2016-10-26 15:18:08 +00:00

1203 lines
29 KiB
C

/*-
* Copyright (c) 2015-2016 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Andrew Turner under
* the sponsorship of the FreeBSD Foundation.
*
* This software was developed by Semihalf under
* the sponsorship of the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_platform.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bitstring.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/cpuset.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#ifdef FDT
#include <dev/fdt/fdt_intr.h>
#include <dev/ofw/ofw_bus_subr.h>
#endif
#include "pic_if.h"
#include "gic_v3_reg.h"
#include "gic_v3_var.h"
static bus_read_ivar_t gic_v3_read_ivar;
static pic_disable_intr_t gic_v3_disable_intr;
static pic_enable_intr_t gic_v3_enable_intr;
static pic_map_intr_t gic_v3_map_intr;
static pic_setup_intr_t gic_v3_setup_intr;
static pic_teardown_intr_t gic_v3_teardown_intr;
static pic_post_filter_t gic_v3_post_filter;
static pic_post_ithread_t gic_v3_post_ithread;
static pic_pre_ithread_t gic_v3_pre_ithread;
static pic_bind_intr_t gic_v3_bind_intr;
#ifdef SMP
static pic_init_secondary_t gic_v3_init_secondary;
static pic_ipi_send_t gic_v3_ipi_send;
static pic_ipi_setup_t gic_v3_ipi_setup;
#endif
static u_int gic_irq_cpu;
#ifdef SMP
static u_int sgi_to_ipi[GIC_LAST_SGI - GIC_FIRST_SGI + 1];
static u_int sgi_first_unused = GIC_FIRST_SGI;
#endif
static device_method_t gic_v3_methods[] = {
/* Device interface */
DEVMETHOD(device_detach, gic_v3_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, gic_v3_read_ivar),
/* Interrupt controller interface */
DEVMETHOD(pic_disable_intr, gic_v3_disable_intr),
DEVMETHOD(pic_enable_intr, gic_v3_enable_intr),
DEVMETHOD(pic_map_intr, gic_v3_map_intr),
DEVMETHOD(pic_setup_intr, gic_v3_setup_intr),
DEVMETHOD(pic_teardown_intr, gic_v3_teardown_intr),
DEVMETHOD(pic_post_filter, gic_v3_post_filter),
DEVMETHOD(pic_post_ithread, gic_v3_post_ithread),
DEVMETHOD(pic_pre_ithread, gic_v3_pre_ithread),
#ifdef SMP
DEVMETHOD(pic_bind_intr, gic_v3_bind_intr),
DEVMETHOD(pic_init_secondary, gic_v3_init_secondary),
DEVMETHOD(pic_ipi_send, gic_v3_ipi_send),
DEVMETHOD(pic_ipi_setup, gic_v3_ipi_setup),
#endif
/* End */
DEVMETHOD_END
};
DEFINE_CLASS_0(gic, gic_v3_driver, gic_v3_methods,
sizeof(struct gic_v3_softc));
/*
* Driver-specific definitions.
*/
MALLOC_DEFINE(M_GIC_V3, "GICv3", GIC_V3_DEVSTR);
/*
* Helper functions and definitions.
*/
/* Destination registers, either Distributor or Re-Distributor */
enum gic_v3_xdist {
DIST = 0,
REDIST,
};
struct gic_v3_irqsrc {
struct intr_irqsrc gi_isrc;
uint32_t gi_irq;
enum intr_polarity gi_pol;
enum intr_trigger gi_trig;
};
/* Helper routines starting with gic_v3_ */
static int gic_v3_dist_init(struct gic_v3_softc *);
static int gic_v3_redist_alloc(struct gic_v3_softc *);
static int gic_v3_redist_find(struct gic_v3_softc *);
static int gic_v3_redist_init(struct gic_v3_softc *);
static int gic_v3_cpu_init(struct gic_v3_softc *);
static void gic_v3_wait_for_rwp(struct gic_v3_softc *, enum gic_v3_xdist);
/* A sequence of init functions for primary (boot) CPU */
typedef int (*gic_v3_initseq_t) (struct gic_v3_softc *);
/* Primary CPU initialization sequence */
static gic_v3_initseq_t gic_v3_primary_init[] = {
gic_v3_dist_init,
gic_v3_redist_alloc,
gic_v3_redist_init,
gic_v3_cpu_init,
NULL
};
#ifdef SMP
/* Secondary CPU initialization sequence */
static gic_v3_initseq_t gic_v3_secondary_init[] = {
gic_v3_redist_init,
gic_v3_cpu_init,
NULL
};
#endif
uint32_t
gic_r_read_4(device_t dev, bus_size_t offset)
{
struct gic_v3_softc *sc;
sc = device_get_softc(dev);
return (bus_read_4(sc->gic_redists.pcpu[PCPU_GET(cpuid)], offset));
}
uint64_t
gic_r_read_8(device_t dev, bus_size_t offset)
{
struct gic_v3_softc *sc;
sc = device_get_softc(dev);
return (bus_read_8(sc->gic_redists.pcpu[PCPU_GET(cpuid)], offset));
}
void
gic_r_write_4(device_t dev, bus_size_t offset, uint32_t val)
{
struct gic_v3_softc *sc;
sc = device_get_softc(dev);
bus_write_4(sc->gic_redists.pcpu[PCPU_GET(cpuid)], offset, val);
}
void
gic_r_write_8(device_t dev, bus_size_t offset, uint64_t val)
{
struct gic_v3_softc *sc;
sc = device_get_softc(dev);
bus_write_8(sc->gic_redists.pcpu[PCPU_GET(cpuid)], offset, val);
}
/*
* Device interface.
