||
|
||
/* Return the template arguments that will produce the function signature
|
||
DECL from the function template FN, with the explicit template
|
||
arguments EXPLICIT_ARGS. If CHECK_RETTYPE is 1, the return type must
|
||
also match. Return NULL_TREE if no satisfactory arguments could be
|
||
found. */
|
||
|
||
static tree
|
||
get_bindings_real (fn, decl, explicit_args, check_rettype)
|
||
tree fn, decl, explicit_args;
|
||
int check_rettype;
|
||
{
|
||
int ntparms = DECL_NTPARMS (fn);
|
||
tree targs = make_scratch_vec (ntparms);
|
||
tree decl_type;
|
||
tree decl_arg_types;
|
||
int i;
|
||
|
||
/* Substitute the explicit template arguments into the type of DECL.
|
||
The call to fn_type_unification will handle substitution into the
|
||
FN. */
|
||
decl_type = TREE_TYPE (decl);
|
||
if (explicit_args && uses_template_parms (decl_type))
|
||
{
|
||
tree tmpl;
|
||
tree converted_args;
|
||
|
||
if (DECL_TEMPLATE_INFO (decl))
|
||
tmpl = DECL_TI_TEMPLATE (decl);
|
||
else
|
||
/* We can get here for some illegal specializations. */
|
||
return NULL_TREE;
|
||
|
||
converted_args
|
||
= (coerce_template_parms (DECL_INNERMOST_TEMPLATE_PARMS (tmpl),
|
||
explicit_args, NULL_TREE,
|
||
/*complain=*/0,
|
||
/*require_all_arguments=*/0));
|
||
if (converted_args == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
decl_type = tsubst (decl_type, converted_args, /*complain=*/0,
|
||
NULL_TREE);
|
||
if (decl_type == error_mark_node)
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* If FN is a static member function, adjust the type of DECL
|
||
appropriately. */
|
||
decl_arg_types = TYPE_ARG_TYPES (decl_type);
|
||
if (DECL_STATIC_FUNCTION_P (fn)
|
||
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (decl))
|
||
decl_arg_types = TREE_CHAIN (decl_arg_types);
|
||
|
||
i = fn_type_unification (fn, explicit_args, targs,
|
||
decl_arg_types,
|
||
TREE_TYPE (decl_type),
|
||
DEDUCE_EXACT);
|
||
|
||
if (i != 0)
|
||
return NULL_TREE;
|
||
|
||
if (check_rettype)
|
||
{
|
||
/* Check to see that the resulting return type is also OK. */
|
||
tree t = tsubst (TREE_TYPE (TREE_TYPE (fn)), targs,
|
||
/*complain=*/0, NULL_TREE);
|
||
|
||
if (!same_type_p (t, TREE_TYPE (TREE_TYPE (decl))))
|
||
return NULL_TREE;
|
||
}
|
||
|
||
return targs;
|
||
}
|
||
|
||
/* For most uses, we want to check the return type. */
|
||
|
||
tree
|
||
get_bindings (fn, decl, explicit_args)
|
||
tree fn, decl, explicit_args;
|
||
{
|
||
return get_bindings_real (fn, decl, explicit_args, 1);
|
||
}
|
||
|
||
/* But for more_specialized, we only care about the parameter types. */
|
||
|
||
static tree
|
||
get_bindings_overload (fn, decl, explicit_args)
|
||
tree fn, decl, explicit_args;
|
||
{
|
||
return get_bindings_real (fn, decl, explicit_args, 0);
|
||
}
|
||
|
||
/* Return the innermost template arguments that, when applied to a
|
||
template specialization whose innermost template parameters are
|
||
TPARMS, and whose specialization arguments are ARGS, yield the
|
||
ARGS.
|
||
|
||
For example, suppose we have:
|
||
|
||
template <class T, class U> struct S {};
|
||
template <class T> struct S<T*, int> {};
|
||
|
||
Then, suppose we want to get `S<double*, int>'. The TPARMS will be
|
||
{T}, the PARMS will be {T*, int} and the ARGS will be {double*,
|
||
int}. The resulting vector will be {double}, indicating that `T'
|
||
is bound to `double'. */
|
||
|
||
static tree
|
||
get_class_bindings (tparms, parms, args)
|
||
tree tparms, parms, args;
|
||
{
|
||
int i, ntparms = TREE_VEC_LENGTH (tparms);
|
||
tree vec = make_temp_vec (ntparms);
|
||
|
||
args = innermost_args (args);
|
||
|
||
if (unify (tparms, vec, parms, args, UNIFY_ALLOW_NONE))
|
||
return NULL_TREE;
|
||
|
||
for (i = 0; i < ntparms; ++i)
|
||
if (! TREE_VEC_ELT (vec, i))
|
||
return NULL_TREE;
|
||
|
||
return vec;
|
||
}
|
||
|
||
/* In INSTANTIATIONS is a list of <INSTANTIATION, TEMPLATE> pairs.
