b022d95473
function which eliminates code duplication and will ensure proper order of operation.
294 lines
8.2 KiB
C
294 lines
8.2 KiB
C
/*-
|
|
* Copyright (c) 2005-2010 Pawel Jakub Dawidek <pjd@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
#include <geom/geom.h>
|
|
#else
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <strings.h>
|
|
#include <errno.h>
|
|
#endif
|
|
|
|
#include <geom/eli/g_eli.h>
|
|
|
|
#ifdef _KERNEL
|
|
MALLOC_DECLARE(M_ELI);
|
|
#endif
|
|
|
|
/*
|
|
* Verify if the given 'key' is correct.
|
|
* Return 1 if it is correct and 0 otherwise.
|
|
*/
|
|
static int
|
|
g_eli_mkey_verify(const unsigned char *mkey, const unsigned char *key)
|
|
{
|
|
const unsigned char *odhmac; /* On-disk HMAC. */
|
|
unsigned char chmac[SHA512_MDLEN]; /* Calculated HMAC. */
|
|
unsigned char hmkey[SHA512_MDLEN]; /* Key for HMAC. */
|
|
|
|
/*
|
|
* The key for HMAC calculations is: hmkey = HMAC_SHA512(Derived-Key, 0)
|
|
*/
|
|
g_eli_crypto_hmac(key, G_ELI_USERKEYLEN, "\x00", 1, hmkey, 0);
|
|
|
|
odhmac = mkey + G_ELI_DATAIVKEYLEN;
|
|
|
|
/* Calculate HMAC from Data-Key and IV-Key. */
|
|
g_eli_crypto_hmac(hmkey, sizeof(hmkey), mkey, G_ELI_DATAIVKEYLEN,
|
|
chmac, 0);
|
|
|
|
bzero(hmkey, sizeof(hmkey));
|
|
|
|
/*
|
|
* Compare calculated HMAC with HMAC from metadata.
|
|
* If two HMACs are equal, 'key' is correct.
|
|
*/
|
|
return (!bcmp(odhmac, chmac, SHA512_MDLEN));
|
|
}
|
|
|
|
/*
|
|
* Calculate HMAC from Data-Key and IV-Key.
|
|
*/
|
|
void
|
|
g_eli_mkey_hmac(unsigned char *mkey, const unsigned char *key)
|
|
{
|
|
unsigned char hmkey[SHA512_MDLEN]; /* Key for HMAC. */
|
|
unsigned char *odhmac; /* On-disk HMAC. */
|
|
|
|
/*
|
|
* The key for HMAC calculations is: hmkey = HMAC_SHA512(Derived-Key, 0)
|
|
*/
|
|
g_eli_crypto_hmac(key, G_ELI_USERKEYLEN, "\x00", 1, hmkey, 0);
|
|
|
|
odhmac = mkey + G_ELI_DATAIVKEYLEN;
|
|
/* Calculate HMAC from Data-Key and IV-Key. */
|
|
g_eli_crypto_hmac(hmkey, sizeof(hmkey), mkey, G_ELI_DATAIVKEYLEN,
|
|
odhmac, 0);
|
|
|
|
bzero(hmkey, sizeof(hmkey));
|
|
}
|
|
|
|
/*
|
|
* Find and decrypt Master Key encrypted with 'key'.
|
|
* Return decrypted Master Key number in 'nkeyp' if not NULL.
|
|
* Return 0 on success, > 0 on failure, -1 on bad key.
