jhb bd8a6e05f8 Some motherboards like to remap the SCI (normally IRQ 9) up to a PCI
interrupt such as IRQ 22 or 19.  However, the ACPI BIOS still routes
interrupts from some PCI devices to the same intpin calling the pin
IRQ 22.  Thus, ACPI expects to address a single interrupt source via two
different names.  To work around this, if the SCI is remapped to a non-ISA
interrupt (i.e., greater than 15), then we use
acpi_OverrideInterruptLevel() function to tell ACPI to use IRQ 22 or 19
rather than IRQ 9 for the SCI.

Previously we would change IRQ 22 or 19's name to IRQ 9 when we encountered
such an Interrupt Source Override entry in the MADT which routed the SCI
properly but left PCI devices mapped to IRQ 22 or 19 w/o a routable
interrupt.

Tested by:	sos
2003-11-11 18:20:10 +00:00

666 lines
17 KiB
C

/*-
* Copyright (c) 2003 John Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <machine/apicreg.h>
#include <machine/frame.h>
#include <machine/intr_machdep.h>
#include <machine/apicvar.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include "acpi.h"
#include <dev/acpica/acpivar.h>
#include <dev/acpica/madt.h>
#include <dev/pci/pcivar.h>
#define NIOAPICS 32 /* Max number of I/O APICs */
#define NLAPICS 32 /* Max number of local APICs */
typedef void madt_entry_handler(APIC_HEADER *entry, void *arg);
/* These two arrays are indexed by APIC IDs. */
struct ioapic_info {
void *io_apic;
UINT32 io_vector;
} ioapics[NIOAPICS];
struct lapic_info {
u_int la_present:1;
u_int la_enabled:1;
u_int la_apic_id:8;
} lapics[NLAPICS + 1];
static APIC_TABLE *madt;
static vm_paddr_t madt_physaddr;
static vm_offset_t madt_length;
MALLOC_DEFINE(M_MADT, "MADT Table", "ACPI MADT Table Items");
static u_char interrupt_polarity(UINT16 Polarity);
static u_char interrupt_trigger(UINT16 TriggerMode);
static int madt_find_cpu(u_int acpi_id, u_int *apic_id);
static int madt_find_interrupt(int intr, void **apic, u_int *pin);
static void *madt_map(vm_paddr_t pa, int offset, vm_offset_t length);
static void *madt_map_table(vm_paddr_t pa, int offset, const char *sig);
static void madt_parse_apics(APIC_HEADER *entry, void *arg);
static void madt_parse_interrupt_override(INTERRUPT_SOURCE_OVERRIDE *intr);
static void madt_parse_ints(APIC_HEADER *entry, void *arg __unused);
static void madt_parse_local_nmi(LAPIC_NMI *nmi);
static void madt_parse_nmi(NMI *nmi);
static int madt_probe(void);
static int madt_probe_cpus(void);
static void madt_probe_cpus_handler(APIC_HEADER *entry, void *arg __unused);
static int madt_probe_table(vm_paddr_t address);
static void madt_register(void *dummy);
static int madt_setup_local(void);
static int madt_setup_io(void);
static void madt_unmap(void *data, vm_offset_t length);
static void madt_unmap_table(void *table);
static void madt_walk_table(madt_entry_handler *handler, void *arg);
static struct apic_enumerator madt_enumerator = {
"MADT",
madt_probe,
madt_probe_cpus,
madt_setup_local,
madt_setup_io
};
/*
* Code to abuse the crashdump map to map in the tables for the early
* probe. We cheat and make the following assumptions about how we
* use this KVA: page 0 is used to map in the first page of each table
* found via the RSDT or XSDT and pages 1 to n are used to map in the
* RSDT or XSDT. The offset is in pages; the length is in bytes.