|
||
Pick the most specialized template, and return the corresponding
|
||
instantiation, or if there is no corresponding instantiation, the
|
||
template itself. EXPLICIT_ARGS is any template arguments explicity
|
||
mentioned in a template-id. If there is no most specialized
|
||
tempalte, error_mark_node is returned. If there are no templates
|
||
at all, NULL_TREE is returned. */
|
||
|
||
tree
|
||
most_specialized_instantiation (instantiations, explicit_args)
|
||
tree instantiations;
|
||
tree explicit_args;
|
||
{
|
||
tree fn, champ;
|
||
int fate;
|
||
|
||
if (!instantiations)
|
||
return NULL_TREE;
|
||
|
||
champ = instantiations;
|
||
for (fn = TREE_CHAIN (instantiations); fn; fn = TREE_CHAIN (fn))
|
||
{
|
||
fate = more_specialized (TREE_VALUE (champ),
|
||
TREE_VALUE (fn), explicit_args);
|
||
if (fate == 1)
|
||
;
|
||
else
|
||
{
|
||
if (fate == 0)
|
||
{
|
||
fn = TREE_CHAIN (fn);
|
||
if (! fn)
|
||
return error_mark_node;
|
||
}
|
||
champ = fn;
|
||
}
|
||
}
|
||
|
||
for (fn = instantiations; fn && fn != champ; fn = TREE_CHAIN (fn))
|
||
{
|
||
fate = more_specialized (TREE_VALUE (champ),
|
||
TREE_VALUE (fn), explicit_args);
|
||
if (fate != 1)
|
||
return error_mark_node;
|
||
}
|
||
|
||
return TREE_PURPOSE (champ) ? TREE_PURPOSE (champ) : TREE_VALUE (champ);
|
||
}
|
||
|
||
/* Return the most specialized of the list of templates in FNS that can
|
||
produce an instantiation matching DECL, given the explicit template
|
||
arguments EXPLICIT_ARGS. */
|
||
|
||
static tree
|
||
most_specialized (fns, decl, explicit_args)
|
||
tree fns, decl, explicit_args;
|
||
{
|
||
tree candidates = NULL_TREE;
|
||
tree fn, args;
|
||
|
||
for (fn = fns; fn; fn = TREE_CHAIN (fn))
|
||
{
|
||
tree candidate = TREE_VALUE (fn);
|
||
|
||
args = get_bindings (candidate, decl, explicit_args);
|
||
if (args)
|
||
candidates = scratch_tree_cons (NULL_TREE, candidate,
|
||
candidates);
|
||
}
|
||
|
||
return most_specialized_instantiation (candidates, explicit_args);
|
||
}
|
||
|
||
/* If DECL is a specialization of some template, return the most
|
||
general such template. For example, given:
|
||
|
||
template <class T> struct S { template <class U> void f(U); };
|
||
|
||
if TMPL is `template <class U> void S<int>::f(U)' this will return
|
||
the full template. This function will not trace past partial
|
||
specializations, however. For example, given in addition:
|
||
|
||
template <class T> struct S<T*> { template <class U> void f(U); };
|
||
|
||
if TMPL is `template <class U> void S<int*>::f(U)' this will return
|
||
`template <class T> template <class U> S<T*>::f(U)'. */
|
||
|
||
static tree
|
||
most_general_template (decl)
|
||
tree decl;
|
||
{
|
||
while (DECL_TEMPLATE_INFO (decl))
|
||
decl = DECL_TI_TEMPLATE (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Return the most specialized of the class template specializations
|
||
of TMPL which can produce an instantiation matching ARGS, or
|
||
error_mark_node if the choice is ambiguous. */
|
||
|
||
static tree
|
||
most_specialized_class (tmpl, args)
|
||
tree tmpl;
|
||
tree args;
|
||
{
|
||
tree list = NULL_TREE;
|
||
tree t;
|
||
tree champ;
|
||
int fate;
|
||
|
||
tmpl = most_general_template (tmpl);
|
||
for (t = DECL_TEMPLATE_SPECIALIZATIONS (tmpl); t; t = TREE_CHAIN (t))
|
||
{
|
||
tree spec_args
|
||
= get_class_bindings (TREE_VALUE (t), TREE_PURPOSE (t), args);
|
||
if (spec_args)
|
||
{
|
||
list = decl_tree_cons (TREE_PURPOSE (t), TREE_VALUE (t), list);
|
||
TREE_TYPE (list) = TREE_TYPE (t);
|
||
}
|
||
}
|
||
|
||
if (! list)
|
||
return NULL_TREE;
|
||
|
||
t = list;
|
||
champ = t;
|
||
t = TREE_CHAIN (t);
|
||
for (; t; t = TREE_CHAIN (t))
|
||
{
|
||
fate = more_specialized_class (champ, t);
|
||
if (fate == 1)
|
||
;
|
||
else
|
||
{
|
||
if (fate == 0)
|
||
{
|
||
t = TREE_CHAIN (t);
|
||
if (! t)
|
||
return error_mark_node;
|
||
}
|
||
champ = t;
|
||
}
|
||
}
|
||
|
||
for (t = list; t && t != champ; t = TREE_CHAIN (t))
|
||
{
|
||
fate = more_specialized_class (champ, t);
|
||
if (fate != 1)
|
||
return error_mark_node;
|
||
}
|
||
|
||
return champ;
|
||
}
|
||
|
||
/* called from the parser. */
|
||
|
||
void
|
||
do_decl_instantiation (declspecs, declarator, storage)
|
||
tree declspecs, declarator, storage;
|
||
{
|
||
tree decl = grokdeclarator (declarator, declspecs, NORMAL, 0, NULL_TREE);
|
||
tree result = NULL_TREE;
|
||
int extern_p = 0;
|
||
|
||
if (! DECL_LANG_SPECIFIC (decl))
|
||
{
|
||
cp_error ("explicit instantiation of non-template `%#D'", decl);
|
||
return;
|
||
}
|
||
else if (TREE_CODE (decl) == VAR_DECL)
|
||
{
|
||
/* There is an asymmetry here in the way VAR_DECLs and
|
||
FUNCTION_DECLs are handled by grokdeclarator. In the case of
|
||
the latter, the DECL we get back will be marked as a
|
||
template instantiation, and the appropriate
|
||
DECL_TEMPLATE_INFO will be set up. This does not happen for
|
||
VAR_DECLs so we do the lookup here. Probably, grokdeclarator
|
||
should handle VAR_DECLs as it currently handles
|
||
FUNCTION_DECLs. */
|
||
result = lookup_field (DECL_CONTEXT (decl), DECL_NAME (decl), 0, 0);
|
||
if (result && TREE_CODE (result) != VAR_DECL)
|
||
{
|
||
cp_error ("no matching template for `%D' found", result);
|
||
return;
|
||
}
|
||
}
|
||
else if (TREE_CODE (decl) != FUNCTION_DECL)
|
||
{
|
||
cp_error ("explicit instantiation of `%#D'", decl);
|
||
return;
|
||
}
|
||
else
|
||
result = decl;
|
||
|
||
/* Check for various error cases. Note that if the explicit
|
||
instantiation is legal the RESULT will currently be marked as an
|
||
*implicit* instantiation; DECL_EXPLICIT_INSTANTIATION is not set
|
||
until we get here. */
|
||
|
||
if (DECL_TEMPLATE_SPECIALIZATION (result))
|
||
{
|
||
/* [temp.spec]
|
||
|
||
No program shall both explicitly instantiate and explicitly
|
||
specialize a template. */
|
||
cp_pedwarn ("explicit instantiation of `%#D' after", result);
|
||
cp_pedwarn_at ("explicit specialization here", result);
|
||
return;
|
||
}
|
||
else if (DECL_EXPLICIT_INSTANTIATION (result))
|
||
{
|
||
/* [temp.spec]
|
||
|
||
No program shall explicitly instantiate any template more
|
||
than once.
