31bb8ee5bd
Summary: Migrate to using the semi-opaque type rman_res_t to specify rman resources. For now, this is still compatible with u_long. This is step one in migrating rman to use uintmax_t for resources instead of u_long. Going forward, this could feasibly be used to specify architecture-specific definitions of resource ranges, rather than baking a specific integer type into the API. This change has been broken out to facilitate MFC'ing drivers back to 10 without breaking ABI. Reviewed By: jhb Sponsored by: Alex Perez/Inertial Computing Differential Revision: https://reviews.freebsd.org/D5075
935 lines
25 KiB
C
935 lines
25 KiB
C
/*-
|
|
* Copyright (c) 2005 Poul-Henning Kamp
|
|
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_acpi.h"
|
|
#if defined(__amd64__)
|
|
#define DEV_APIC
|
|
#else
|
|
#include "opt_apic.h"
|
|
#endif
|
|
#include <sys/param.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/time.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/timeet.h>
|
|
#include <sys/timetc.h>
|
|
|
|
#include <contrib/dev/acpica/include/acpi.h>
|
|
#include <contrib/dev/acpica/include/accommon.h>
|
|
|
|
#include <dev/acpica/acpivar.h>
|
|
#include <dev/acpica/acpi_hpet.h>
|
|
|
|
#ifdef DEV_APIC
|
|
#include "pcib_if.h"
|
|
#endif
|
|
|
|
#define HPET_VENDID_AMD 0x4353
|
|
#define HPET_VENDID_AMD2 0x1022
|
|
#define HPET_VENDID_INTEL 0x8086
|
|
#define HPET_VENDID_NVIDIA 0x10de
|
|
#define HPET_VENDID_SW 0x1166
|
|
|
|
ACPI_SERIAL_DECL(hpet, "ACPI HPET support");
|
|
|
|
static devclass_t hpet_devclass;
|
|
|
|
/* ACPI CA debugging */
|
|
#define _COMPONENT ACPI_TIMER
|
|
ACPI_MODULE_NAME("HPET")
|
|
|
|
struct hpet_softc {
|
|
device_t dev;
|
|
int mem_rid;
|
|
int intr_rid;
|
|
int irq;
|
|
int useirq;
|
|
int legacy_route;
|
|
int per_cpu;
|
|
uint32_t allowed_irqs;
|
|
struct resource *mem_res;
|
|
struct resource *intr_res;
|
|
void *intr_handle;
|
|
ACPI_HANDLE handle;
|
|
uint64_t freq;
|
|
uint32_t caps;
|
|
struct timecounter tc;
|
|
struct hpet_timer {
|
|
struct eventtimer et;
|
|
struct hpet_softc *sc;
|
|
int num;
|
|
int mode;
|
|
int intr_rid;
|
|
int irq;
|
|
int pcpu_cpu;
|
|
int pcpu_misrouted;
|
|
int pcpu_master;
|
|
int pcpu_slaves[MAXCPU];
|
|
struct resource *intr_res;
|
|
void *intr_handle;
|
|
uint32_t caps;
|
|
uint32_t vectors;
|
|
uint32_t div;
|
|
uint32_t next;
|
|
char name[8];
|
|
} t[32];
|
|
int num_timers;
|
|
struct cdev *pdev;
|
|
int mmap_allow;
|
|
int mmap_allow_write;
|
|
};
|
|
|
|
static d_open_t hpet_open;
|
|
static d_mmap_t hpet_mmap;
|
|
|
|
static struct cdevsw hpet_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_name = "hpet",
|
|
.d_open = hpet_open,
|
|
.d_mmap = hpet_mmap,
|
|
};
|
|
|
|
static u_int hpet_get_timecount(struct timecounter *tc);
|
|
static void hpet_test(struct hpet_softc *sc);
|
|
|
|
static char *hpet_ids[] = { "PNP0103", NULL };
|
|
|
|
/* Knob to disable acpi_hpet device */
|
|
bool acpi_hpet_disabled = false;
|
|
|
|
static u_int
|
|
hpet_get_timecount(struct timecounter *tc)
|
|
{
|
|
struct hpet_softc *sc;
|
|
|
|