*/
static void *
madt_map(vm_paddr_t pa, int offset, vm_offset_t length)
{
vm_offset_t va, off;
void *data;
off = pa & PAGE_MASK;
length = roundup(length + off, PAGE_SIZE);
pa = pa & PG_FRAME;
va = (vm_offset_t)pmap_kenter_temporary(pa, offset) +
(offset * PAGE_SIZE);
data = (void *)(va + off);
length -= PAGE_SIZE;
while (length > 0) {
va += PAGE_SIZE;
pa += PAGE_SIZE;
length -= PAGE_SIZE;
pmap_kenter(va, pa);
invlpg(va);
}
return (data);
}
static void
madt_unmap(void *data, vm_offset_t length)
{
vm_offset_t va, off;
va = (vm_offset_t)data;
off = va & PAGE_MASK;
length = roundup(length + off, PAGE_SIZE);
va &= ~PAGE_MASK;
while (length > 0) {
pmap_kremove(va);
invlpg(va);
va += PAGE_SIZE;
length -= PAGE_SIZE;
}
}
static void *
madt_map_table(vm_paddr_t pa, int offset, const char *sig)
{
ACPI_TABLE_HEADER *header;
vm_offset_t length;
header = madt_map(pa, offset, sizeof(ACPI_TABLE_HEADER));
if (strncmp(header->Signature, sig, 4) != 0) {
madt_unmap(header, sizeof(ACPI_TABLE_HEADER));
return (NULL);
}
length = header->Length;
madt_unmap(header, sizeof(ACPI_TABLE_HEADER));
return (madt_map(pa, offset, length));
}
static void
madt_unmap_table(void *table)
{
ACPI_TABLE_HEADER *header;
header = (ACPI_TABLE_HEADER *)table;
madt_unmap(table, header->Length);
}
/*
* Look for an ACPI Multiple APIC Description Table ("APIC")
*/
static int
madt_probe(void)
{
ACPI_POINTER rsdp_ptr;
RSDP_DESCRIPTOR *rsdp;
RSDT_DESCRIPTOR *rsdt;
XSDT_DESCRIPTOR *xsdt;
int i, count;
if (resource_disabled("acpi", 0))
return (ENXIO);
/*
* Map in the RSDP. Since ACPI uses AcpiOsMapMemory() which in turn
* calls pmap_mapdev() to find the RSDP, we assume that we can use
* pmap_mapdev() to map the RSDP.
*/
if (AcpiOsGetRootPointer(ACPI_LOGICAL_ADDRESSING, &rsdp_ptr) != AE_OK)
return (ENXIO);
KASSERT(rsdp_ptr.Pointer.Physical < KERNLOAD, ("RSDP too high"));
rsdp = pmap_mapdev(rsdp_ptr.Pointer.Physical, sizeof(RSDP_DESCRIPTOR));
if (rsdp == NULL) {
if (bootverbose)
printf("MADT: Failed to map RSDP\n");
return (ENXIO);
}
/*
* For ACPI < 2.0, use the RSDT. For ACPI >= 2.0, use the XSDT.
* We map the XSDT and RSDT at page 1 in the crashdump area.
* Page 0 is used to map in the headers of candidate ACPI tables.
*/
if (rsdp->Revision >= 2) {
xsdt = madt_map_table(rsdp->XsdtPhysicalAddress, 1, XSDT_SIG);
if (xsdt == NULL) {
if (bootverbose)
printf("MADT: Failed to map XSDT\n");
return (ENXIO);
}
count = (xsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
sizeof(UINT64);
for (i = 0; i < count; i++)
if (madt_probe_table(xsdt->TableOffsetEntry[i]))
break;
madt_unmap_table(xsdt);
} else {
rsdt = madt_map_table(rsdp->RsdtPhysicalAddress, 1, RSDT_SIG);
if (rsdt == NULL) {
if (bootverbose)
printf("MADT: Failed to map RSDT\n");
return (ENXIO);
}
count = (rsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
sizeof(UINT32);
for (i = 0; i < count; i++)
if (madt_probe_table(rsdt->TableOffsetEntry[i]))
break;
madt_unmap_table(rsdt);
}
pmap_unmapdev((vm_offset_t)rsdp, sizeof(RSDP_DESCRIPTOR));
if (madt_physaddr == 0) {
if (bootverbose)
printf("MADT: No MADT table found\n");
return (ENXIO);
}
if (bootverbose)
printf("MADT: Found table at 0x%jx\n",
(uintmax_t)madt_physaddr);
return (0);
}
/*
* See if a given ACPI table is the MADT.