*/
int
gic_v3_attach(device_t dev)
{
struct gic_v3_softc *sc;
gic_v3_initseq_t *init_func;
uint32_t typer;
int rid;
int err;
size_t i;
u_int irq;
const char *name;
sc = device_get_softc(dev);
sc->gic_registered = FALSE;
sc->dev = dev;
err = 0;
/* Initialize mutex */
mtx_init(&sc->gic_mtx, "GICv3 lock", NULL, MTX_SPIN);
/*
* Allocate array of struct resource.
* One entry for Distributor and all remaining for Re-Distributor.
*/
sc->gic_res = malloc(
sizeof(*sc->gic_res) * (sc->gic_redists.nregions + 1),
M_GIC_V3, M_WAITOK);
/* Now allocate corresponding resources */
for (i = 0, rid = 0; i < (sc->gic_redists.nregions + 1); i++, rid++) {
sc->gic_res[rid] = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (sc->gic_res[rid] == NULL)
return (ENXIO);
}
/*
* Distributor interface
*/
sc->gic_dist = sc->gic_res[0];
/*
* Re-Dristributor interface
*/
/* Allocate space under region descriptions */
sc->gic_redists.regions = malloc(
sizeof(*sc->gic_redists.regions) * sc->gic_redists.nregions,
M_GIC_V3, M_WAITOK);
/* Fill-up bus_space information for each region. */
for (i = 0, rid = 1; i < sc->gic_redists.nregions; i++, rid++)
sc->gic_redists.regions[i] = sc->gic_res[rid];
/* Get the number of supported SPI interrupts */
typer = gic_d_read(sc, 4, GICD_TYPER);
sc->gic_nirqs = GICD_TYPER_I_NUM(typer);
if (sc->gic_nirqs > GIC_I_NUM_MAX)
sc->gic_nirqs = GIC_I_NUM_MAX;
sc->gic_irqs = malloc(sizeof(*sc->gic_irqs) * sc->gic_nirqs,
M_GIC_V3, M_WAITOK | M_ZERO);
name = device_get_nameunit(dev);
for (irq = 0; irq < sc->gic_nirqs; irq++) {
struct intr_irqsrc *isrc;
sc->gic_irqs[irq].gi_irq = irq;
sc->gic_irqs[irq].gi_pol = INTR_POLARITY_CONFORM;
sc->gic_irqs[irq].gi_trig = INTR_TRIGGER_CONFORM;
isrc = &sc->gic_irqs[irq].gi_isrc;
if (irq <= GIC_LAST_SGI) {
err = intr_isrc_register(isrc, sc->dev,
INTR_ISRCF_IPI, "%s,i%u", name, irq - GIC_FIRST_SGI);
} else if (irq <= GIC_LAST_PPI) {
err = intr_isrc_register(isrc, sc->dev,
INTR_ISRCF_PPI, "%s,p%u", name, irq - GIC_FIRST_PPI);
} else {
err = intr_isrc_register(isrc, sc->dev, 0,
"%s,s%u", name, irq - GIC_FIRST_SPI);
}
if (err != 0) {
/* XXX call intr_isrc_deregister() */
free(sc->gic_irqs, M_DEVBUF);
return (err);
}
}
/* Get the number of supported interrupt identifier bits */
sc->gic_idbits = GICD_TYPER_IDBITS(typer);
if (bootverbose) {
device_printf(dev, "SPIs: %u, IDs: %u\n",
sc->gic_nirqs, (1 << sc->gic_idbits) - 1);
}
/* Train init sequence for boot CPU */
for (init_func = gic_v3_primary_init; *init_func != NULL; init_func++) {
err = (*init_func)(sc);
if (err != 0)
return (err);
}
return (0);
}
int
gic_v3_detach(device_t dev)
{
struct gic_v3_softc *sc;
size_t i;
int rid;
sc = device_get_softc(dev);
if (device_is_attached(dev)) {
/*
* XXX: We should probably deregister PIC
*/
if (sc->gic_registered)
panic("Trying to detach registered PIC");
}
for (rid = 0; rid < (sc->gic_redists.nregions + 1); rid++)
bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->gic_res[rid]);
for (i = 0; i < mp_ncpus; i++)
free(sc->gic_redists.pcpu[i], M_GIC_V3);
free(sc->gic_res, M_GIC_V3);
free(sc->gic_redists.regions, M_GIC_V3);
return (0);
}
static int