sc = tc->tc_priv;
|
|
return (bus_read_4(sc->mem_res, HPET_MAIN_COUNTER));
|
|
}
|
|
|
|
static void
|
|
hpet_enable(struct hpet_softc *sc)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = bus_read_4(sc->mem_res, HPET_CONFIG);
|
|
if (sc->legacy_route)
|
|
val |= HPET_CNF_LEG_RT;
|
|
else
|
|
val &= ~HPET_CNF_LEG_RT;
|
|
val |= HPET_CNF_ENABLE;
|
|
bus_write_4(sc->mem_res, HPET_CONFIG, val);
|
|
}
|
|
|
|
static void
|
|
hpet_disable(struct hpet_softc *sc)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = bus_read_4(sc->mem_res, HPET_CONFIG);
|
|
val &= ~HPET_CNF_ENABLE;
|
|
bus_write_4(sc->mem_res, HPET_CONFIG, val);
|
|
}
|
|
|
|
static int
|
|
hpet_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
|
|
{
|
|
struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
|
|
struct hpet_timer *t;
|
|
struct hpet_softc *sc = mt->sc;
|
|
uint32_t fdiv, now;
|
|
|
|
t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
|
|
if (period != 0) {
|
|
t->mode = 1;
|
|
t->div = (sc->freq * period) >> 32;
|
|
} else {
|
|
t->mode = 2;
|
|
t->div = 0;
|
|
}
|
|
if (first != 0)
|
|
fdiv = (sc->freq * first) >> 32;
|
|
else
|
|
fdiv = t->div;
|
|
if (t->irq < 0)
|
|
bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
|
|
t->caps |= HPET_TCNF_INT_ENB;
|
|
now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
|
|
restart:
|
|
t->next = now + fdiv;
|
|
if (t->mode == 1 && (t->caps & HPET_TCAP_PER_INT)) {
|
|
t->caps |= HPET_TCNF_TYPE;
|
|
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
|
|
t->caps | HPET_TCNF_VAL_SET);
|
|
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
|
|
t->next);
|
|
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
|
|
t->div);
|
|
} else {
|
|
t->caps &= ~HPET_TCNF_TYPE;
|
|
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
|
|
t->caps);
|
|
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
|
|
t->next);
|
|
}
|
|
now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
|
|
if ((int32_t)(now - t->next + HPET_MIN_CYCLES) >= 0) {
|
|
fdiv *= 2;
|
|
goto restart;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hpet_stop(struct eventtimer *et)
|
|
{
|
|
struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
|
|
struct hpet_timer *t;
|
|
struct hpet_softc *sc = mt->sc;
|
|
|
|
t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
|
|
t->mode = 0;
|
|
t->caps &= ~(HPET_TCNF_INT_ENB | HPET_TCNF_TYPE);
|
|
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hpet_intr_single(void *arg)
|
|
{
|
|
struct hpet_timer *t = (struct hpet_timer *)arg;
|
|
struct hpet_timer *mt;
|
|
struct hpet_softc *sc = t->sc;
|
|
uint32_t now;
|
|
|
|
if (t->mode == 0)
|
|
return (FILTER_STRAY);
|
|
/* Check that per-CPU timer interrupt reached right CPU. */
|
|
if (t->pcpu_cpu >= 0 && t->pcpu_cpu != curcpu) {
|
|
if ((++t->pcpu_misrouted) % 32 == 0) {
|
|
printf("HPET interrupt routed to the wrong CPU"
|
|
" (timer %d CPU %d -> %d)!\n",
|
|
t->num, t->pcpu_cpu, curcpu);
|
|
}
|
|
|
|
/*
|
|
* Reload timer, hoping that next time may be more lucky
|
|
* (system will manage proper interrupt binding).
