freebsd-skq/sys/kern/subr_rtc.c
Pedro F. Giffuni 51369649b0 sys: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 3-Clause license.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
2017-11-20 19:43:44 +00:00

325 lines
9.4 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1990, 1993
* The Regents of the University of California.
* Copyright (c) 2011 The FreeBSD Foundation
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Portions of this software were developed by Julien Ridoux at the University
* of Melbourne under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: clock.c 1.18 91/01/21$
* from: @(#)clock.c 8.2 (Berkeley) 1/12/94
* from: NetBSD: clock_subr.c,v 1.6 2001/07/07 17:04:02 thorpej Exp
* and
* from: src/sys/i386/isa/clock.c,v 1.176 2001/09/04
*/
/*
* Helpers for time-of-day clocks. This is useful for architectures that need
* support multiple models of such clocks, and generally serves to make the
* code more machine-independent.
* If the clock in question can also be used as a time counter, the driver
* needs to initiate this.
* This code is not yet used by all architectures.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ffclock.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#ifdef FFCLOCK
#include <sys/timeffc.h>
#endif
#include <sys/timetc.h>
#include "clock_if.h"
/* XXX: should be kern. now, it's no longer machdep. */
static int disable_rtc_set;
SYSCTL_INT(_machdep, OID_AUTO, disable_rtc_set, CTLFLAG_RW, &disable_rtc_set,
0, "Disallow adjusting time-of-day clock");
/*
* An instance of a realtime clock. A list of these tracks all the registered
* clocks in the system.
*
* The resadj member is used to apply a "resolution adjustment" equal to half
* the clock's resolution, which is useful mainly on clocks with a whole-second
* resolution. Because the clock truncates the fractional part, adding half the
* resolution performs 4/5 rounding. The same adjustment is applied to the
* times returned from clock_gettime(), because the fraction returned will
* always be zero, but on average the actual fraction at the time of the call
* should be about .5.
*/
struct rtc_instance {
device_t clockdev;
int resolution;
int flags;
u_int schedns;
struct timespec resadj;
struct timeout_task
stask;
LIST_ENTRY(rtc_instance)
rtc_entries;
};
/*
* Clocks are updated using a task running on taskqueue_thread.
*/
static void settime_task_func(void *arg, int pending);
/*
* Registered clocks are kept in a list which is sorted by resolution; the more
* accurate clocks get the first shot at providing the time.
*/
LIST_HEAD(rtc_listhead, rtc_instance);
static struct rtc_listhead rtc_list = LIST_HEAD_INITIALIZER(rtc_list);
static struct sx rtc_list_lock;
SX_SYSINIT(rtc_list_lock_init, &rtc_list_lock, "rtc list");
/*
* On the task thread, invoke the clock_settime() method of the clock. Do so
* holding no locks, so that clock drivers are free to do whatever kind of
* locking or sleeping they need to.
*/
static void
settime_task_func(void *arg, int pending)
{
struct timespec ts;
struct rtc_instance *rtc;
rtc = arg;
if (!(rtc->flags & CLOCKF_SETTIME_NO_TS)) {
getnanotime(&ts);
if (!(rtc->flags & CLOCKF_SETTIME_NO_ADJ)) {
ts.tv_sec -= utc_offset();
timespecadd(&ts, &rtc->resadj);
}
} else {
ts.tv_sec = 0;
ts.tv_nsec = 0;
}
CLOCK_SETTIME(rtc->clockdev, &ts);
}
void
clock_register_flags(device_t clockdev, long resolution, int flags)
{
struct rtc_instance *rtc, *newrtc;
newrtc = malloc(sizeof(*newrtc), M_DEVBUF, M_WAITOK);
newrtc->clockdev = clockdev;
newrtc->resolution = (int)resolution;
newrtc->flags = flags;
newrtc->schedns = 0;
newrtc->resadj.tv_sec = newrtc->resolution / 2 / 1000000;
newrtc->resadj.tv_nsec = newrtc->resolution / 2 % 1000000 * 1000;
TIMEOUT_TASK_INIT(taskqueue_thread, &newrtc->stask, 0,
settime_task_func, newrtc);
