1dfc2c167f
static in its prototype, mark it static at the definition too. Inspired by: FlexeLint warning #512
1086 lines
28 KiB
C
1086 lines
28 KiB
C
/*
|
|
* Copyright (c) 1982, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_atalk.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipx.h"
|
|
#include "opt_bdg.h"
|
|
#include "opt_mac.h"
|
|
#include "opt_netgraph.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mac.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/random.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/netisr.h>
|
|
#include <net/route.h>
|
|
#include <net/if_llc.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/bridge.h>
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip_fw.h>
|
|
#include <netinet/ip_dummynet.h>
|
|
#endif
|
|
#ifdef INET6
|
|
#include <netinet6/nd6.h>
|
|
#endif
|
|
|
|
#ifdef IPX
|
|
#include <netipx/ipx.h>
|
|
#include <netipx/ipx_if.h>
|
|
int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m);
|
|
int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp,
|
|
struct sockaddr *dst, short *tp, int *hlen);
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
ushort ns_nettype;
|
|
int ether_outputdebug = 0;
|
|
int ether_inputdebug = 0;
|
|
#endif
|
|
|
|
#ifdef NETATALK
|
|
#include <netatalk/at.h>
|
|
#include <netatalk/at_var.h>
|
|
#include <netatalk/at_extern.h>
|
|
|
|
#define llc_snap_org_code llc_un.type_snap.org_code
|
|
#define llc_snap_ether_type llc_un.type_snap.ether_type
|
|
|
|
extern u_char at_org_code[3];
|
|
extern u_char aarp_org_code[3];
|
|
#endif /* NETATALK */
|
|
|
|
/* netgraph node hooks for ng_ether(4) */
|
|
void (*ng_ether_input_p)(struct ifnet *ifp,
|
|
struct mbuf **mp, struct ether_header *eh);
|
|
void (*ng_ether_input_orphan_p)(struct ifnet *ifp,
|
|
struct mbuf *m, struct ether_header *eh);
|
|
int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
|
|
void (*ng_ether_attach_p)(struct ifnet *ifp);
|
|
void (*ng_ether_detach_p)(struct ifnet *ifp);
|
|
|
|
int (*vlan_input_p)(struct ether_header *eh, struct mbuf *m);
|
|
int (*vlan_input_tag_p)(struct ether_header *eh, struct mbuf *m,
|
|
u_int16_t t);
|
|
|
|
/* bridge support */
|
|
int do_bridge;
|
|
bridge_in_t *bridge_in_ptr;
|
|
bdg_forward_t *bdg_forward_ptr;
|
|
bdgtakeifaces_t *bdgtakeifaces_ptr;
|
|
struct bdg_softc *ifp2sc;
|
|
|
|
static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
|
|
struct sockaddr *);
|
|
u_char etherbroadcastaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
|
|
#define senderr(e) do { error = (e); goto bad;} while (0)
|
|
#define IFP2AC(IFP) ((struct arpcom *)IFP)
|
|
|
|
int
|
|
ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
|
|
struct ip_fw **rule, struct ether_header *eh, int shared);
|
|
static int ether_ipfw;
|
|
|
|
/*
|
|
* Ethernet output routine.
|
|
* Encapsulate a packet of type family for the local net.
|
|
* Use trailer local net encapsulation if enough data in first
|
|
* packet leaves a multiple of 512 bytes of data in remainder.
|
|
* Assumes that ifp is actually pointer to arpcom structure.