|
|
*/
|
|
if ((t->mode == 1 && (t->caps & HPET_TCAP_PER_INT) == 0) ||
|
|
t->mode == 2) {
|
|
t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER) +
|
|
sc->freq / 8;
|
|
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
|
|
t->next);
|
|
}
|
|
return (FILTER_HANDLED);
|
|
}
|
|
if (t->mode == 1 &&
|
|
(t->caps & HPET_TCAP_PER_INT) == 0) {
|
|
t->next += t->div;
|
|
now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
|
|
if ((int32_t)((now + t->div / 2) - t->next) > 0)
|
|
t->next = now + t->div / 2;
|
|
bus_write_4(sc->mem_res,
|
|
HPET_TIMER_COMPARATOR(t->num), t->next);
|
|
} else if (t->mode == 2)
|
|
t->mode = 0;
|
|
mt = (t->pcpu_master < 0) ? t : &sc->t[t->pcpu_master];
|
|
if (mt->et.et_active)
|
|
mt->et.et_event_cb(&mt->et, mt->et.et_arg);
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static int
|
|
hpet_intr(void *arg)
|
|
{
|
|
struct hpet_softc *sc = (struct hpet_softc *)arg;
|
|
int i;
|
|
uint32_t val;
|
|
|
|
val = bus_read_4(sc->mem_res, HPET_ISR);
|
|
if (val) {
|
|
bus_write_4(sc->mem_res, HPET_ISR, val);
|
|
val &= sc->useirq;
|
|
for (i = 0; i < sc->num_timers; i++) {
|
|
if ((val & (1 << i)) == 0)
|
|
continue;
|
|
hpet_intr_single(&sc->t[i]);
|
|
}
|
|
return (FILTER_HANDLED);
|
|
}
|
|
return (FILTER_STRAY);
|
|
}
|
|
|
|
static ACPI_STATUS
|
|
hpet_find(ACPI_HANDLE handle, UINT32 level, void *context,
|
|
void **status)
|
|
{
|
|
char **ids;
|
|
uint32_t id = (uint32_t)(uintptr_t)context;
|
|
uint32_t uid = 0;
|
|
|
|
for (ids = hpet_ids; *ids != NULL; ids++) {
|
|
if (acpi_MatchHid(handle, *ids))
|
|
break;
|
|
}
|
|
if (*ids == NULL)
|
|
return (AE_OK);
|
|
if (ACPI_FAILURE(acpi_GetInteger(handle, "_UID", &uid)) ||
|
|
id == uid)
|
|
*status = acpi_get_device(handle);
|
|
return (AE_OK);
|
|
}
|
|
|
|
/*
|
|
* Find an existing IRQ resource that matches the requested IRQ range
|
|
* and return its RID. If one is not found, use a new RID.
|
|
*/
|
|
static int
|
|
hpet_find_irq_rid(device_t dev, u_long start, u_long end)
|
|
{
|
|
rman_res_t irq;
|
|
int error, rid;
|
|
|
|
for (rid = 0;; rid++) {
|
|
error = bus_get_resource(dev, SYS_RES_IRQ, rid, &irq, NULL);
|
|
if (error != 0 || (start <= irq && irq <= end))
|
|
return (rid);
|
|
}
|
|
}
|
|
|
|
static int
|
|
hpet_open(struct cdev *cdev, int oflags, int devtype, struct thread *td)
|
|
{
|
|
struct hpet_softc *sc;
|
|
|
|
sc = cdev->si_drv1;
|
|
if (!sc->mmap_allow)
|
|
return (EPERM);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hpet_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
|
|
int nprot, vm_memattr_t *memattr)
|
|
{
|
|
struct hpet_softc *sc;
|
|
|
|
sc = cdev->si_drv1;
|
|
if (offset > rman_get_size(sc->mem_res))
|
|
return (EINVAL);
|
|
if (!sc->mmap_allow_write && (nprot & PROT_WRITE))
|
|
return (EPERM);
|
|
*paddr = rman_get_start(sc->mem_res) + offset;
|
|
*memattr = VM_MEMATTR_UNCACHEABLE;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Discover the HPET via the ACPI table of the same name. */