*/
static int
madt_probe_table(vm_paddr_t address)
{
ACPI_TABLE_HEADER *table;
table = madt_map(address, 0, sizeof(ACPI_TABLE_HEADER));
if (table == NULL) {
if (bootverbose)
printf("MADT: Failed to map table at 0x%jx\n",
(uintmax_t)address);
return (0);
}
if (bootverbose)
printf("Table '%.4s' at 0x%jx\n", table->Signature,
(uintmax_t)address);
/* XXX: Verify checksum? */
if (strncmp(table->Signature, APIC_SIG, 4) != 0) {
madt_unmap(table, sizeof(ACPI_TABLE_HEADER));
return (0);
}
madt_physaddr = address;
madt_length = table->Length;
madt_unmap(table, sizeof(ACPI_TABLE_HEADER));
return (1);
}
/*
* Run through the MP table enumerating CPUs.
*/
static int
madt_probe_cpus(void)
{
madt = madt_map_table(madt_physaddr, 0, APIC_SIG);
KASSERT(madt != NULL, ("Unable to re-map MADT"));
madt_walk_table(madt_probe_cpus_handler, NULL);
madt_unmap_table(madt);
madt = NULL;
return (0);
}
/*
* Initialize the local APIC on the BSP.
*/
static int
madt_setup_local(void)
{
madt = pmap_mapdev(madt_physaddr, madt_length);
lapic_init((uintptr_t)madt->LocalApicAddress);
printf("ACPI APIC Table: <%.*s %.*s>\n",
sizeof(madt->Header.OemId), madt->Header.OemId,
sizeof(madt->Header.OemTableId), madt->Header.OemTableId);
/*
* We ignore 64-bit local APIC override entries. Should we
* perhaps emit a warning here if we find one?
*/
return (0);
}
/*
* Run through the MP table enumerating I/O APICs.
*/
static int
madt_setup_io(void)
{
int i;
/* First, we run through adding I/O APIC's. */
madt_walk_table(madt_parse_apics, NULL);
/* Second, we run through the table tweaking interrupt sources. */
madt_walk_table(madt_parse_ints, NULL);
/* Third, we register all the I/O APIC's. */
for (i = 0; i < NIOAPICS; i++)
if (ioapics[i].io_apic != NULL)
ioapic_register(ioapics[i].io_apic);
/* Finally, we throw the switch to enable the I/O APIC's. */
acpi_SetDefaultIntrModel(ACPI_INTR_APIC);
return (0);
}
static void
madt_register(void *dummy __unused)
{
apic_register_enumerator(&madt_enumerator);
}
SYSINIT(madt_register, SI_SUB_TUNABLES - 1, SI_ORDER_FIRST,
madt_register, NULL)
/*
* Call the handler routine for each entry in the MADT table.
*/
static void
madt_walk_table(madt_entry_handler *handler, void *arg)
{
APIC_HEADER *entry;
u_char *p, *end;
end = (u_char *)(madt) + madt->Header.Length;
for (p = (u_char *)(madt + 1); p < end; ) {
entry = (APIC_HEADER *)p;
handler(entry, arg);
p += entry->Length;
}
}
static void
madt_probe_cpus_handler(APIC_HEADER *entry, void *arg)
{
PROCESSOR_APIC *proc;
struct lapic_info *la;
switch (entry->Type) {
case APIC_PROC:
/*
* The MADT does not include a BSP flag, so we have to
* let the MP code figure out which CPU is the BSP on
* its own.
*/
proc = (PROCESSOR_APIC *)entry;
if (bootverbose)
printf("MADT: Found CPU APIC ID %d ACPI ID %d: %s\n",
proc->LocalApicId, proc->ProcessorApicId,
proc->ProcessorEnabled ? "enabled" : "disabled");
if (proc->ProcessorApicId > NLAPICS)
panic("%s: CPU ID %d too high", __func__,
proc->ProcessorApicId);
la = &lapics[proc->ProcessorApicId];
KASSERT(la->la_present == 0,
("Duplicate local ACPI ID %d", proc->ProcessorApicId));
la->la_present = 1;
la->la_apic_id = proc->LocalApicId;
if (proc->ProcessorEnabled) {
la->la_enabled = 1;
lapic_create(proc->LocalApicId, 0);
}
break;
}
}
/*
* Add an I/O APIC from an entry in the table.