gic_v3_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct gic_v3_softc *sc;
sc = device_get_softc(dev);
switch (which) {
case GICV3_IVAR_NIRQS:
*result = sc->gic_nirqs;
return (0);
case GICV3_IVAR_REDIST_VADDR:
*result = (uintptr_t)rman_get_virtual(
sc->gic_redists.pcpu[PCPU_GET(cpuid)]);
return (0);
}
return (ENOENT);
}
int
arm_gic_v3_intr(void *arg)
{
struct gic_v3_softc *sc = arg;
struct gic_v3_irqsrc *gi;
struct intr_pic *pic;
uint64_t active_irq;
struct trapframe *tf;
bool first;
first = true;
pic = sc->gic_pic;
while (1) {
if (CPU_MATCH_ERRATA_CAVIUM_THUNDER_1_1) {
/*
* Hardware: Cavium ThunderX
* Chip revision: Pass 1.0 (early version)
* Pass 1.1 (production)
* ERRATUM: 22978, 23154
*/
__asm __volatile(
"nop;nop;nop;nop;nop;nop;nop;nop; \n"
"mrs %0, ICC_IAR1_EL1 \n"
"nop;nop;nop;nop; \n"
"dsb sy \n"
: "=&r" (active_irq));
} else {
active_irq = gic_icc_read(IAR1);
}
if (active_irq >= GIC_FIRST_LPI) {
intr_child_irq_handler(pic, active_irq);
continue;
}
if (__predict_false(active_irq >= sc->gic_nirqs))
return (FILTER_HANDLED);
tf = curthread->td_intr_frame;
gi = &sc->gic_irqs[active_irq];
if (active_irq <= GIC_LAST_SGI) {
/* Call EOI for all IPI before dispatch. */
gic_icc_write(EOIR1, (uint64_t)active_irq);
#ifdef SMP
intr_ipi_dispatch(sgi_to_ipi[gi->gi_irq], tf);
#else
device_printf(sc->dev, "SGI %ju on UP system detected\n",
(uintmax_t)(active_irq - GIC_FIRST_SGI));
#endif
} else if (active_irq >= GIC_FIRST_PPI &&
active_irq <= GIC_LAST_SPI) {
if (gi->gi_pol == INTR_TRIGGER_EDGE)
gic_icc_write(EOIR1, gi->gi_irq);
if (intr_isrc_dispatch(&gi->gi_isrc, tf) != 0) {
if (gi->gi_pol != INTR_TRIGGER_EDGE)
gic_icc_write(EOIR1, gi->gi_irq);
gic_v3_disable_intr(sc->dev, &gi->gi_isrc);
device_printf(sc->dev,
"Stray irq %lu disabled\n", active_irq);
}
}
}
}
#ifdef FDT
static int
gic_map_fdt(device_t dev, u_int ncells, pcell_t *cells, u_int *irqp,
enum intr_polarity *polp, enum intr_trigger *trigp)
{
u_int irq;
if (ncells < 3)
return (EINVAL);
/*
* The 1st cell is the interrupt type:
* 0 = SPI
* 1 = PPI
* The 2nd cell contains the interrupt number:
* [0 - 987] for SPI
* [0 - 15] for PPI
* The 3rd cell is the flags, encoded as follows:
* bits[3:0] trigger type and level flags
* 1 = edge triggered
* 2 = edge triggered (PPI only)
* 4 = level-sensitive
* 8 = level-sensitive (PPI only)
*/
switch (cells[0]) {
case 0:
irq = GIC_FIRST_SPI + cells[1];
/* SPI irq is checked later. */
break;
case 1:
irq = GIC_FIRST_PPI + cells[1];
if (irq > GIC_LAST_PPI) {
device_printf(dev, "unsupported PPI interrupt "
"number %u\n", cells[1]);
return (EINVAL);
}
break;
default:
device_printf(dev, "unsupported interrupt type "
"configuration %u\n", cells[0]);
return (EINVAL);
}
switch (cells[2] & FDT_INTR_MASK) {
case FDT_INTR_EDGE_RISING:
*trigp = INTR_TRIGGER_EDGE;
*polp = INTR_POLARITY_HIGH;
break;
case FDT_INTR_EDGE_FALLING:
*trigp = INTR_TRIGGER_EDGE;
*polp = INTR_POLARITY_LOW;
break;
case FDT_INTR_LEVEL_HIGH:
*trigp = INTR_TRIGGER_LEVEL;
*polp = INTR_POLARITY_HIGH;
break;
case FDT_INTR_LEVEL_LOW:
*trigp = INTR_TRIGGER_LEVEL;
*polp = INTR_POLARITY_LOW;
break;
default:
device_printf(dev, "unsupported trigger/polarity "
"configuration 0x%02x\n", cells[2]);
return (EINVAL);
}
/* Check the interrupt is valid */
if (irq >= GIC_FIRST_SPI && *polp != INTR_POLARITY_HIGH)
return (EINVAL);
*irqp = irq;
return (0);
}
#endif
static int
gic_map_msi(device_t dev, struct intr_map_data_msi *msi_data, u_int *irqp,
enum intr_polarity *polp, enum intr_trigger *trigp)
{
struct gic_v3_irqsrc *gi;
/* SPI-mapped MSI */
gi = (struct gic_v3_irqsrc *)msi_data->isrc;
if (gi == NULL)
return (ENXIO);
*irqp = gi->gi_irq;
/* MSI/MSI-X interrupts are always edge triggered with high polarity */
*polp = INTR_POLARITY_HIGH;
*trigp = INTR_TRIGGER_EDGE;
return (0);
}
static int
do_gic_v3_map_intr(device_t dev, struct intr_map_data *data, u_int *irqp,
enum intr_polarity *polp, enum intr_trigger *trigp)
{
struct gic_v3_softc *sc;
enum intr_polarity pol;
enum intr_trigger trig;
struct intr_map_data_msi *dam;
#ifdef FDT
struct intr_map_data_fdt *daf;
#endif
u_int irq;
sc = device_get_softc(dev);
switch (data->type) {
#ifdef FDT
case INTR_MAP_DATA_FDT:
daf = (struct intr_map_data_fdt *)data;
if (gic_map_fdt(dev, daf->ncells, daf->cells, &irq, &pol,
&trig) != 0)
return (EINVAL);
break;
#endif
case INTR_MAP_DATA_MSI:
/* SPI-mapped MSI */
dam = (struct intr_map_data_msi *)data;
if (gic_map_msi(dev, dam, &irq, &pol, &trig) != 0)
return (EINVAL);
break;
default:
return (EINVAL);
}
if (irq >= sc->gic_nirqs)
return (EINVAL);
switch (pol) {
case INTR_POLARITY_CONFORM:
case INTR_POLARITY_LOW:
case INTR_POLARITY_HIGH:
break;
default:
return (EINVAL);
}
switch (trig) {
case INTR_TRIGGER_CONFORM:
case INTR_TRIGGER_EDGE:
case INTR_TRIGGER_LEVEL:
break;
default:
return (EINVAL);
}
*irqp = irq;
if (polp != NULL)
*polp = pol;
if (trigp != NULL)
*trigp = trig;
return (0);
}
static int
gic_v3_map_intr(device_t dev, struct intr_map_data *data,
struct intr_irqsrc **isrcp)
{
struct gic_v3_softc *sc;
int error;
u_int irq;
error = do_gic_v3_map_intr(dev, data, &irq, NULL, NULL);
if (error == 0) {
sc = device_get_softc(dev);
*isrcp = GIC_INTR_ISRC(sc, irq);
}
return (error);
}
static int
gic_v3_setup_intr(device_t dev, struct intr_irqsrc *isrc,
struct resource *res, struct intr_map_data *data)
{
struct gic_v3_softc *sc = device_get_softc(dev);
struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
enum intr_trigger trig;
enum intr_polarity pol;
uint32_t reg;
u_int irq;
int error;
if (data == NULL)
return (ENOTSUP);
error = do_gic_v3_map_intr(dev, data, &irq, &pol, &trig);
if (error != 0)
return (error);
if (gi->gi_irq != irq || pol == INTR_POLARITY_CONFORM ||
trig == INTR_TRIGGER_CONFORM)
return (EINVAL);
/* Compare config if this is not first setup. */
if (isrc->isrc_handlers != 0) {
if (pol != gi->gi_pol || trig != gi->gi_trig)
return (EINVAL);
else
return (0);
}
gi->gi_pol = pol;
gi->gi_trig = trig;
/*
* XXX - In case that per CPU interrupt is going to be enabled in time
* when SMP is already started, we need some IPI call which
* enables it on others CPUs. Further, it's more complicated as
* pic_enable_source() and pic_disable_source() should act on
* per CPU basis only. Thus, it should be solved here somehow.