|
|
*/
|
|
int
|
|
ether_output(ifp, m, dst, rt0)
|
|
register struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
struct sockaddr *dst;
|
|
struct rtentry *rt0;
|
|
{
|
|
short type;
|
|
int error = 0, hdrcmplt = 0;
|
|
u_char esrc[6], edst[6];
|
|
register struct rtentry *rt;
|
|
register struct ether_header *eh;
|
|
int loop_copy = 0;
|
|
int hlen; /* link layer header lenght */
|
|
struct arpcom *ac = IFP2AC(ifp);
|
|
|
|
#ifdef MAC
|
|
error = mac_check_ifnet_transmit(ifp, m);
|
|
if (error)
|
|
senderr(error);
|
|
#endif
|
|
|
|
if (ifp->if_flags & IFF_MONITOR)
|
|
senderr(ENETDOWN);
|
|
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
|
|
senderr(ENETDOWN);
|
|
rt = rt0;
|
|
if (rt) {
|
|
if ((rt->rt_flags & RTF_UP) == 0) {
|
|
rt0 = rt = rtalloc1(dst, 1, 0UL);
|
|
if (rt0)
|
|
rt->rt_refcnt--;
|
|
else
|
|
senderr(EHOSTUNREACH);
|
|
}
|
|
if (rt->rt_flags & RTF_GATEWAY) {
|
|
if (rt->rt_gwroute == 0)
|
|
goto lookup;
|
|
if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
|
|
rtfree(rt); rt = rt0;
|
|
lookup: rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1,
|
|
0UL);
|
|
if ((rt = rt->rt_gwroute) == 0)
|
|
senderr(EHOSTUNREACH);
|
|
}
|
|
}
|
|
if (rt->rt_flags & RTF_REJECT)
|
|
if (rt->rt_rmx.rmx_expire == 0 ||
|
|
time_second < rt->rt_rmx.rmx_expire)
|
|
senderr(rt == rt0 ? EHOSTDOWN : EHOSTUNREACH);
|
|
}
|
|
hlen = ETHER_HDR_LEN;
|
|
switch (dst->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if (!arpresolve(ifp, rt, m, dst, edst, rt0))
|
|
return (0); /* if not yet resolved */
|
|
type = htons(ETHERTYPE_IP);
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, (u_char *)edst)) {
|
|
/* Something bad happened */
|
|
return(0);
|
|
}
|
|
type = htons(ETHERTYPE_IPV6);
|
|
break;
|
|
#endif
|
|
#ifdef IPX
|
|
case AF_IPX:
|
|
if (ef_outputp) {
|
|
error = ef_outputp(ifp, &m, dst, &type, &hlen);
|
|
if (error)
|
|
goto bad;
|
|
} else
|
|
type = htons(ETHERTYPE_IPX);
|
|
bcopy((caddr_t)&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host),
|
|
(caddr_t)edst, sizeof (edst));
|
|
break;
|
|
#endif
|
|
#ifdef NETATALK
|
|
case AF_APPLETALK:
|
|
{
|
|
struct at_ifaddr *aa;
|
|
|
|
if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL) {
|
|
goto bad;
|
|
}
|
|
if (!aarpresolve(ac, m, (struct sockaddr_at *)dst, edst))
|
|
return (0);
|
|
/*
|
|
* In the phase 2 case, need to prepend an mbuf for the llc header.
|
|
* Since we must preserve the value of m, which is passed to us by
|
|
* value, we m_copy() the first mbuf, and use it for our llc header.
|
|
*/
|
|
if ( aa->aa_flags & AFA_PHASE2 ) {
|
|
struct llc llc;
|
|
|
|
M_PREPEND(m, sizeof(struct llc), M_TRYWAIT);
|
|
llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
|
|
llc.llc_control = LLC_UI;
|
|
bcopy(at_org_code, llc.llc_snap_org_code, sizeof(at_org_code));
|
|
llc.llc_snap_ether_type = htons( ETHERTYPE_AT );
|
|
bcopy(&llc, mtod(m, caddr_t), sizeof(struct llc));
|
|
type = htons(m->m_pkthdr.len);
|
|
hlen = sizeof(struct llc) + ETHER_HDR_LEN;
|
|
} else {
|
|
type = htons(ETHERTYPE_AT);
|
|
}
|
|
break;
|
|
}
|
|
#endif /* NETATALK */
|
|
#ifdef NS
|
|
case AF_NS:
|
|
switch(ns_nettype){
|
|
default:
|
|
case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */
|
|
type = 0x8137;
|
|
break;
|
|
case 0x0: /* Novell 802.3 */
|
|
type = htons( m->m_pkthdr.len);
|
|
break;
|
|
case 0xe0e0: /* Novell 802.2 and Token-Ring */
|
|
M_PREPEND(m, 3, M_TRYWAIT);
|
|
type = htons( m->m_pkthdr.len);
|
|
cp = mtod(m, u_char *);
|
|
*cp++ = 0xE0;
|
|
*cp++ = 0xE0;
|
|
*cp++ = 0x03;
|
|
break;
|
|
}
|
|
bcopy((caddr_t)&(((struct sockaddr_ns *)dst)->sns_addr.x_host),
|
|
(caddr_t)edst, sizeof (edst));
|
|
/*
|
|
* XXX if ns_thishost is the same as the node's ethernet
|
|
* address then just the default code will catch this anyhow.
|
|
* So I'm not sure if this next clause should be here at all?