*/
static void
madt_parse_apics(APIC_HEADER *entry, void *arg __unused)
{
IO_APIC *apic;
switch (entry->Type) {
case APIC_IO:
apic = (IO_APIC *)entry;
if (bootverbose)
printf("MADT: Found IO APIC ID %d, Vector %d at %p\n",
apic->IoApicId, apic->Vector,
(void *)apic->IoApicAddress);
if (apic->IoApicId >= NIOAPICS)
panic("%s: I/O APIC ID %d too high", __func__,
apic->IoApicId);
if (ioapics[apic->IoApicId].io_apic != NULL)
panic("%s: Double APIC ID %d", __func__,
apic->IoApicId);
ioapics[apic->IoApicId].io_apic = ioapic_create(
(uintptr_t)apic->IoApicAddress, apic->IoApicId,
apic->Vector);
ioapics[apic->IoApicId].io_vector = apic->Vector;
break;
default:
break;
}
}
/*
* Determine properties of an interrupt source. Note that for ACPI,
* these are only used for ISA interrupts, so we assume ISA bus values
* (Active Hi, Edge Triggered) for conforming values.
*/
static u_char
interrupt_polarity(UINT16 Polarity)
{
switch (Polarity) {
case APIC_POLARITY_CONFORM:
case APIC_POLARITY_ACTIVEHI:
return (1);
case APIC_POLARITY_ACTIVELO:
return (0);
default:
panic("Bogus Interrupt Polarity");
}
}
static u_char
interrupt_trigger(UINT16 TriggerMode)
{
switch (TriggerMode) {
case APIC_TRIGGER_CONFORM:
case APIC_TRIGGER_EDGE:
return (1);
case APIC_TRIGGER_LEVEL:
return (0);
default:
panic("Bogus Interrupt Trigger Mode");
}
}
/*
* Find the local APIC ID associated with a given ACPI Processor ID.
*/
static int
madt_find_cpu(u_int acpi_id, u_int *apic_id)
{
if (!lapics[acpi_id].la_present)
return (ENOENT);
*apic_id = lapics[acpi_id].la_apic_id;
if (lapics[acpi_id].la_enabled)
return (0);
else
return (ENXIO);
}
/*
* Find the IO APIC and pin on that APIC associated with a given global
* interrupt.
*/
static int
madt_find_interrupt(int intr, void **apic, u_int *pin)
{
int i, best;
best = -1;
for (i = 0; i < NIOAPICS; i++) {
if (ioapics[i].io_apic == NULL ||
ioapics[i].io_vector > intr)
continue;
if (best == -1 ||
ioapics[best].io_vector < ioapics[i].io_vector)
best = i;
}
if (best == -1)
return (ENOENT);
*apic = ioapics[best].io_apic;
*pin = intr - ioapics[best].io_vector;
if (*pin > 32)
printf("WARNING: Found intpin of %u for vector %d\n", *pin,
intr);
return (0);
}
/*
* Parse an interrupt source override for an ISA interrupt.
*/
static void
madt_parse_interrupt_override(INTERRUPT_SOURCE_OVERRIDE *intr)
{
void *new_ioapic, *old_ioapic;
u_int new_pin, old_pin;
if (bootverbose)
printf("MADT: intr override: source %u, irq %u\n",
intr->Source, intr->GlobalSystemInterrupt);
KASSERT(intr->Bus == 0, ("bus for interrupt overrides must be zero"));
if (madt_find_interrupt(intr->GlobalSystemInterrupt, &new_ioapic,
&new_pin) != 0) {
printf("MADT: Could not find APIC for vector %d (IRQ %d)\n",
intr->GlobalSystemInterrupt, intr->Source);
return;
}
if (intr->Source != intr->GlobalSystemInterrupt) {
/* XXX: This assumes that the SCI uses IRQ 9. */
if (intr->GlobalSystemInterrupt > 15 && intr->Source == 9)
acpi_OverrideInterruptLevel(
intr->GlobalSystemInterrupt);
else
ioapic_remap_vector(new_ioapic, new_pin, intr->Source);
if (madt_find_interrupt(intr->Source, &old_ioapic,
&old_pin) != 0)
printf("MADT: Could not find APIC for source IRQ %d\n",
intr->Source);
else if (ioapic_get_vector(old_ioapic, old_pin) ==
intr->Source)
ioapic_disable_pin(old_ioapic, old_pin);
}
ioapic_set_triggermode(new_ioapic, new_pin,
interrupt_trigger(intr->TriggerMode));
ioapic_set_polarity(new_ioapic, new_pin,
interrupt_polarity(intr->Polarity));
}
/*
* Parse an entry for an NMI routed to an IO APIC.