*/
if (isrc->isrc_flags & INTR_ISRCF_PPI)
CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu);
if (irq >= GIC_FIRST_PPI && irq <= GIC_LAST_SPI) {
mtx_lock_spin(&sc->gic_mtx);
/* Set the trigger and polarity */
if (irq <= GIC_LAST_PPI)
reg = gic_r_read(sc, 4,
GICR_SGI_BASE_SIZE + GICD_ICFGR(irq));
else
reg = gic_d_read(sc, 4, GICD_ICFGR(irq));
if (trig == INTR_TRIGGER_LEVEL)
reg &= ~(2 << ((irq % 16) * 2));
else
reg |= 2 << ((irq % 16) * 2);
if (irq <= GIC_LAST_PPI) {
gic_r_write(sc, 4,
GICR_SGI_BASE_SIZE + GICD_ICFGR(irq), reg);
gic_v3_wait_for_rwp(sc, REDIST);
} else {
gic_d_write(sc, 4, GICD_ICFGR(irq), reg);
gic_v3_wait_for_rwp(sc, DIST);
}
mtx_unlock_spin(&sc->gic_mtx);
gic_v3_bind_intr(dev, isrc);
}
return (0);
}
static int
gic_v3_teardown_intr(device_t dev, struct intr_irqsrc *isrc,
struct resource *res, struct intr_map_data *data)
{
struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
if (isrc->isrc_handlers == 0) {
gi->gi_pol = INTR_POLARITY_CONFORM;
gi->gi_trig = INTR_TRIGGER_CONFORM;
}
return (0);
}
static void
gic_v3_disable_intr(device_t dev, struct intr_irqsrc *isrc)
{
struct gic_v3_softc *sc;
struct gic_v3_irqsrc *gi;
u_int irq;
sc = device_get_softc(dev);
gi = (struct gic_v3_irqsrc *)isrc;
irq = gi->gi_irq;
if (irq <= GIC_LAST_PPI) {
/* SGIs and PPIs in corresponding Re-Distributor */
gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ICENABLER(irq),
GICD_I_MASK(irq));
gic_v3_wait_for_rwp(sc, REDIST);
} else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) {
/* SPIs in distributor */
gic_d_write(sc, 4, GICD_ICENABLER(irq), GICD_I_MASK(irq));
gic_v3_wait_for_rwp(sc, DIST);
} else
panic("%s: Unsupported IRQ %u", __func__, irq);
}
static void
gic_v3_enable_intr(device_t dev, struct intr_irqsrc *isrc)
{
struct gic_v3_softc *sc;
struct gic_v3_irqsrc *gi;
u_int irq;
sc = device_get_softc(dev);
gi = (struct gic_v3_irqsrc *)isrc;
irq = gi->gi_irq;
if (irq <= GIC_LAST_PPI) {
/* SGIs and PPIs in corresponding Re-Distributor */
gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ISENABLER(irq),
GICD_I_MASK(irq));
gic_v3_wait_for_rwp(sc, REDIST);
} else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) {
/* SPIs in distributor */
gic_d_write(sc, 4, GICD_ISENABLER(irq), GICD_I_MASK(irq));
gic_v3_wait_for_rwp(sc, DIST);
} else
panic("%s: Unsupported IRQ %u", __func__, irq);
}
static void
gic_v3_pre_ithread(device_t dev, struct intr_irqsrc *isrc)
{
struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
gic_v3_disable_intr(dev, isrc);
gic_icc_write(EOIR1, gi->gi_irq);
}
static void
gic_v3_post_ithread(device_t dev, struct intr_irqsrc *isrc)
{
gic_v3_enable_intr(dev, isrc);
}
static void
gic_v3_post_filter(device_t dev, struct intr_irqsrc *isrc)
{
struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
if (gi->gi_pol == INTR_TRIGGER_EDGE)
return;
gic_icc_write(EOIR1, gi->gi_irq);
}
static int
gic_v3_bind_intr(device_t dev, struct intr_irqsrc *isrc)
{
struct gic_v3_softc *sc;
struct gic_v3_irqsrc *gi;
int cpu;
gi = (struct gic_v3_irqsrc *)isrc;
if (gi->gi_irq <= GIC_LAST_PPI)
return (EINVAL);
KASSERT(gi->gi_irq >= GIC_FIRST_SPI && gi->gi_irq <= GIC_LAST_SPI,
("%s: Attempting to bind an invalid IRQ", __func__));
sc = device_get_softc(dev);
if (CPU_EMPTY(&isrc->isrc_cpu)) {
gic_irq_cpu = intr_irq_next_cpu(gic_irq_cpu, &all_cpus);
CPU_SETOF(gic_irq_cpu, &isrc->isrc_cpu);
gic_d_write(sc, 4, GICD_IROUTER(gi->gi_irq),
CPU_AFFINITY(gic_irq_cpu));
} else {
/*
* We can only bind to a single CPU so select
* the first CPU found.