sx_xlock(&rtc_list_lock);
if (LIST_EMPTY(&rtc_list)) {
LIST_INSERT_HEAD(&rtc_list, newrtc, rtc_entries);
} else {
LIST_FOREACH(rtc, &rtc_list, rtc_entries) {
if (rtc->resolution > newrtc->resolution) {
LIST_INSERT_BEFORE(rtc, newrtc, rtc_entries);
break;
} else if (LIST_NEXT(rtc, rtc_entries) == NULL) {
LIST_INSERT_AFTER(rtc, newrtc, rtc_entries);
break;
}
}
}
sx_xunlock(&rtc_list_lock);
device_printf(clockdev,
"registered as a time-of-day clock, resolution %d.%6.6ds\n",
newrtc->resolution / 1000000, newrtc->resolution % 1000000);
}
void
clock_register(device_t dev, long res)
{
clock_register_flags(dev, res, 0);
}
void
clock_unregister(device_t clockdev)
{
struct rtc_instance *rtc, *tmp;
sx_xlock(&rtc_list_lock);
LIST_FOREACH_SAFE(rtc, &rtc_list, rtc_entries, tmp) {
if (rtc->clockdev == clockdev) {
LIST_REMOVE(rtc, rtc_entries);
break;
}
}
sx_xunlock(&rtc_list_lock);
if (rtc != NULL) {
taskqueue_cancel_timeout(taskqueue_thread, &rtc->stask, NULL);
taskqueue_drain_timeout(taskqueue_thread, &rtc->stask);
free(rtc, M_DEVBUF);
}
}
void
clock_schedule(device_t clockdev, u_int offsetns)
{
struct rtc_instance *rtc;
sx_xlock(&rtc_list_lock);
LIST_FOREACH(rtc, &rtc_list, rtc_entries) {
if (rtc->clockdev == clockdev) {
rtc->schedns = offsetns;
break;
}
}
sx_xunlock(&rtc_list_lock);
}
/*
* Initialize the system time. Must be called from a context which does not
* restrict any locking or sleeping that clock drivers may need to do.
*
* First attempt to get the time from a registered realtime clock. The clocks
* are queried in order of resolution until one provides the time. If no clock
* can provide the current time, use the 'base' time provided by the caller, if
* non-zero. The 'base' time is potentially highly inaccurate, such as the last
* known good value of the system clock, or even a filesystem last-updated
* timestamp. It is used to prevent system time from appearing to move
* backwards in logs.
*/
void
inittodr(time_t base)
{
struct timespec ts;
struct rtc_instance *rtc;
int error;
error = ENXIO;
sx_xlock(&rtc_list_lock);
LIST_FOREACH(rtc, &rtc_list, rtc_entries) {
if ((error = CLOCK_GETTIME(rtc->clockdev, &ts)) != 0)
continue;
if (ts.tv_sec < 0 || ts.tv_nsec < 0) {
error = EINVAL;
continue;
}
if (!(rtc->flags & CLOCKF_GETTIME_NO_ADJ)) {
timespecadd(&ts, &rtc->resadj);
ts.tv_sec += utc_offset();
}
if (bootverbose)
device_printf(rtc->clockdev,
"providing initial system time\n");
break;
}
sx_xunlock(&rtc_list_lock);
/*
* Do not report errors from each clock; it is expected that some clocks
* cannot provide results in some situations. Only report problems when
* no clocks could provide the time.
*/
if (error != 0) {
switch (error) {
case ENXIO:
printf("Warning: no time-of-day clock registered, ");
break;
case EINVAL:
printf("Warning: bad time from time-of-day clock, ");
break;
default:
printf("Error reading time-of-day clock (%d), ", error);
break;
}
printf("system time will not be set accurately\n");
ts.tv_sec = (base > 0) ? base : -1;
ts.tv_nsec = 0;
}
if (ts.tv_sec >= 0) {
tc_setclock(&ts);
#ifdef FFCLOCK
ffclock_reset_clock(&ts);
#endif
}
}
/*
* Write system time back to all registered clocks, unless disabled by admin.
* This can be called from a context that restricts locking and/or sleeping; the
* actual updating is done asynchronously on a task thread.
*/
void
resettodr(void)
{
struct timespec now;
struct rtc_instance *rtc;
sbintime_t sbt;
long waitns;
if (disable_rtc_set)
return;
sx_xlock(&rtc_list_lock);
LIST_FOREACH(rtc, &rtc_list, rtc_entries) {
if (rtc->schedns != 0) {
getnanotime(&now);
waitns = rtc->schedns - now.tv_nsec;
if (waitns < 0)
waitns += 1000000000;
sbt = nstosbt(waitns);
} else
sbt = 0;
taskqueue_enqueue_timeout_sbt(taskqueue_thread,
&rtc->stask, -sbt, 0, C_PREL(31));
}
sx_xunlock(&rtc_list_lock);
}