*/
static void
madt_parse_nmi(NMI *nmi)
{
void *ioapic;
u_int pin;
if (madt_find_interrupt(nmi->GlobalSystemInterrupt,
&ioapic, &pin) != 0) {
printf("MADT: Could not find APIC for vector %d\n",
nmi->GlobalSystemInterrupt);
return;
}
ioapic_set_nmi(ioapic, pin);
if (nmi->TriggerMode != APIC_TRIGGER_CONFORM)
ioapic_set_triggermode(ioapic, pin,
interrupt_trigger(nmi->TriggerMode));
if (nmi->Polarity != APIC_TRIGGER_CONFORM)
ioapic_set_polarity(ioapic, pin,
interrupt_polarity(nmi->Polarity));
}
/*
* Parse an entry for an NMI routed to a local APIC LVT pin.
*/
static void
madt_parse_local_nmi(LAPIC_NMI *nmi)
{
u_int apic_id, pin;
if (nmi->ProcessorApicId == 0xff)
apic_id = APIC_ID_ALL;
else if (madt_find_cpu(nmi->ProcessorApicId, &apic_id) != 0) {
if (bootverbose)
printf("MADT: Ignoring local NMI routed to ACPI CPU %u\n",
nmi->ProcessorApicId);
return;
}
if (nmi->LINTPin == 0)
pin = LVT_LINT0;
else
pin = LVT_LINT1;
lapic_set_lvt_mode(apic_id, pin, APIC_LVT_DM_NMI);
if (nmi->TriggerMode != APIC_TRIGGER_CONFORM)
lapic_set_lvt_triggermode(apic_id, pin,
interrupt_trigger(nmi->TriggerMode));
if (nmi->Polarity != APIC_POLARITY_CONFORM)
lapic_set_lvt_polarity(apic_id, pin,
interrupt_polarity(nmi->Polarity));
}
/*
* Parse interrupt entries.
*/
static void
madt_parse_ints(APIC_HEADER *entry, void *arg __unused)
{
switch (entry->Type) {
case APIC_INTERRUPT_SOURCE_OVERRIDE:
madt_parse_interrupt_override(
(INTERRUPT_SOURCE_OVERRIDE *)entry);
break;
case APIC_NMI:
madt_parse_nmi((NMI *)entry);
break;
case APIC_LOCAL_APIC_NMI:
madt_parse_local_nmi((LAPIC_NMI *)entry);
break;
}
}
/*
* Setup per-CPU ACPI IDs.
*/
static void
madt_set_ids(void *dummy)
{
struct pcpu *pc;
u_int i, j;
if (madt == NULL)
return;
for (i = 0; i < MAXCPU; i++) {
if (CPU_ABSENT(i))
continue;
pc = pcpu_find(i);
KASSERT(pc != NULL, ("no pcpu data for CPU %d", i));
for (j = 0; j < NLAPICS + 1; j++) {
if (!lapics[j].la_present || !lapics[j].la_enabled)
continue;
if (lapics[j].la_apic_id == pc->pc_apic_id) {
pc->pc_acpi_id = j;
if (bootverbose)
printf("APIC: CPU %u has ACPI ID %u\n",
i, j);
break;
}
}
if (j == NLAPICS + 1)
panic("Unable to find ACPI ID for CPU %d", i);
}
}
SYSINIT(madt_set_ids, SI_SUB_CPU, SI_ORDER_ANY, madt_set_ids, NULL)