*/
cpu = CPU_FFS(&isrc->isrc_cpu) - 1;
gic_d_write(sc, 4, GICD_IROUTER(gi->gi_irq), CPU_AFFINITY(cpu));
}
return (0);
}
#ifdef SMP
static void
gic_v3_init_secondary(device_t dev)
{
device_t child;
struct gic_v3_softc *sc;
gic_v3_initseq_t *init_func;
struct intr_irqsrc *isrc;
u_int cpu, irq;
int err, i;
sc = device_get_softc(dev);
cpu = PCPU_GET(cpuid);
/* Train init sequence for boot CPU */
for (init_func = gic_v3_secondary_init; *init_func != NULL;
init_func++) {
err = (*init_func)(sc);
if (err != 0) {
device_printf(dev,
"Could not initialize GIC for CPU%u\n", cpu);
return;
}
}
/* Unmask attached SGI interrupts. */
for (irq = GIC_FIRST_SGI; irq <= GIC_LAST_SGI; irq++) {
isrc = GIC_INTR_ISRC(sc, irq);
if (intr_isrc_init_on_cpu(isrc, cpu))
gic_v3_enable_intr(dev, isrc);
}
/* Unmask attached PPI interrupts. */
for (irq = GIC_FIRST_PPI; irq <= GIC_LAST_PPI; irq++) {
isrc = GIC_INTR_ISRC(sc, irq);
if (intr_isrc_init_on_cpu(isrc, cpu))
gic_v3_enable_intr(dev, isrc);
}
for (i = 0; i < sc->gic_nchildren; i++) {
child = sc->gic_children[i];
PIC_INIT_SECONDARY(child);
}
}
static void
gic_v3_ipi_send(device_t dev, struct intr_irqsrc *isrc, cpuset_t cpus,
u_int ipi)
{
struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
uint64_t aff, val, irq;
int i;
#define GIC_AFF_MASK (CPU_AFF3_MASK | CPU_AFF2_MASK | CPU_AFF1_MASK)
#define GIC_AFFINITY(i) (CPU_AFFINITY(i) & GIC_AFF_MASK)
aff = GIC_AFFINITY(0);
irq = gi->gi_irq;
val = 0;
/* Iterate through all CPUs in set */
for (i = 0; i < mp_ncpus; i++) {
/* Move to the next affinity group */
if (aff != GIC_AFFINITY(i)) {
/* Send the IPI */
if (val != 0) {
gic_icc_write(SGI1R, val);
val = 0;
}
aff = GIC_AFFINITY(i);
}
/* Send the IPI to this cpu */
if (CPU_ISSET(i, &cpus)) {
#define ICC_SGI1R_AFFINITY(aff) \
(((uint64_t)CPU_AFF3(aff) << ICC_SGI1R_EL1_AFF3_SHIFT) | \
((uint64_t)CPU_AFF2(aff) << ICC_SGI1R_EL1_AFF2_SHIFT) | \
((uint64_t)CPU_AFF1(aff) << ICC_SGI1R_EL1_AFF1_SHIFT))
/* Set the affinity when the first at this level */
if (val == 0)
val = ICC_SGI1R_AFFINITY(aff) |
irq << ICC_SGI1R_EL1_SGIID_SHIFT;
/* Set the bit to send the IPI to te CPU */
val |= 1 << CPU_AFF0(CPU_AFFINITY(i));
}
}
/* Send the IPI to the last cpu affinity group */
if (val != 0)
gic_icc_write(SGI1R, val);
#undef GIC_AFF_MASK
#undef GIC_AFFINITY
}
static int
gic_v3_ipi_setup(device_t dev, u_int ipi, struct intr_irqsrc **isrcp)
{
struct intr_irqsrc *isrc;
struct gic_v3_softc *sc = device_get_softc(dev);
if (sgi_first_unused > GIC_LAST_SGI)
return (ENOSPC);
isrc = GIC_INTR_ISRC(sc, sgi_first_unused);
sgi_to_ipi[sgi_first_unused++] = ipi;
CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu);
*isrcp = isrc;
return (0);
}
#endif /* SMP */
/*
* Helper routines
*/
static void
gic_v3_wait_for_rwp(struct gic_v3_softc *sc, enum gic_v3_xdist xdist)