|
||
|
||
We check DECL_INTERFACE_KNOWN so as not to complain when the
|
||
first instantiation was `extern' and the second is not, and
|
||
EXTERN_P for the opposite case. */
|
||
if (DECL_INTERFACE_KNOWN (result) && !extern_p && !flag_use_repository)
|
||
cp_pedwarn ("duplicate explicit instantiation of `%#D'", result);
|
||
|
||
/* If we've already instantiated the template, just return now. */
|
||
if (DECL_INTERFACE_KNOWN (result))
|
||
return;
|
||
}
|
||
else if (!DECL_IMPLICIT_INSTANTIATION (result))
|
||
{
|
||
cp_error ("no matching template for `%D' found", result);
|
||
return;
|
||
}
|
||
else if (!DECL_TEMPLATE_INFO (result))
|
||
{
|
||
cp_pedwarn ("explicit instantiation of non-template `%#D'", result);
|
||
return;
|
||
}
|
||
|
||
if (flag_external_templates)
|
||
return;
|
||
|
||
if (storage == NULL_TREE)
|
||
;
|
||
else if (storage == ridpointers[(int) RID_EXTERN])
|
||
{
|
||
if (pedantic)
|
||
cp_pedwarn ("ANSI C++ forbids the use of `extern' on explicit instantiations");
|
||
extern_p = 1;
|
||
}
|
||
else
|
||
cp_error ("storage class `%D' applied to template instantiation",
|
||
storage);
|
||
|
||
SET_DECL_EXPLICIT_INSTANTIATION (result);
|
||
mark_decl_instantiated (result, extern_p);
|
||
repo_template_instantiated (result, extern_p);
|
||
if (! extern_p)
|
||
instantiate_decl (result);
|
||
}
|
||
|
||
void
|
||
mark_class_instantiated (t, extern_p)
|
||
tree t;
|
||
int extern_p;
|
||
{
|
||
SET_CLASSTYPE_EXPLICIT_INSTANTIATION (t);
|
||
SET_CLASSTYPE_INTERFACE_KNOWN (t);
|
||
CLASSTYPE_INTERFACE_ONLY (t) = extern_p;
|
||
CLASSTYPE_VTABLE_NEEDS_WRITING (t) = ! extern_p;
|
||
TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (t)) = extern_p;
|
||
if (! extern_p)
|
||
{
|
||
CLASSTYPE_DEBUG_REQUESTED (t) = 1;
|
||
rest_of_type_compilation (t, 1);
|
||
}
|
||
}
|
||
|
||
void
|
||
do_type_instantiation (t, storage)
|
||
tree t, storage;
|
||
{
|
||
int extern_p = 0;
|
||
int nomem_p = 0;
|
||
int static_p = 0;
|
||
|
||
if (TREE_CODE (t) == TYPE_DECL)
|
||
t = TREE_TYPE (t);
|
||
|
||
if (! CLASS_TYPE_P (t) || ! CLASSTYPE_TEMPLATE_INFO (t))
|
||
{
|
||
cp_error ("explicit instantiation of non-template type `%T'", t);
|
||
return;
|
||
}
|
||
|
||
complete_type (t);
|
||
|
||
/* With -fexternal-templates, explicit instantiations are treated the same
|
||
as implicit ones. */
|
||
if (flag_external_templates)
|
||
return;
|
||
|
||
if (TYPE_SIZE (t) == NULL_TREE)
|
||
{
|
||
cp_error ("explicit instantiation of `%#T' before definition of template",
|
||
t);
|
||
return;
|
||
}
|
||
|
||
if (storage != NULL_TREE)
|
||
{
|
||
if (pedantic)
|
||
cp_pedwarn("ANSI C++ forbids the use of `%s' on explicit instantiations",
|
||
IDENTIFIER_POINTER (storage));
|
||
|
||
if (storage == ridpointers[(int) RID_INLINE])
|
||
nomem_p = 1;
|
||
else if (storage == ridpointers[(int) RID_EXTERN])
|
||
extern_p = 1;
|
||
else if (storage == ridpointers[(int) RID_STATIC])
|
||
static_p = 1;
|
||
else
|
||
{
|
||
cp_error ("storage class `%D' applied to template instantiation",
|
||
storage);
|
||
extern_p = 0;
|
||
}
|
||
}
|
||
|
||
if (CLASSTYPE_TEMPLATE_SPECIALIZATION (t))
|
||
{
|
||
/* [temp.spec]
|
||
|
||
No program shall both explicitly instantiate and explicitly
|
||
specialize a template. */
|
||
cp_error ("explicit instantiation of `%#T' after", t);
|
||
cp_error_at ("explicit specialization here", t);
|
||
return;
|
||
}
|
||
else if (CLASSTYPE_EXPLICIT_INSTANTIATION (t))
|
||
{
|
||
/* [temp.spec]
|
||
|
||
No program shall explicitly instantiate any template more
|
||
than once.
|
||
|
||
If CLASSTYPE_INTERFACE_ONLY, then the first explicit
|
||
instantiation was `extern', and if EXTERN_P then the second
|
||
is. Both cases are OK. */
|
||
if (!CLASSTYPE_INTERFACE_ONLY (t) && !extern_p && !flag_use_repository)
|
||
cp_pedwarn ("duplicate explicit instantiation of `%#T'", t);
|
||
|
||
/* If we've already instantiated the template, just return now. */
|
||
if (!CLASSTYPE_INTERFACE_ONLY (t))
|
||
return;
|
||
}
|
||
|
||
mark_class_instantiated (t, extern_p);
|
||
repo_template_instantiated (t, extern_p);
|
||
|
||
if (nomem_p)
|
||
return;
|
||
|
||
{
|
||
tree tmp;
|
||
|
||
/* In contrast to implicit instantiation, where only the
|
||
declarations, and not the definitions, of members are
|
||
instantiated, we have here:
|
||
|
||
[temp.explicit]
|
||
|
||
The explicit instantiation of a class template specialization
|
||
implies the instantiation of all of its members not
|
||
previously explicitly specialized in the translation unit
|
||
containing the explicit instantiation.