|
|
* [JRE]
|
|
*/
|
|
if (!bcmp((caddr_t)edst, (caddr_t)&ns_thishost, sizeof(edst))){
|
|
m->m_pkthdr.rcvif = ifp;
|
|
inq = &nsintrq;
|
|
if (IF_HANDOFF(inq, m, NULL))
|
|
schednetisr(NETISR_NS);
|
|
return (error);
|
|
}
|
|
if (!bcmp((caddr_t)edst, (caddr_t)&ns_broadhost, sizeof(edst))){
|
|
m->m_flags |= M_BCAST;
|
|
}
|
|
break;
|
|
#endif /* NS */
|
|
|
|
case pseudo_AF_HDRCMPLT:
|
|
hdrcmplt = 1;
|
|
eh = (struct ether_header *)dst->sa_data;
|
|
(void)memcpy(esrc, eh->ether_shost, sizeof (esrc));
|
|
/* FALLTHROUGH */
|
|
|
|
case AF_UNSPEC:
|
|
loop_copy = -1; /* if this is for us, don't do it */
|
|
eh = (struct ether_header *)dst->sa_data;
|
|
(void)memcpy(edst, eh->ether_dhost, sizeof (edst));
|
|
type = eh->ether_type;
|
|
break;
|
|
|
|
default:
|
|
printf("%s%d: can't handle af%d\n", ifp->if_name, ifp->if_unit,
|
|
dst->sa_family);
|
|
senderr(EAFNOSUPPORT);
|
|
}
|
|
|
|
/*
|
|
* Add local net header. If no space in first mbuf,
|
|
* allocate another.
|
|
*/
|
|
M_PREPEND(m, sizeof (struct ether_header), M_DONTWAIT);
|
|
if (m == 0)
|
|
senderr(ENOBUFS);
|
|
eh = mtod(m, struct ether_header *);
|
|
(void)memcpy(&eh->ether_type, &type,
|
|
sizeof(eh->ether_type));
|
|
(void)memcpy(eh->ether_dhost, edst, sizeof (edst));
|
|
if (hdrcmplt)
|
|
(void)memcpy(eh->ether_shost, esrc,
|
|
sizeof(eh->ether_shost));
|
|
else
|
|
(void)memcpy(eh->ether_shost, ac->ac_enaddr,
|
|
sizeof(eh->ether_shost));
|
|
|
|
/*
|
|
* If a simplex interface, and the packet is being sent to our
|
|
* Ethernet address or a broadcast address, loopback a copy.
|
|
* XXX To make a simplex device behave exactly like a duplex
|
|
* device, we should copy in the case of sending to our own
|
|
* ethernet address (thus letting the original actually appear
|
|
* on the wire). However, we don't do that here for security
|
|
* reasons and compatibility with the original behavior.
|
|
*/
|
|
if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
|
|
int csum_flags = 0;
|
|
|
|
if (m->m_pkthdr.csum_flags & CSUM_IP)
|
|
csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
|
|
csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
|
|
if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
|
|
struct mbuf *n = m_copy(m, 0, (int)M_COPYALL);
|
|
|
|
n->m_pkthdr.csum_flags |= csum_flags;
|
|
if (csum_flags & CSUM_DATA_VALID)
|
|
n->m_pkthdr.csum_data = 0xffff;
|
|
|
|
(void) if_simloop(ifp, n, dst->sa_family, hlen);
|
|
} else if (bcmp(eh->ether_dhost,
|
|
eh->ether_shost, ETHER_ADDR_LEN) == 0) {
|
|
m->m_pkthdr.csum_flags |= csum_flags;
|
|
if (csum_flags & CSUM_DATA_VALID)
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
(void) if_simloop(ifp, m, dst->sa_family, hlen);
|
|
return (0); /* XXX */
|
|
}
|
|
}
|
|
|
|
/* Handle ng_ether(4) processing, if any */
|
|
if (ng_ether_output_p != NULL) {
|
|
if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
|
|
bad: if (m != NULL)
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
if (m == NULL)
|
|
return (0);
|
|
}
|
|
|
|
/* Continue with link-layer output */
|
|
return ether_output_frame(ifp, m);
|
|
}
|
|
|
|
/*
|
|
* Ethernet link layer output routine to send a raw frame to the device.
|
|
*
|
|
* This assumes that the 14 byte Ethernet header is present and contiguous
|
|
* in the first mbuf (if BRIDGE'ing).