|
|
*/
|
|
int
|
|
g_eli_mkey_decrypt(const struct g_eli_metadata *md, const unsigned char *key,
|
|
unsigned char *mkey, unsigned *nkeyp)
|
|
{
|
|
unsigned char tmpmkey[G_ELI_MKEYLEN];
|
|
unsigned char enckey[SHA512_MDLEN]; /* Key for encryption. */
|
|
const unsigned char *mmkey;
|
|
int bit, error, nkey;
|
|
|
|
if (nkeyp != NULL)
|
|
*nkeyp = -1;
|
|
|
|
/*
|
|
* The key for encryption is: enckey = HMAC_SHA512(Derived-Key, 1)
|
|
*/
|
|
g_eli_crypto_hmac(key, G_ELI_USERKEYLEN, "\x01", 1, enckey, 0);
|
|
|
|
mmkey = md->md_mkeys;
|
|
for (nkey = 0; nkey < G_ELI_MAXMKEYS; nkey++, mmkey += G_ELI_MKEYLEN) {
|
|
bit = (1 << nkey);
|
|
if (!(md->md_keys & bit))
|
|
continue;
|
|
bcopy(mmkey, tmpmkey, G_ELI_MKEYLEN);
|
|
error = g_eli_crypto_decrypt(md->md_ealgo, tmpmkey,
|
|
G_ELI_MKEYLEN, enckey, md->md_keylen);
|
|
if (error != 0) {
|
|
bzero(tmpmkey, sizeof(tmpmkey));
|
|
bzero(enckey, sizeof(enckey));
|
|
return (error);
|
|
}
|
|
if (g_eli_mkey_verify(tmpmkey, key)) {
|
|
bcopy(tmpmkey, mkey, G_ELI_DATAIVKEYLEN);
|
|
bzero(tmpmkey, sizeof(tmpmkey));
|
|
bzero(enckey, sizeof(enckey));
|
|
if (nkeyp != NULL)
|
|
*nkeyp = nkey;
|
|
return (0);
|
|
}
|
|
}
|
|
bzero(enckey, sizeof(enckey));
|
|
bzero(tmpmkey, sizeof(tmpmkey));
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Encrypt the Master-Key and calculate HMAC to be able to verify it in the
|
|
* future.
|
|
*/
|
|
int
|
|
g_eli_mkey_encrypt(unsigned algo, const unsigned char *key, unsigned keylen,
|
|
unsigned char *mkey)
|
|
{
|
|
unsigned char enckey[SHA512_MDLEN]; /* Key for encryption. */
|
|
int error;
|
|
|
|
/*
|
|
* To calculate HMAC, the whole key (G_ELI_USERKEYLEN bytes long) will
|
|
* be used.
|
|
*/
|
|
g_eli_mkey_hmac(mkey, key);
|
|
/*
|
|
* The key for encryption is: enckey = HMAC_SHA512(Derived-Key, 1)
|
|
*/
|
|
g_eli_crypto_hmac(key, G_ELI_USERKEYLEN, "\x01", 1, enckey, 0);
|
|
/*
|
|
* Encrypt the Master-Key and HMAC() result with the given key (this
|
|
* time only 'keylen' bits from the key are used).
|
|
*/
|
|
error = g_eli_crypto_encrypt(algo, mkey, G_ELI_MKEYLEN, enckey, keylen);
|
|
|
|
bzero(enckey, sizeof(enckey));
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
static void
|
|
g_eli_ekeys_generate(struct g_eli_softc *sc)
|
|
{
|
|
uint8_t *keys;
|
|
u_int kno;
|
|
off_t mediasize;
|
|
size_t blocksize;
|
|
struct {
|
|
char magic[4];
|
|
uint8_t keyno[8];
|
|
} __packed hmacdata;
|
|
|
|
KASSERT((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) == 0,
|
|
("%s: G_ELI_FLAG_SINGLE_KEY flag present", __func__));
|
|
|
|
if ((sc->sc_flags & G_ELI_FLAG_AUTH) != 0) {
|
|
struct g_provider *pp;
|
|
|
|
pp = LIST_FIRST(&sc->sc_geom->consumer)->provider;
|
|
mediasize = pp->mediasize;
|
|
blocksize = pp->sectorsize;
|
|
} else {
|
|
mediasize = sc->sc_mediasize;
|
|
blocksize = sc->sc_sectorsize;
|
|
}
|
|
sc->sc_nekeys = ((mediasize - 1) >> G_ELI_KEY_SHIFT) / blocksize + 1;
|
|
sc->sc_ekeys =
|
|
malloc(sc->sc_nekeys * (sizeof(uint8_t *) + G_ELI_DATAKEYLEN),
|
|
M_ELI, M_WAITOK);
|
|
keys = (uint8_t *)(sc->sc_ekeys + sc->sc_nekeys);
|
|
bcopy("ekey", hmacdata.magic, 4);
|
|
for (kno = 0; kno < sc->sc_nekeys; kno++, keys += G_ELI_DATAKEYLEN) {
|
|
sc->sc_ekeys[kno] = keys;
|
|
le64enc(hmacdata.keyno, (uint64_t)kno);
|
|
g_eli_crypto_hmac(sc->sc_mkey, G_ELI_MAXKEYLEN,
|
|
(uint8_t *)&hmacdata, sizeof(hmacdata),
|
|
sc->sc_ekeys[kno], 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When doing encryption only, copy IV key and encryption key.