|
||
|
||
Of course, we can't instantiate member template classes, since
|
||
we don't have any arguments for them. Note that the standard
|
||
is unclear on whether the instatiation of the members are
|
||
*explicit* instantiations or not. We choose to be generous,
|
||
and not set DECL_EXPLICIT_INSTANTIATION. Therefore, we allow
|
||
the explicit instantiation of a class where some of the members
|
||
have no definition in the current translation unit. */
|
||
|
||
if (! static_p)
|
||
for (tmp = TYPE_METHODS (t); tmp; tmp = TREE_CHAIN (tmp))
|
||
if (TREE_CODE (tmp) == FUNCTION_DECL
|
||
&& DECL_TEMPLATE_INSTANTIATION (tmp))
|
||
{
|
||
mark_decl_instantiated (tmp, extern_p);
|
||
repo_template_instantiated (tmp, extern_p);
|
||
if (! extern_p)
|
||
instantiate_decl (tmp);
|
||
}
|
||
|
||
for (tmp = TYPE_FIELDS (t); tmp; tmp = TREE_CHAIN (tmp))
|
||
if (TREE_CODE (tmp) == VAR_DECL && DECL_TEMPLATE_INSTANTIATION (tmp))
|
||
{
|
||
mark_decl_instantiated (tmp, extern_p);
|
||
repo_template_instantiated (tmp, extern_p);
|
||
if (! extern_p)
|
||
instantiate_decl (tmp);
|
||
}
|
||
|
||
for (tmp = CLASSTYPE_TAGS (t); tmp; tmp = TREE_CHAIN (tmp))
|
||
if (IS_AGGR_TYPE (TREE_VALUE (tmp))
|
||
&& !uses_template_parms (CLASSTYPE_TI_ARGS (TREE_VALUE (tmp))))
|
||
do_type_instantiation (TYPE_MAIN_DECL (TREE_VALUE (tmp)), storage);
|
||
}
|
||
}
|
||
|
||
/* Given a function DECL, which is a specialization of TMPL, modify
|
||
DECL to be a re-instantiation of TMPL with the same template
|
||
arguments. TMPL should be the template into which tsubst'ing
|
||
should occur for DECL, not the most general template.
|
||
|
||
One reason for doing this is a scenario like this:
|
||
|
||
template <class T>
|
||
void f(const T&, int i);
|
||
|
||
void g() { f(3, 7); }
|
||
|
||
template <class T>
|
||
void f(const T& t, const int i) { }
|
||
|
||
Note that when the template is first instantiated, with
|
||
instantiate_template, the resulting DECL will have no name for the
|
||
first parameter, and the wrong type for the second. So, when we go
|
||
to instantiate the DECL, we regenerate it. */
|
||
|
||
static void
|
||
regenerate_decl_from_template (decl, tmpl)
|
||
tree decl;
|
||
tree tmpl;
|
||
{
|
||
tree args;
|
||
tree code_pattern;
|
||
tree new_decl;
|
||
tree gen_tmpl;
|
||
int unregistered;
|
||
|
||
args = DECL_TI_ARGS (decl);
|
||
code_pattern = DECL_TEMPLATE_RESULT (tmpl);
|
||
|
||
/* Unregister the specialization so that when we tsubst we will not
|
||
just return DECL. We don't have to unregister DECL from TMPL
|
||
because if would only be registered there if it were a partial
|
||
instantiation of a specialization, which it isn't: it's a full
|
||
instantiation. */
|
||
gen_tmpl = most_general_template (tmpl);
|
||
unregistered = unregister_specialization (decl, gen_tmpl);
|
||
|
||
/* If the DECL was not unregistered then something peculiar is
|
||
happening: we created a specialization but did not call
|
||
register_specialization for it. */
|
||
my_friendly_assert (unregistered, 0);
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL)
|
||
/* Make sure that we can see identifiers, and compute access
|
||
correctly, for the class members used in the declaration of
|
||
this static variable. */
|
||
pushclass (DECL_CONTEXT (decl), 2);
|
||
|
||
/* Do the substitution to get the new declaration. */
|
||
new_decl = tsubst (code_pattern, args, /*complain=*/1, NULL_TREE);
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL)
|
||
{
|
||
/* Set up DECL_INITIAL, since tsubst doesn't. */
|
||
DECL_INITIAL (new_decl) =
|
||
tsubst_expr (DECL_INITIAL (code_pattern), args,
|
||
/*complain=*/1, DECL_TI_TEMPLATE (decl));
|
||
/* Pop the class context we pushed above. */
|
||
popclass ();
|
||
}
|
||
else if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
/* Convince duplicate_decls to use the DECL_ARGUMENTS from the
|
||
new decl. */
|
||
DECL_INITIAL (new_decl) = error_mark_node;
|
||
/* And don't complain about a duplicate definition. */
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
}
|
||
|
||
/* The immediate parent of the new template is still whatever it was
|
||
before, even though tsubst sets DECL_TI_TEMPLATE up as the most
|
||
general template. We also reset the DECL_ASSEMBLER_NAME since
|
||
tsubst always calculates the name as if the function in question
|
||
were really a template instance, and sometimes, with friend
|
||
functions, this is not so. See tsubst_friend_function for
|
||
details. */
|
||
DECL_TI_TEMPLATE (new_decl) = DECL_TI_TEMPLATE (decl);
|
||
DECL_ASSEMBLER_NAME (new_decl) = DECL_ASSEMBLER_NAME (decl);
|
||
DECL_RTL (new_decl) = DECL_RTL (decl);
|
||
|
||
/* Call duplicate decls to merge the old and new declarations. */
|
||
duplicate_decls (new_decl, decl);
|
||
|
||
/* Now, re-register the specialization. */
|
||
register_specialization (decl, gen_tmpl, args);
|
||
}
|
||
|
||
/* Produce the definition of D, a _DECL generated from a template. */