|
|
*/
|
|
int
|
|
ether_output_frame(ifp, m)
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
{
|
|
int error = 0;
|
|
struct ip_fw *rule = NULL;
|
|
|
|
/* Extract info from dummynet tag, ignore others */
|
|
for (; m->m_type == MT_TAG; m = m->m_next)
|
|
if (m->m_flags == PACKET_TAG_DUMMYNET)
|
|
rule = ((struct dn_pkt *)m)->rule;
|
|
|
|
if (rule) /* packet was already bridged */
|
|
goto no_bridge;
|
|
|
|
if (BDG_ACTIVE(ifp) ) {
|
|
struct ether_header *eh; /* a ptr suffices */
|
|
|
|
m->m_pkthdr.rcvif = NULL;
|
|
eh = mtod(m, struct ether_header *);
|
|
m_adj(m, ETHER_HDR_LEN);
|
|
m = bdg_forward_ptr(m, eh, ifp);
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
|
|
no_bridge:
|
|
if (IPFW_LOADED && ether_ipfw != 0) {
|
|
struct ether_header save_eh, *eh;
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
save_eh = *eh;
|
|
m_adj(m, ETHER_HDR_LEN);
|
|
if (ether_ipfw_chk(&m, ifp, &rule, eh, 0) == 0) {
|
|
if (m) {
|
|
m_freem(m);
|
|
return ENOBUFS; /* pkt dropped */
|
|
} else
|
|
return 0; /* consumed e.g. in a pipe */
|
|
}
|
|
/* packet was ok, restore the ethernet header */
|
|
if ( (void *)(eh + 1) == (void *)m->m_data) {
|
|
m->m_data -= ETHER_HDR_LEN ;
|
|
m->m_len += ETHER_HDR_LEN ;
|
|
m->m_pkthdr.len += ETHER_HDR_LEN ;
|
|
} else {
|
|
M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT);
|
|
if (m == NULL) /* nope... */
|
|
return ENOBUFS;
|
|
bcopy(&save_eh, mtod(m, struct ether_header *),
|
|
ETHER_HDR_LEN);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Queue message on interface, update output statistics if
|
|
* successful, and start output if interface not yet active.
|
|
*/
|
|
if (! IF_HANDOFF(&ifp->if_snd, m, ifp))
|
|
return (ENOBUFS);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ipfw processing for ethernet packets (in and out).
|
|
* The second parameter is NULL from ether_demux, and ifp from
|
|
* ether_output_frame. This section of code could be used from
|
|
* bridge.c as well as long as we use some extra info
|
|
* to distinguish that case from ether_output_frame();
|
|
*/
|
|
int
|
|
ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
|
|
struct ip_fw **rule, struct ether_header *eh, int shared)
|
|
{
|
|
struct ether_header save_eh = *eh; /* might be a ptr in m */
|
|
int i;
|
|
struct ip_fw_args args;
|
|
|
|
if (*rule != NULL /*&& fw_one_pass*/) /* HACK! need to obey fw_one_pass */
|
|
return 1; /* dummynet packet, already partially processed */
|
|
|
|
/*
|
|
* I need some amt of data to be contiguous, and in case others need
|
|
* the packet (shared==1) also better be in the first mbuf.
|
|
*/
|
|
i = min( (*m0)->m_pkthdr.len, max_protohdr);
|
|
if ( shared || (*m0)->m_len < i) {
|
|
*m0 = m_pullup(*m0, i);
|
|
if (*m0 == NULL)
|
|
return 0;
|
|
}
|
|
|
|
args.m = *m0; /* the packet we are looking at */
|
|
args.oif = dst; /* destination, if any */
|
|
args.divert_rule = 0; /* we do not support divert yet */
|
|
args.rule = *rule; /* matching rule to restart */
|
|
args.next_hop = NULL; /* we do not support forward yet */
|
|
args.eh = &save_eh; /* MAC header for bridged/MAC packets */
|
|
i = ip_fw_chk_ptr(&args);
|
|
*m0 = args.m;
|
|
*rule = args.rule;
|
|
|
|
if ( (i & IP_FW_PORT_DENY_FLAG) || *m0 == NULL) /* drop */
|
|
return 0;
|
|
|
|
if (i == 0) /* a PASS rule. */
|
|
return 1;
|
|
|
|
if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
|
|
/*
|
|
* Pass the pkt to dummynet, which consumes it.
|
|
* If shared, make a copy and keep the original.
|
|
*/
|
|
struct mbuf *m ;
|
|
|
|
if (shared) {
|
|
m = m_copypacket(*m0, M_DONTWAIT);
|
|
if (m == NULL)
|
|
return 0;
|
|
} else {
|
|
m = *m0 ; /* pass the original to dummynet */
|
|
*m0 = NULL ; /* and nothing back to the caller */
|
|
}
|
|
/*
|
|
* Prepend the header, optimize for the common case of
|
|
* eh pointing into the mbuf.
|
|
*/
|
|
if ( (void *)(eh + 1) == (void *)m->m_data) {
|
|
m->m_data -= ETHER_HDR_LEN ;
|
|
m->m_len += ETHER_HDR_LEN ;
|
|
m->m_pkthdr.len += ETHER_HDR_LEN ;
|
|
} else {
|
|
M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT);
|
|
if (m == NULL) /* nope... */
|
|
return 0;
|
|
bcopy(&save_eh, mtod(m, struct ether_header *),
|
|
ETHER_HDR_LEN);
|
|
}
|
|
ip_dn_io_ptr(m, (i & 0xffff),
|
|
dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
|
|
return 0;
|
|
}
|
|
/*
|
|
* XXX at some point add support for divert/forward actions.