{
struct resource *res;
u_int cpuid;
size_t us_left = 1000000;
cpuid = PCPU_GET(cpuid);
switch (xdist) {
case DIST:
res = sc->gic_dist;
break;
case REDIST:
res = sc->gic_redists.pcpu[cpuid];
break;
default:
KASSERT(0, ("%s: Attempt to wait for unknown RWP", __func__));
return;
}
while ((bus_read_4(res, GICD_CTLR) & GICD_CTLR_RWP) != 0) {
DELAY(1);
if (us_left-- == 0)
panic("GICD Register write pending for too long");
}
}
/* CPU interface. */
static __inline void
gic_v3_cpu_priority(uint64_t mask)
{
/* Set prority mask */
gic_icc_write(PMR, mask & ICC_PMR_EL1_PRIO_MASK);
}
static int
gic_v3_cpu_enable_sre(struct gic_v3_softc *sc)
{
uint64_t sre;
u_int cpuid;
cpuid = PCPU_GET(cpuid);
/*
* Set the SRE bit to enable access to GIC CPU interface
* via system registers.
*/
sre = READ_SPECIALREG(icc_sre_el1);
sre |= ICC_SRE_EL1_SRE;
WRITE_SPECIALREG(icc_sre_el1, sre);
isb();
/*
* Now ensure that the bit is set.
*/
sre = READ_SPECIALREG(icc_sre_el1);
if ((sre & ICC_SRE_EL1_SRE) == 0) {
/* We are done. This was disabled in EL2 */
device_printf(sc->dev, "ERROR: CPU%u cannot enable CPU interface "
"via system registers\n", cpuid);
return (ENXIO);
} else if (bootverbose) {
device_printf(sc->dev,
"CPU%u enabled CPU interface via system registers\n",
cpuid);
}
return (0);
}
static int
gic_v3_cpu_init(struct gic_v3_softc *sc)
{
int err;
/* Enable access to CPU interface via system registers */
err = gic_v3_cpu_enable_sre(sc);
if (err != 0)
return (err);
/* Priority mask to minimum - accept all interrupts */
gic_v3_cpu_priority(GIC_PRIORITY_MIN);
/* Disable EOI mode */
gic_icc_clear(CTLR, ICC_CTLR_EL1_EOIMODE);
/* Enable group 1 (insecure) interrups */
gic_icc_set(IGRPEN1, ICC_IGRPEN0_EL1_EN);
return (0);
}
/* Distributor */
static int
gic_v3_dist_init(struct gic_v3_softc *sc)
{
uint64_t aff;
u_int i;
/*
* 1. Disable the Distributor
*/
gic_d_write(sc, 4, GICD_CTLR, 0);
gic_v3_wait_for_rwp(sc, DIST);
/*
* 2. Configure the Distributor
*/
/* Set all global interrupts to be level triggered, active low. */
for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ICFGRn)
gic_d_write(sc, 4, GICD_ICFGR(i), 0x00000000);
/* Set priority to all shared interrupts */
for (i = GIC_FIRST_SPI;
i < sc->gic_nirqs; i += GICD_I_PER_IPRIORITYn) {
/* Set highest priority */
gic_d_write(sc, 4, GICD_IPRIORITYR(i), GIC_PRIORITY_MAX);
}
/*
* Disable all interrupts. Leave PPI and SGIs as they are enabled in
* Re-Distributor registers.
*/
for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ISENABLERn)
gic_d_write(sc, 4, GICD_ICENABLER(i), 0xFFFFFFFF);
gic_v3_wait_for_rwp(sc, DIST);
/*
* 3. Enable Distributor
*/
/* Enable Distributor with ARE, Group 1 */
gic_d_write(sc, 4, GICD_CTLR, GICD_CTLR_ARE_NS | GICD_CTLR_G1A |
GICD_CTLR_G1);
/*
* 4. Route all interrupts to boot CPU.