|
||
|
||
tree
|
||
instantiate_decl (d)
|
||
tree d;
|
||
{
|
||
tree tmpl = DECL_TI_TEMPLATE (d);
|
||
tree args = DECL_TI_ARGS (d);
|
||
tree td;
|
||
tree code_pattern;
|
||
tree spec;
|
||
tree gen_tmpl;
|
||
int nested = in_function_p ();
|
||
int pattern_defined;
|
||
int line = lineno;
|
||
char *file = input_filename;
|
||
|
||
/* This function should only be used to instantiate templates for
|
||
functions and static member variables. */
|
||
my_friendly_assert (TREE_CODE (d) == FUNCTION_DECL
|
||
|| TREE_CODE (d) == VAR_DECL, 0);
|
||
|
||
if (DECL_TEMPLATE_INSTANTIATED (d))
|
||
/* D has already been instantiated. It might seem reasonable to
|
||
check whether or not D is an explict instantiation, and, if so,
|
||
stop here. But when an explicit instantiation is deferred
|
||
until the end of the compilation, DECL_EXPLICIT_INSTANTIATION
|
||
is set, even though we still need to do the instantiation. */
|
||
return d;
|
||
|
||
/* If we already have a specialization of this declaration, then
|
||
there's no reason to instantiate it. Note that
|
||
retrieve_specialization gives us both instantiations and
|
||
specializations, so we must explicitly check
|
||
DECL_TEMPLATE_SPECIALIZATION. */
|
||
gen_tmpl = most_general_template (tmpl);
|
||
spec = retrieve_specialization (gen_tmpl, args);
|
||
if (spec != NULL_TREE && DECL_TEMPLATE_SPECIALIZATION (spec))
|
||
return spec;
|
||
|
||
/* This needs to happen before any tsubsting. */
|
||
if (! push_tinst_level (d))
|
||
return d;
|
||
|
||
/* Set TD to the template whose DECL_TEMPLATE_RESULT is the pattern
|
||
for the instantiation. This is not always the most general
|
||
template. Consider, for example:
|
||
|
||
template <class T>
|
||
struct S { template <class U> void f();
|
||
template <> void f<int>(); };
|
||
|
||
and an instantiation of S<double>::f<int>. We want TD to be the
|
||
specialization S<T>::f<int>, not the more general S<T>::f<U>. */
|
||
td = tmpl;
|
||
for (td = tmpl;
|
||
/* An instantiation cannot have a definition, so we need a
|
||
more general template. */
|
||
DECL_TEMPLATE_INSTANTIATION (td)
|
||
/* We must also deal with friend templates. Given:
|
||
|
||
template <class T> struct S {
|
||
template <class U> friend void f() {};
|
||
};
|
||
|
||
S<int>::f<U> say, is not an instantiation of S<T>::f<U>,
|
||
so far as the language is concerned, but that's still
|
||
where we get the pattern for the instantiation from. On
|
||
ther hand, if the definition comes outside the class, say:
|
||
|
||
template <class T> struct S {
|
||
template <class U> friend void f();
|
||
};
|
||
template <class U> friend void f() {}
|
||
|
||
we don't need to look any further. That's what the check for
|
||
DECL_INITIAL is for. */
|
||
|| (TREE_CODE (d) == FUNCTION_DECL
|
||
&& DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (td)
|
||
&& !DECL_INITIAL (DECL_TEMPLATE_RESULT (td)));
|
||
)
|
||
{
|
||
/* The present template, TD, should not be a definition. If it
|
||
were a definition, we should be using it! Note that we
|
||
cannot restructure the loop to just keep going until we find
|
||
a template with a definition, since that might go too far if
|
||
a specialization was declared, but not defined. */
|
||
my_friendly_assert (!(TREE_CODE (d) == VAR_DECL
|
||
&& !DECL_IN_AGGR_P (DECL_TEMPLATE_RESULT (td))),
|
||
0);
|
||
|
||
/* Fetch the more general template. */
|
||
td = DECL_TI_TEMPLATE (td);
|
||
}
|
||
|
||
code_pattern = DECL_TEMPLATE_RESULT (td);
|
||
|
||
if (TREE_CODE (d) == FUNCTION_DECL)
|
||
pattern_defined = (DECL_INITIAL (code_pattern) != NULL_TREE);
|
||
else
|
||
pattern_defined = ! DECL_IN_AGGR_P (code_pattern);
|
||
|
||
push_to_top_level ();
|
||
lineno = DECL_SOURCE_LINE (d);
|
||
input_filename = DECL_SOURCE_FILE (d);
|
||
|
||
if (pattern_defined)
|
||
{
|
||
repo_template_used (d);
|
||
|
||
if (flag_external_templates && ! DECL_INTERFACE_KNOWN (d))
|
||
{
|
||
if (flag_alt_external_templates)
|
||
{
|
||
if (interface_unknown)
|
||
warn_if_unknown_interface (d);
|
||
}
|
||
else if (DECL_INTERFACE_KNOWN (code_pattern))
|
||
{
|
||
DECL_INTERFACE_KNOWN (d) = 1;
|
||
DECL_NOT_REALLY_EXTERN (d) = ! DECL_EXTERNAL (code_pattern);
|
||
}
|
||
else
|
||
warn_if_unknown_interface (code_pattern);
|
||
}
|
||
|
||
if (at_eof)
|
||
import_export_decl (d);
|
||
}
|
||
|
||
/* Reject all external templates except inline functions. */
|
||
if (DECL_INTERFACE_KNOWN (d)
|
||
&& ! DECL_NOT_REALLY_EXTERN (d)
|
||
&& ! (TREE_CODE (d) == FUNCTION_DECL && DECL_INLINE (d)))
|
||
goto out;
|
||
|
||
if (TREE_CODE (d) == VAR_DECL
|
||
&& TREE_READONLY (d)
|
||
&& DECL_INITIAL (d) == NULL_TREE
|
||
&& DECL_INITIAL (code_pattern) != NULL_TREE)
|
||
/* We need to set up DECL_INITIAL regardless of pattern_defined if
|
||
the variable is a static const initialized in the class body. */;
|
||
else if (! pattern_defined
|
||
|| (! (TREE_CODE (d) == FUNCTION_DECL && DECL_INLINE (d) && nested)
|
||
&& ! at_eof))
|
||