|
|
* If none of the above matches, we have to drop the pkt.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process a received Ethernet packet. We have two different interfaces:
|
|
* one (conventional) assumes the packet in the mbuf, with the ethernet
|
|
* header provided separately in *eh. The second one (new) has everything
|
|
* in the mbuf, and we can tell it because eh == NULL.
|
|
* The caller MUST MAKE SURE that there are at least
|
|
* sizeof(struct ether_header) bytes in the first mbuf.
|
|
*
|
|
* This allows us to concentrate in one place a bunch of code which
|
|
* is replicated in all device drivers. Also, many functions called
|
|
* from ether_input() try to put the eh back into the mbuf, so we
|
|
* can later propagate the 'contiguous packet' interface to them,
|
|
* and handle the old interface just here.
|
|
*
|
|
* NOTA BENE: for many drivers "eh" is a pointer into the first mbuf or
|
|
* cluster, right before m_data. So be very careful when working on m,
|
|
* as you could destroy *eh !!
|
|
*
|
|
* First we perform any link layer operations, then continue
|
|
* to the upper layers with ether_demux().
|
|
*/
|
|
void
|
|
ether_input(struct ifnet *ifp, struct ether_header *eh, struct mbuf *m)
|
|
{
|
|
struct ether_header save_eh;
|
|
|
|
if (eh == NULL) {
|
|
if (m->m_len < sizeof(struct ether_header)) {
|
|
/* XXX error in the caller. */
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (ifp->if_bpf != NULL)
|
|
bpf_mtap(ifp, m);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
eh = mtod(m, struct ether_header *);
|
|
m->m_data += sizeof(struct ether_header);
|
|
m->m_len -= sizeof(struct ether_header);
|
|
m->m_pkthdr.len = m->m_len;
|
|
} else if (ifp->if_bpf != NULL) {
|
|
struct m_hdr mh;
|
|
|
|
/* This kludge is OK; BPF treats the "mbuf" as read-only */
|
|
mh.mh_next = m;
|
|
mh.mh_data = (char *)eh;
|
|
mh.mh_len = ETHER_HDR_LEN;
|
|
bpf_mtap(ifp, (struct mbuf *)&mh);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_MONITOR) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
#ifdef MAC
|
|
mac_create_mbuf_from_ifnet(ifp, m);
|
|
#endif
|
|
|
|
ifp->if_ibytes += m->m_pkthdr.len + sizeof (*eh);
|
|
|
|
/* Handle ng_ether(4) processing, if any */
|
|
if (ng_ether_input_p != NULL) {
|
|
(*ng_ether_input_p)(ifp, &m, eh);
|
|
if (m == NULL)
|
|
return;
|
|
}
|
|
|
|
/* Check for bridging mode */
|
|
if (BDG_ACTIVE(ifp) ) {
|
|
struct ifnet *bif;
|
|
|
|
/* Check with bridging code */
|
|
if ((bif = bridge_in_ptr(ifp, eh)) == BDG_DROP) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (bif != BDG_LOCAL) {
|
|
struct mbuf *oldm = m ;
|
|
|
|
save_eh = *eh ; /* because it might change */
|
|
m = bdg_forward_ptr(m, eh, bif); /* needs forwarding */
|
|
/*
|
|
* Do not continue if bdg_forward_ptr() processed our
|
|
* packet (and cleared the mbuf pointer m) or if
|
|
* it dropped (m_free'd) the packet itself.
|
|
*/
|
|
if (m == NULL) {
|
|
if (bif == BDG_BCAST || bif == BDG_MCAST)
|
|
printf("bdg_forward drop MULTICAST PKT\n");
|
|
return;
|
|
}
|
|
if (m != oldm) /* m changed! */
|
|
eh = &save_eh ;
|
|
}
|
|
if (bif == BDG_LOCAL
|
|
|| bif == BDG_BCAST
|
|
|| bif == BDG_MCAST)
|
|
goto recvLocal; /* receive locally */
|
|
|
|
/* If not local and not multicast, just drop it */
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
recvLocal:
|
|
/* Continue with upper layer processing */
|
|
ether_demux(ifp, eh, m);
|
|
/* First chunk of an mbuf contains good entropy */
|
|
if (harvest.ethernet)
|
|
random_harvest(m, 16, 3, 0, RANDOM_NET);
|
|
}
|
|
|
|
/*
|
|
* Upper layer processing for a received Ethernet packet.