*/
aff = CPU_AFFINITY(0);
for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i++)
gic_d_write(sc, 4, GICD_IROUTER(i), aff);
return (0);
}
/* Re-Distributor */
static int
gic_v3_redist_alloc(struct gic_v3_softc *sc)
{
u_int cpuid;
/* Allocate struct resource for all CPU's Re-Distributor registers */
for (cpuid = 0; cpuid < mp_ncpus; cpuid++)
if (CPU_ISSET(cpuid, &all_cpus) != 0)
sc->gic_redists.pcpu[cpuid] =
malloc(sizeof(*sc->gic_redists.pcpu[0]),
M_GIC_V3, M_WAITOK);
else
sc->gic_redists.pcpu[cpuid] = NULL;
return (0);
}
static int
gic_v3_redist_find(struct gic_v3_softc *sc)
{
struct resource r_res;
bus_space_handle_t r_bsh;
uint64_t aff;
uint64_t typer;
uint32_t pidr2;
u_int cpuid;
size_t i;
cpuid = PCPU_GET(cpuid);
aff = CPU_AFFINITY(cpuid);
/* Affinity in format for comparison with typer */
aff = (CPU_AFF3(aff) << 24) | (CPU_AFF2(aff) << 16) |
(CPU_AFF1(aff) << 8) | CPU_AFF0(aff);
if (bootverbose) {
device_printf(sc->dev,
"Start searching for Re-Distributor\n");
}
/* Iterate through Re-Distributor regions */
for (i = 0; i < sc->gic_redists.nregions; i++) {
/* Take a copy of the region's resource */
r_res = *sc->gic_redists.regions[i];
r_bsh = rman_get_bushandle(&r_res);
pidr2 = bus_read_4(&r_res, GICR_PIDR2);
switch (pidr2 & GICR_PIDR2_ARCH_MASK) {
case GICR_PIDR2_ARCH_GICv3: /* fall through */
case GICR_PIDR2_ARCH_GICv4:
break;
default:
device_printf(sc->dev,
"No Re-Distributor found for CPU%u\n", cpuid);
return (ENODEV);
}
do {
typer = bus_read_8(&r_res, GICR_TYPER);
if ((typer >> GICR_TYPER_AFF_SHIFT) == aff) {
KASSERT(sc->gic_redists.pcpu[cpuid] != NULL,
("Invalid pointer to per-CPU redistributor"));
/* Copy res contents to its final destination */
*sc->gic_redists.pcpu[cpuid] = r_res;
if (bootverbose) {
device_printf(sc->dev,
"CPU%u Re-Distributor has been found\n",
cpuid);
}
return (0);
}
r_bsh += (GICR_RD_BASE_SIZE + GICR_SGI_BASE_SIZE);
if ((typer & GICR_TYPER_VLPIS) != 0) {
r_bsh +=
(GICR_VLPI_BASE_SIZE + GICR_RESERVED_SIZE);
}
rman_set_bushandle(&r_res, r_bsh);
} while ((typer & GICR_TYPER_LAST) == 0);
}
device_printf(sc->dev, "No Re-Distributor found for CPU%u\n", cpuid);
return (ENXIO);
}
static int
gic_v3_redist_wake(struct gic_v3_softc *sc)
{
uint32_t waker;
size_t us_left = 1000000;
waker = gic_r_read(sc, 4, GICR_WAKER);
/* Wake up Re-Distributor for this CPU */
waker &= ~GICR_WAKER_PS;
gic_r_write(sc, 4, GICR_WAKER, waker);
/*
* When clearing ProcessorSleep bit it is required to wait for
* ChildrenAsleep to become zero following the processor power-on.
*/
while ((gic_r_read(sc, 4, GICR_WAKER) & GICR_WAKER_CA) != 0) {
DELAY(1);
if (us_left-- == 0) {
panic("Could not wake Re-Distributor for CPU%u",
PCPU_GET(cpuid));
}
}
if (bootverbose) {
device_printf(sc->dev, "CPU%u Re-Distributor woke up\n",
PCPU_GET(cpuid));
}
return (0);
}
static int
gic_v3_redist_init(struct gic_v3_softc *sc)
{
int err;
size_t i;
err = gic_v3_redist_find(sc);
if (err != 0)
return (err);
err = gic_v3_redist_wake(sc);
if (err != 0)
return (err);
/* Disable SPIs */
gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ICENABLER0,
GICR_I_ENABLER_PPI_MASK);
/* Enable SGIs */
gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ISENABLER0,
GICR_I_ENABLER_SGI_MASK);
/* Set priority for SGIs and PPIs */
for (i = 0; i <= GIC_LAST_PPI; i += GICR_I_PER_IPRIORITYn) {
gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_IPRIORITYR(i),
GIC_PRIORITY_MAX);
}
gic_v3_wait_for_rwp(sc, REDIST);
return (0);
}