{
|
||
/* Defer all templates except inline functions used in another
|
||
function. We restore the source position here because it's used
|
||
by add_pending_template. */
|
||
lineno = line;
|
||
input_filename = file;
|
||
|
||
if (at_eof && !pattern_defined
|
||
&& DECL_EXPLICIT_INSTANTIATION (d))
|
||
/* [temp.explicit]
|
||
|
||
The definition of a non-exported function template, a
|
||
non-exported member function template, or a non-exported
|
||
member function or static data member of a class template
|
||
shall be present in every translation unit in which it is
|
||
explicitly instantiated. */
|
||
cp_error ("explicit instantiation of `%D' but no definition available",
|
||
d);
|
||
|
||
add_pending_template (d);
|
||
goto out;
|
||
}
|
||
|
||
/* We're now committed to instantiating this template. Mark it as
|
||
instantiated so that recursive calls to instantiate_decl do not
|
||
try to instantiate it again. */
|
||
DECL_TEMPLATE_INSTANTIATED (d) = 1;
|
||
|
||
/* Regenerate the declaration in case the template has been modified
|
||
by a subsequent redeclaration. */
|
||
regenerate_decl_from_template (d, td);
|
||
|
||
/* We already set the file and line above. Reset them now in case
|
||
they changed as a result of calling regenerate_decl_from_template. */
|
||
lineno = DECL_SOURCE_LINE (d);
|
||
input_filename = DECL_SOURCE_FILE (d);
|
||
|
||
if (TREE_CODE (d) == VAR_DECL)
|
||
{
|
||
DECL_IN_AGGR_P (d) = 0;
|
||
if (DECL_INTERFACE_KNOWN (d))
|
||
DECL_EXTERNAL (d) = ! DECL_NOT_REALLY_EXTERN (d);
|
||
else
|
||
{
|
||
DECL_EXTERNAL (d) = 1;
|
||
DECL_NOT_REALLY_EXTERN (d) = 1;
|
||
}
|
||
cp_finish_decl (d, DECL_INITIAL (d), NULL_TREE, 0, 0);
|
||
}
|
||
else if (TREE_CODE (d) == FUNCTION_DECL)
|
||
{
|
||
tree t = DECL_SAVED_TREE (code_pattern);
|
||
|
||
start_function (NULL_TREE, d, NULL_TREE, 1);
|
||
store_parm_decls ();
|
||
|
||
if (t && TREE_CODE (t) == RETURN_INIT)
|
||
{
|
||
store_return_init
|
||
(TREE_OPERAND (t, 0),
|
||
tsubst_expr (TREE_OPERAND (t, 1), args, /*complain=*/1, tmpl));
|
||
t = TREE_CHAIN (t);
|
||
}
|
||
|
||
if (t && TREE_CODE (t) == CTOR_INITIALIZER)
|
||
{
|
||
current_member_init_list
|
||
= tsubst_expr_values (TREE_OPERAND (t, 0), args);
|
||
current_base_init_list
|
||
= tsubst_expr_values (TREE_OPERAND (t, 1), args);
|
||
t = TREE_CHAIN (t);
|
||
}
|
||
|
||
setup_vtbl_ptr ();
|
||
/* Always keep the BLOCK node associated with the outermost
|
||
pair of curly braces of a function. These are needed
|
||
for correct operation of dwarfout.c. */
|
||
keep_next_level ();
|
||
|
||
my_friendly_assert (TREE_CODE (t) == COMPOUND_STMT, 42);
|
||
tsubst_expr (t, args, /*complain=*/1, tmpl);
|
||
|
||
finish_function (lineno, 0, nested);
|
||
}
|
||
|
||
out:
|
||
lineno = line;
|
||
input_filename = file;
|
||
|
||
pop_from_top_level ();
|
||
pop_tinst_level ();
|
||
|
||
return d;
|
||
}
|
||
|
||
/* Run through the list of templates that we wish we could
|
||
instantiate, and instantiate any we can. */
|
||
|
||
int
|
||
instantiate_pending_templates ()
|
||
{
|
||
tree *t;
|
||
int instantiated_something = 0;
|
||
int reconsider;
|
||
|
||
do
|
||
{
|
||
reconsider = 0;
|
||
|
||
t = &pending_templates;
|
||
while (*t)
|
||
{
|
||
tree srcloc = TREE_PURPOSE (*t);
|
||
tree instantiation = TREE_VALUE (*t);
|
||
|
||
input_filename = SRCLOC_FILE (srcloc);
|
||
lineno = SRCLOC_LINE (srcloc);
|
||
|
||
if (TREE_CODE_CLASS (TREE_CODE (instantiation)) == 't')
|
||
{
|
||
tree fn;
|
||
|
||
if (!TYPE_SIZE (instantiation))
|
||
{
|
||
instantiate_class_template (instantiation);
|
||
if (CLASSTYPE_TEMPLATE_INSTANTIATION (instantiation))
|
||
for (fn = TYPE_METHODS (instantiation);
|
||
fn;
|
||
fn = TREE_CHAIN (fn))
|
||
if (! DECL_ARTIFICIAL (fn))
|
||
instantiate_decl (fn);
|
||
if (TYPE_SIZE (instantiation))
|
||
{
|
||
instantiated_something = 1;
|
||
reconsider = 1;
|
||
}
|
||
}
|
||
|
||
if (TYPE_SIZE (instantiation))
|
||
/* If INSTANTIATION has been instantiated, then we don't
|
||
need to consider it again in the future. */
|
||
*t = TREE_CHAIN (*t);
|
||
else
|
||
t = &TREE_CHAIN (*t);
|
||
}
|
||
else
|
||
{
|
||
if (DECL_TEMPLATE_INSTANTIATION (instantiation)
|
||
&& !DECL_TEMPLATE_INSTANTIATED (instantiation))
|
||
{
|
||
instantiation = instantiate_decl (instantiation);
|
||
if (DECL_TEMPLATE_INSTANTIATED (instantiation))
|
||
{
|
||
instantiated_something = 1;
|
||
reconsider = 1;
|
||
}
|
||
}
|
||
|
||
if (!DECL_TEMPLATE_INSTANTIATION (instantiation)
|
||
|| DECL_TEMPLATE_INSTANTIATED (instantiation))
|
||
/* If INSTANTIATION has been instantiated, then we don't
|
||
need to consider it again in the future. */
|
||
*t = TREE_CHAIN (*t);
|
||
else
|
||
t = &TREE_CHAIN (*t);
|
||
}
|
||
}
|
||
template_tail = t;
|
||
|
||
/* Go through the things that are template instantiations if we are
|
||
using guiding declarations. */
|
||
t = &maybe_templates;
|
||
while (*t)
|
||
{
|
||
tree template;
|
||
tree fn;
|
||
tree args;
|
||
|
||