|
|
*/
|
|
void
|
|
ether_demux(ifp, eh, m)
|
|
struct ifnet *ifp;
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
{
|
|
struct ifqueue *inq;
|
|
u_short ether_type;
|
|
#if defined(NETATALK)
|
|
register struct llc *l;
|
|
#endif
|
|
struct ip_fw *rule = NULL;
|
|
|
|
/* Extract info from dummynet tag, ignore others */
|
|
for (;m->m_type == MT_TAG; m = m->m_next)
|
|
if (m->m_flags == PACKET_TAG_DUMMYNET) {
|
|
rule = ((struct dn_pkt *)m)->rule;
|
|
ifp = m->m_next->m_pkthdr.rcvif;
|
|
}
|
|
|
|
if (rule) /* packet was already bridged */
|
|
goto post_stats;
|
|
|
|
if (! (BDG_ACTIVE(ifp) ) )
|
|
/* Discard packet if upper layers shouldn't see it because it was
|
|
unicast to a different Ethernet address. If the driver is working
|
|
properly, then this situation can only happen when the interface
|
|
is in promiscuous mode. */
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0
|
|
&& (eh->ether_dhost[0] & 1) == 0
|
|
&& bcmp(eh->ether_dhost,
|
|
IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN) != 0
|
|
&& (ifp->if_flags & IFF_PPROMISC) == 0) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
|
|
/* Discard packet if interface is not up */
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (eh->ether_dhost[0] & 1) {
|
|
if (bcmp((caddr_t)etherbroadcastaddr, (caddr_t)eh->ether_dhost,
|
|
sizeof(etherbroadcastaddr)) == 0)
|
|
m->m_flags |= M_BCAST;
|
|
else
|
|
m->m_flags |= M_MCAST;
|
|
}
|
|
if (m->m_flags & (M_BCAST|M_MCAST))
|
|
ifp->if_imcasts++;
|
|
|
|
post_stats:
|
|
if (IPFW_LOADED && ether_ipfw != 0) {
|
|
if (ether_ipfw_chk(&m, NULL, &rule, eh, 0 ) == 0) {
|
|
if (m)
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
}
|
|
|
|
ether_type = ntohs(eh->ether_type);
|
|
|
|
switch (ether_type) {
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
if (ipflow_fastforward(m))
|
|
return;
|
|
schednetisr(NETISR_IP);
|
|
inq = &ipintrq;
|
|
break;
|
|
|
|
case ETHERTYPE_ARP:
|
|
if (ifp->if_flags & IFF_NOARP) {
|
|
/* Discard packet if ARP is disabled on interface */
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
schednetisr(NETISR_ARP);
|
|
inq = &arpintrq;
|
|
break;
|
|
#endif
|
|
#ifdef IPX
|
|
case ETHERTYPE_IPX:
|
|
if (ef_inputp && ef_inputp(ifp, eh, m) == 0)
|
|
return;
|
|
schednetisr(NETISR_IPX);
|
|
inq = &ipxintrq;
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
schednetisr(NETISR_IPV6);
|
|
inq = &ip6intrq;
|
|
break;
|
|
#endif
|
|
#ifdef NS
|
|
case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */
|
|
schednetisr(NETISR_NS);
|
|
inq = &nsintrq;
|
|
break;
|
|
|
|
#endif /* NS */
|
|
#ifdef NETATALK
|
|
case ETHERTYPE_AT:
|
|
schednetisr(NETISR_ATALK);
|
|
inq = &atintrq1;
|
|
break;
|
|
case ETHERTYPE_AARP:
|
|
/* probably this should be done with a NETISR as well */
|
|
aarpinput(IFP2AC(ifp), m); /* XXX */
|
|
return;
|
|
#endif /* NETATALK */
|
|
case ETHERTYPE_VLAN:
|
|
/* XXX lock ? */
|
|
if (vlan_input_p != NULL)
|
|
(*vlan_input_p)(eh, m);
|
|
else {
|
|
m->m_pkthdr.rcvif->if_noproto++;
|
|
m_freem(m);
|
|
}
|
|
/* XXX unlock ? */
|
|
return;
|
|
default:
|
|
#ifdef IPX
|
|
if (ef_inputp && ef_inputp(ifp, eh, m) == 0)
|
|
return;
|
|
#endif /* IPX */
|
|
#ifdef NS
|
|
checksum = mtod(m, ushort *);
|
|
/* Novell 802.3 */
|
|
if ((ether_type <= ETHERMTU) &&
|
|
((*checksum == 0xffff) || (*checksum == 0xE0E0))){
|
|
if(*checksum == 0xE0E0) {
|
|
m->m_pkthdr.len -= 3;