|
|
* When doing encryption and authentication, copy IV key, generate encryption
|
|
* key and generate authentication key.
|
|
*/
|
|
void
|
|
g_eli_mkey_propagate(struct g_eli_softc *sc, const unsigned char *mkey)
|
|
{
|
|
|
|
/* Remember the Master Key. */
|
|
bcopy(mkey, sc->sc_mkey, sizeof(sc->sc_mkey));
|
|
|
|
bcopy(mkey, sc->sc_ivkey, sizeof(sc->sc_ivkey));
|
|
mkey += sizeof(sc->sc_ivkey);
|
|
|
|
/*
|
|
* The authentication key is: akey = HMAC_SHA512(Master-Key, 0x11)
|
|
*/
|
|
if ((sc->sc_flags & G_ELI_FLAG_AUTH) != 0) {
|
|
g_eli_crypto_hmac(mkey, G_ELI_MAXKEYLEN, "\x11", 1,
|
|
sc->sc_akey, 0);
|
|
} else {
|
|
arc4rand(sc->sc_akey, sizeof(sc->sc_akey), 0);
|
|
}
|
|
|
|
if ((sc->sc_flags & G_ELI_FLAG_SINGLE_KEY) != 0) {
|
|
sc->sc_nekeys = 1;
|
|
sc->sc_ekeys = malloc(sc->sc_nekeys *
|
|
(sizeof(uint8_t *) + G_ELI_DATAKEYLEN), M_ELI, M_WAITOK);
|
|
sc->sc_ekeys[0] = (uint8_t *)(sc->sc_ekeys + sc->sc_nekeys);
|
|
if ((sc->sc_flags & G_ELI_FLAG_AUTH) == 0)
|
|
bcopy(mkey, sc->sc_ekeys[0], G_ELI_DATAKEYLEN);
|
|
else {
|
|
/*
|
|
* The encryption key is: ekey = HMAC_SHA512(Master-Key, 0x10)
|
|
*/
|
|
g_eli_crypto_hmac(mkey, G_ELI_MAXKEYLEN, "\x10", 1,
|
|
sc->sc_ekeys[0], 0);
|
|
}
|
|
} else {
|
|
/* Generate all encryption keys. */
|
|
g_eli_ekeys_generate(sc);
|
|
}
|
|
|
|
if (sc->sc_flags & G_ELI_FLAG_AUTH) {
|
|
/*
|
|
* Precalculate SHA256 for HMAC key generation.
|
|
* This is expensive operation and we can do it only once now or
|
|
* for every access to sector, so now will be much better.
|
|
*/
|
|
SHA256_Init(&sc->sc_akeyctx);
|
|
SHA256_Update(&sc->sc_akeyctx, sc->sc_akey,
|
|
sizeof(sc->sc_akey));
|
|
}
|
|
/*
|
|
* Precalculate SHA256 for IV generation.
|
|
* This is expensive operation and we can do it only once now or for
|
|
* every access to sector, so now will be much better.
|
|
*/
|
|
switch (sc->sc_ealgo) {
|
|
case CRYPTO_AES_XTS:
|
|
break;
|
|
default:
|
|
SHA256_Init(&sc->sc_ivctx);
|
|
SHA256_Update(&sc->sc_ivctx, sc->sc_ivkey,
|
|
sizeof(sc->sc_ivkey));
|
|
break;
|
|
}
|
|
}
|
|
#endif
|