fn = TREE_VALUE (*t);
|
||
|
||
if (DECL_INITIAL (fn))
|
||
/* If the FN is already defined, then it was either already
|
||
instantiated or, even though guiding declarations were
|
||
allowed, a non-template definition was provided. */
|
||
;
|
||
else
|
||
{
|
||
template = TREE_PURPOSE (*t);
|
||
args = get_bindings (template, fn, NULL_TREE);
|
||
fn = instantiate_template (template, args);
|
||
instantiate_decl (fn);
|
||
reconsider = 1;
|
||
}
|
||
|
||
/* Remove this entry from the chain. */
|
||
*t = TREE_CHAIN (*t);
|
||
}
|
||
maybe_template_tail = t;
|
||
}
|
||
while (reconsider);
|
||
|
||
return instantiated_something;
|
||
}
|
||
|
||
/* Substitute ARGVEC into T, which is a TREE_LIST. In particular, it
|
||
is an initializer list: the TREE_PURPOSEs are DECLs, and the
|
||
TREE_VALUEs are initializer values. Used by instantiate_decl. */
|
||
|
||
static tree
|
||
tsubst_expr_values (t, argvec)
|
||
tree t, argvec;
|
||
{
|
||
tree first = NULL_TREE;
|
||
tree *p = &first;
|
||
|
||
for (; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree pur = tsubst_copy (TREE_PURPOSE (t), argvec,
|
||
/*complain=*/1, NULL_TREE);
|
||
tree val = tsubst_expr (TREE_VALUE (t), argvec, /*complain=*/1,
|
||
NULL_TREE);
|
||
*p = build_tree_list (pur, val);
|
||
p = &TREE_CHAIN (*p);
|
||
}
|
||
return first;
|
||
}
|
||
|
||
tree last_tree;
|
||
|
||
void
|
||
add_tree (t)
|
||
tree t;
|
||
{
|
||
last_tree = TREE_CHAIN (last_tree) = t;
|
||
}
|
||
|
||
|
||
void
|
||
begin_tree ()
|
||
{
|
||
saved_trees = tree_cons (NULL_TREE, last_tree, saved_trees);
|
||
last_tree = NULL_TREE;
|
||
}
|
||
|
||
|
||
void
|
||
end_tree ()
|
||
{
|
||
my_friendly_assert (saved_trees != NULL_TREE, 0);
|
||
|
||
last_tree = TREE_VALUE (saved_trees);
|
||
saved_trees = TREE_CHAIN (saved_trees);
|
||
}
|
||
|
||
/* D is an undefined function declaration in the presence of templates with
|
||
the same name, listed in FNS. If one of them can produce D as an
|
||
instantiation, remember this so we can instantiate it at EOF if D has
|
||
not been defined by that time. */
|
||
|
||
void
|
||
add_maybe_template (d, fns)
|
||
tree d, fns;
|
||
{
|
||
tree t;
|
||
|
||
if (DECL_MAYBE_TEMPLATE (d))
|
||
return;
|
||
|
||
t = most_specialized (fns, d, NULL_TREE);
|
||
if (! t)
|
||
return;
|
||
if (t == error_mark_node)
|
||
{
|
||
cp_error ("ambiguous template instantiation for `%D'", d);
|
||
return;
|
||
}
|
||
|
||
*maybe_template_tail = perm_tree_cons (t, d, NULL_TREE);
|
||
maybe_template_tail = &TREE_CHAIN (*maybe_template_tail);
|
||
DECL_MAYBE_TEMPLATE (d) = 1;
|
||
}
|
||
|
||
/* Set CURRENT_ACCESS_SPECIFIER based on the protection of DECL. */
|
||
|
||
static void
|
||
set_current_access_from_decl (decl)
|
||
tree decl;
|
||
{
|
||
if (TREE_PRIVATE (decl))
|
||
current_access_specifier = access_private_node;
|
||
else if (TREE_PROTECTED (decl))
|
||
current_access_specifier = access_protected_node;
|
||
else
|
||
current_access_specifier = access_public_node;
|
||
}
|
||
|
||
/* Instantiate an enumerated type. TAG is the template type, NEWTAG
|
||
is the instantiation (which should have been created with
|
||
start_enum) and ARGS are the template arguments to use. */
|
||
|
||
static void
|
||
tsubst_enum (tag, newtag, args)
|
||
tree tag;
|
||
tree newtag;
|
||
tree args;
|
||
{
|
||
tree e;
|
||
|
||
for (e = TYPE_VALUES (tag); e; e = TREE_CHAIN (e))
|
||
{
|
||
tree value;
|
||
tree elt;
|
||
|
||
/* Note that in a template enum, the TREE_VALUE is the
|
||
CONST_DECL, not the corresponding INTEGER_CST. */
|
||
value = tsubst_expr (DECL_INITIAL (TREE_VALUE (e)),
|
||
args, /*complain=*/1,
|
||
NULL_TREE);
|
||
|
||
/* Give this enumeration constant the correct access. */
|
||
set_current_access_from_decl (TREE_VALUE (e));
|
||
|
||
/* Actually build the enumerator itself. */
|
||
elt = build_enumerator (TREE_PURPOSE (e), value, newtag);
|
||
|
||
/* We save the enumerators we have built so far in the
|
||
TYPE_VALUES so that if the enumeration constants for
|
||
subsequent enumerators involve those for previous ones,
|
||
tsubst_copy will be able to find them. */
|
||
TREE_CHAIN (elt) = TYPE_VALUES (newtag);
|
||
TYPE_VALUES (newtag) = elt;
|
||
}
|
||
|
||
finish_enum (newtag);
|
||
}
|
||
|
||
/* Set the DECL_ASSEMBLER_NAME for DECL, which is a FUNCTION_DECL that
|
||
is either an instantiation or specialization of a template
|
||
function. */
|
||
|
||
static void
|
||
set_mangled_name_for_template_decl (decl)
|
||
tree decl;
|
||
{
|
||
tree saved_namespace;
|
||
tree context = NULL_TREE;
|
||
tree fn_type;
|
||
tree ret_type;
|
||
tree parm_types;
|
||
tree tparms;
|
||
tree targs;
|
||
tree tmpl;
|
||
int parm_depth;
|
||
|
||
my_friendly_assert (TREE_CODE (decl) == FUNCTION_DECL, 0);
|
||
my_friendly_assert (DECL_TEMPLATE_INFO (decl) != NULL_TREE, 0);
|
||
|
||
/* The names of template functions must be mangled so as to indicate
|
||
what template is being specialized with what template arguments.