|
|
m->m_len -= 3;
|
|
m->m_data += 3;
|
|
}
|
|
schednetisr(NETISR_NS);
|
|
inq = &nsintrq;
|
|
break;
|
|
}
|
|
#endif /* NS */
|
|
#if defined(NETATALK)
|
|
if (ether_type > ETHERMTU)
|
|
goto dropanyway;
|
|
l = mtod(m, struct llc *);
|
|
switch (l->llc_dsap) {
|
|
case LLC_SNAP_LSAP:
|
|
switch (l->llc_control) {
|
|
case LLC_UI:
|
|
if (l->llc_ssap != LLC_SNAP_LSAP)
|
|
goto dropanyway;
|
|
|
|
if (Bcmp(&(l->llc_snap_org_code)[0], at_org_code,
|
|
sizeof(at_org_code)) == 0 &&
|
|
ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) {
|
|
inq = &atintrq2;
|
|
m_adj( m, sizeof( struct llc ));
|
|
schednetisr(NETISR_ATALK);
|
|
break;
|
|
}
|
|
|
|
if (Bcmp(&(l->llc_snap_org_code)[0], aarp_org_code,
|
|
sizeof(aarp_org_code)) == 0 &&
|
|
ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) {
|
|
m_adj( m, sizeof( struct llc ));
|
|
aarpinput(IFP2AC(ifp), m); /* XXX */
|
|
return;
|
|
}
|
|
|
|
default:
|
|
goto dropanyway;
|
|
}
|
|
break;
|
|
dropanyway:
|
|
default:
|
|
if (ng_ether_input_orphan_p != NULL)
|
|
(*ng_ether_input_orphan_p)(ifp, m, eh);
|
|
else
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
#else /* NETATALK */
|
|
if (ng_ether_input_orphan_p != NULL)
|
|
(*ng_ether_input_orphan_p)(ifp, m, eh);
|
|
else
|
|
m_freem(m);
|
|
return;
|
|
#endif /* NETATALK */
|
|
}
|
|
|
|
(void) IF_HANDOFF(inq, m, NULL);
|
|
}
|
|
|
|
/*
|
|
* Perform common duties while attaching to interface list
|
|
*/
|
|
void
|
|
ether_ifattach(ifp, bpf)
|
|
register struct ifnet *ifp;
|
|
int bpf;
|
|
{
|
|
register struct ifaddr *ifa;
|
|
register struct sockaddr_dl *sdl;
|
|
|
|
ifp->if_type = IFT_ETHER;
|
|
ifp->if_addrlen = 6;
|
|
ifp->if_hdrlen = 14;
|
|
if_attach(ifp);
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_resolvemulti = ether_resolvemulti;
|
|
if (ifp->if_baudrate == 0)
|
|
ifp->if_baudrate = 10000000;
|
|
ifp->if_broadcastaddr = etherbroadcastaddr;
|
|
ifa = ifaddr_byindex(ifp->if_index);
|
|
KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
sdl->sdl_type = IFT_ETHER;
|
|
sdl->sdl_alen = ifp->if_addrlen;
|
|
bcopy((IFP2AC(ifp))->ac_enaddr, LLADDR(sdl), ifp->if_addrlen);
|
|
if (bpf)
|
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
if (ng_ether_attach_p != NULL)
|
|
(*ng_ether_attach_p)(ifp);
|
|
if (BDG_LOADED)
|
|
bdgtakeifaces_ptr();
|
|
}
|
|
|
|
/*
|
|
* Perform common duties while detaching an Ethernet interface
|
|
*/
|
|
void
|
|
ether_ifdetach(ifp, bpf)
|
|
struct ifnet *ifp;
|
|
int bpf;
|
|
{
|
|
if (ng_ether_detach_p != NULL)
|
|
(*ng_ether_detach_p)(ifp);
|
|
if (bpf)
|
|
bpfdetach(ifp);
|
|
if_detach(ifp);
|
|
if (BDG_LOADED)
|
|
bdgtakeifaces_ptr();
|
|
}
|
|
|
|
SYSCTL_DECL(_net_link);
|
|
SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
|
|
SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
|
|
ðer_ipfw,0,"Pass ether pkts through firewall");
|
|
|
|
int
|
|
ether_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
int command;
|
|
caddr_t data;
|
|
{
|
|
struct ifaddr *ifa = (struct ifaddr *) data;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
ifp->if_init(ifp->if_softc); /* before arpwhohas */
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif
|
|
#ifdef IPX
|
|
/*
|
|
* XXX - This code is probably wrong
|
|
*/
|
|
case AF_IPX:
|
|
{
|
|
register struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr);
|
|
struct arpcom *ac = IFP2AC(ifp);
|
|
|
|
if (ipx_nullhost(*ina))
|
|
ina->x_host =
|
|
*(union ipx_host *)
|
|
ac->ac_enaddr;
|
|
else {
|
|
bcopy((caddr_t) ina->x_host.c_host,
|
|
(caddr_t) ac->ac_enaddr,
|
|
sizeof(ac->ac_enaddr));
|
|
}
|
|
|
|
/*
|
|
* Set new address
|
|
*/
|
|
ifp->if_init(ifp->if_softc);
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef NS
|
|
/*
|
|
* XXX - This code is probably wrong
|
|
*/
|
|
case AF_NS:
|
|
{
|
|
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
|
|
struct arpcom *ac = IFP2AC(ifp);
|
|
|
|
if (ns_nullhost(*ina))
|
|
ina->x_host =
|
|
*(union ns_host *) (ac->ac_enaddr);
|
|
else {
|
|
bcopy((caddr_t) ina->x_host.c_host,
|
|
(caddr_t) ac->ac_enaddr,
|
|
sizeof(ac->ac_enaddr));
|
|
}
|
|
|
|
/*
|
|
* Set new address
|
|
*/
|
|
ifp->if_init(ifp->if_softc);
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
ifp->if_init(ifp->if_softc);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCGIFADDR:
|
|
{
|
|
struct sockaddr *sa;
|
|
|
|
sa = (struct sockaddr *) & ifr->ifr_data;
|
|
bcopy(IFP2AC(ifp)->ac_enaddr,
|
|
(caddr_t) sa->sa_data, ETHER_ADDR_LEN);
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
/*
|
|
* Set the interface MTU.
|
|
*/
|
|
if (ifr->ifr_mtu > ETHERMTU) {
|
|
error = EINVAL;
|
|
} else {
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
}
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ether_resolvemulti(ifp, llsa, sa)
|
|
struct ifnet *ifp;
|
|
struct sockaddr **llsa;
|
|
struct sockaddr *sa;
|
|
{
|
|
struct sockaddr_dl *sdl;
|
|
struct sockaddr_in *sin;
|
|
#ifdef INET6
|
|
struct sockaddr_in6 *sin6;
|
|
#endif
|
|
u_char *e_addr;
|
|
|
|
switch(sa->sa_family) {
|
|
case AF_LINK:
|
|
/*
|
|
* No mapping needed. Just check that it's a valid MC address.
|
|
*/
|
|
sdl = (struct sockaddr_dl *)sa;
|
|
e_addr = LLADDR(sdl);
|
|
if ((e_addr[0] & 1) != 1)
|
|
return EADDRNOTAVAIL;
|
|
*llsa = 0;
|
|
return 0;
|
|
|
|
#ifdef INET
|
|
case AF_INET:
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
|
|
return EADDRNOTAVAIL;
|
|
MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR,
|
|
M_WAITOK|M_ZERO);
|
|
sdl->sdl_len = sizeof *sdl;
|
|
sdl->sdl_family = AF_LINK;
|
|
sdl->sdl_index = ifp->if_index;
|
|
sdl->sdl_type = IFT_ETHER;
|
|
sdl->sdl_alen = ETHER_ADDR_LEN;
|
|
e_addr = LLADDR(sdl);
|
|
ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
|
|
*llsa = (struct sockaddr *)sdl;
|
|
return 0;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
sin6 = (struct sockaddr_in6 *)sa;
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
|
|
/*
|
|
* An IP6 address of 0 means listen to all
|
|
* of the Ethernet multicast address used for IP6.
|
|
* (This is used for multicast routers.)
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
*llsa = 0;
|
|
return 0;
|
|
}
|
|
if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
|
|
return EADDRNOTAVAIL;
|
|
MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR,
|
|
M_WAITOK|M_ZERO);
|
|
sdl->sdl_len = sizeof *sdl;
|
|
sdl->sdl_family = AF_LINK;
|
|
sdl->sdl_index = ifp->if_index;
|
|
sdl->sdl_type = IFT_ETHER;
|
|
sdl->sdl_alen = ETHER_ADDR_LEN;
|
|
e_addr = LLADDR(sdl);
|
|
ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
|
|
*llsa = (struct sockaddr *)sdl;
|
|
return 0;
|
|
#endif
|
|
|
|
default:
|
|
/*
|
|
* Well, the text isn't quite right, but it's the name
|
|
* that counts...
|
|
*/
|
|
return EAFNOSUPPORT;
|
|
}
|
|
}
|