|
||
For example, each of the following three functions must get
|
||
different mangled names:
|
||
|
||
void f(int);
|
||
template <> void f<7>(int);
|
||
template <> void f<8>(int); */
|
||
|
||
targs = DECL_TI_ARGS (decl);
|
||
if (uses_template_parms (targs))
|
||
/* This DECL is for a partial instantiation. There's no need to
|
||
mangle the name of such an entity. */
|
||
return;
|
||
|
||
tmpl = most_general_template (DECL_TI_TEMPLATE (decl));
|
||
tparms = DECL_TEMPLATE_PARMS (tmpl);
|
||
parm_depth = TMPL_PARMS_DEPTH (tparms);
|
||
|
||
/* There should be as many levels of arguments as there are levels
|
||
of parameters. */
|
||
my_friendly_assert (parm_depth == TMPL_ARGS_DEPTH (targs), 0);
|
||
|
||
/* We now compute the PARMS and RET_TYPE to give to
|
||
build_decl_overload_real. The PARMS and RET_TYPE are the
|
||
parameter and return types of the template, after all but the
|
||
innermost template arguments have been substituted, not the
|
||
parameter and return types of the function DECL. For example,
|
||
given:
|
||
|
||
template <class T> T f(T);
|
||
|
||
both PARMS and RET_TYPE should be `T' even if DECL is `int f(int)'.
|
||
A more subtle example is:
|
||
|
||
template <class T> struct S { template <class U> void f(T, U); }
|
||
|
||
Here, if DECL is `void S<int>::f(int, double)', PARMS should be
|
||
{int, U}. Thus, the args that we want to subsitute into the
|
||
return and parameter type for the function are those in TARGS,
|
||
with the innermost level omitted. */
|
||
fn_type = TREE_TYPE (tmpl);
|
||
if (DECL_STATIC_FUNCTION_P (decl))
|
||
context = DECL_CLASS_CONTEXT (decl);
|
||
|
||
if (parm_depth == 1)
|
||
/* No substitution is necessary. */
|
||
;
|
||
else
|
||
{
|
||
int i;
|
||
tree partial_args;
|
||
|
||
/* Replace the innermost level of the TARGS with NULL_TREEs to
|
||
let tsubst know not to subsitute for those parameters. */
|
||
partial_args = make_temp_vec (TREE_VEC_LENGTH (targs));
|
||
for (i = 1; i < TMPL_ARGS_DEPTH (targs); ++i)
|
||
SET_TMPL_ARGS_LEVEL (partial_args, i,
|
||
TMPL_ARGS_LEVEL (targs, i));
|
||
SET_TMPL_ARGS_LEVEL (partial_args,
|
||
TMPL_ARGS_DEPTH (targs),
|
||
make_temp_vec (DECL_NTPARMS (tmpl)));
|
||
|
||
/* Now, do the (partial) substitution to figure out the
|
||
appropriate function type. */
|
||
fn_type = tsubst (fn_type, partial_args, /*complain=*/1, NULL_TREE);
|
||
if (DECL_STATIC_FUNCTION_P (decl))
|
||
context = tsubst (context, partial_args, /*complain=*/1, NULL_TREE);
|
||
|
||
/* Substitute into the template parameters to obtain the real
|
||
innermost set of parameters. This step is important if the
|
||
innermost set of template parameters contains value
|
||
parameters whose types depend on outer template parameters. */
|
||
TREE_VEC_LENGTH (partial_args)--;
|
||
tparms = tsubst_template_parms (tparms, partial_args, /*complain=*/1);
|
||
}
|
||
|
||
/* Now, get the innermost parameters and arguments, and figure out
|
||
the parameter and return types. */
|
||
tparms = INNERMOST_TEMPLATE_PARMS (tparms);
|
||
targs = innermost_args (targs);
|
||
ret_type = TREE_TYPE (fn_type);
|
||
parm_types = TYPE_ARG_TYPES (fn_type);
|
||
|
||
/* For a static member function, we generate a fake `this' pointer,
|
||
for the purposes of mangling. This indicates of which class the
|
||
function is a member. Because of:
|
||
|
||
[class.static]
|
||
|
||
There shall not be a static and a nonstatic member function
|
||
with the same name and the same parameter types
|
||
|
||
we don't have to worry that this will result in a clash with a
|
||
non-static member function. */
|
||
if (DECL_STATIC_FUNCTION_P (decl))
|
||
parm_types = hash_tree_chain (build_pointer_type (context), parm_types);
|
||
|
||
/* There should be the same number of template parameters as
|
||
template arguments. */
|
||
my_friendly_assert (TREE_VEC_LENGTH (tparms) == TREE_VEC_LENGTH (targs),
|
||
0);
|
||
|
||
/* If the template is in a namespace, we need to put that into the
|
||
mangled name. Unfortunately, build_decl_overload_real does not
|
||
get the decl to mangle, so it relies on the current
|
||
namespace. Therefore, we set that here temporarily. */
|
||
my_friendly_assert (TREE_CODE_CLASS (TREE_CODE (decl)) == 'd', 980702);
|
||
saved_namespace = current_namespace;
|
||
current_namespace = CP_DECL_CONTEXT (decl);
|
||
|
||
/* Actually set the DCL_ASSEMBLER_NAME. */
|
||
DECL_ASSEMBLER_NAME (decl)
|
||
= build_decl_overload_real (DECL_NAME (decl), parm_types, ret_type,
|
||
tparms, targs,
|
||
DECL_FUNCTION_MEMBER_P (decl)
|
||
+ DECL_CONSTRUCTOR_P (decl));
|
||
|
||
/* Restore the previously active namespace. */
|
||
current_namespace = saved_namespace;
|
||
}
|