|
|
static void
|
|
hpet_identify(driver_t *driver, device_t parent)
|
|
{
|
|
ACPI_TABLE_HPET *hpet;
|
|
ACPI_STATUS status;
|
|
device_t child;
|
|
int i;
|
|
|
|
/* Only one HPET device can be added. */
|
|
if (devclass_get_device(hpet_devclass, 0))
|
|
return;
|
|
for (i = 1; ; i++) {
|
|
/* Search for HPET table. */
|
|
status = AcpiGetTable(ACPI_SIG_HPET, i, (ACPI_TABLE_HEADER **)&hpet);
|
|
if (ACPI_FAILURE(status))
|
|
return;
|
|
/* Search for HPET device with same ID. */
|
|
child = NULL;
|
|
AcpiWalkNamespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
|
|
100, hpet_find, NULL, (void *)(uintptr_t)hpet->Sequence,
|
|
(void *)&child);
|
|
/* If found - let it be probed in normal way. */
|
|
if (child) {
|
|
if (bus_get_resource(child, SYS_RES_MEMORY, 0,
|
|
NULL, NULL) != 0)
|
|
bus_set_resource(child, SYS_RES_MEMORY, 0,
|
|
hpet->Address.Address, HPET_MEM_WIDTH);
|
|
continue;
|
|
}
|
|
/* If not - create it from table info. */
|
|
child = BUS_ADD_CHILD(parent, 2, "hpet", 0);
|
|
if (child == NULL) {
|
|
printf("%s: can't add child\n", __func__);
|
|
continue;
|
|
}
|
|
bus_set_resource(child, SYS_RES_MEMORY, 0, hpet->Address.Address,
|
|
HPET_MEM_WIDTH);
|
|
}
|
|
}
|
|
|
|
static int
|
|
hpet_probe(device_t dev)
|
|
{
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
|
|
|
|
if (acpi_disabled("hpet") || acpi_hpet_disabled)
|
|
return (ENXIO);
|
|
if (acpi_get_handle(dev) != NULL &&
|
|
ACPI_ID_PROBE(device_get_parent(dev), dev, hpet_ids) == NULL)
|
|
return (ENXIO);
|
|
|
|
device_set_desc(dev, "High Precision Event Timer");
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hpet_attach(device_t dev)
|
|
{
|
|
struct hpet_softc *sc;
|
|
struct hpet_timer *t;
|
|
int i, j, num_msi, num_timers, num_percpu_et, num_percpu_t, cur_cpu;
|
|
int pcpu_master;
|
|
static int maxhpetet = 0;
|
|
uint32_t val, val2, cvectors, dvectors;
|
|
uint16_t vendor, rev;
|
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->dev = dev;
|
|
sc->handle = acpi_get_handle(dev);
|
|
|
|
sc->mem_rid = 0;
|
|
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
|
|
RF_ACTIVE);
|
|
if (sc->mem_res == NULL)
|
|
return (ENOMEM);
|
|
|
|
/* Validate that we can access the whole region. */
|
|
if (rman_get_size(sc->mem_res) < HPET_MEM_WIDTH) {
|
|
device_printf(dev, "memory region width %ld too small\n",
|
|
rman_get_size(sc->mem_res));
|
|
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Be sure timer is enabled. */
|
|
hpet_enable(sc);
|
|
|
|
/* Read basic statistics about the timer. */
|
|
val = bus_read_4(sc->mem_res, HPET_PERIOD);
|
|
if (val == 0) {
|
|
device_printf(dev, "invalid period\n");
|
|
hpet_disable(sc);
|
|
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
|
|
return (ENXIO);
|
|
}
|
|
|
|
sc->freq = (1000000000000000LL + val / 2) / val;
|
|
sc->caps = bus_read_4(sc->mem_res, HPET_CAPABILITIES);
|
|
vendor = (sc->caps & HPET_CAP_VENDOR_ID) >> 16;
|
|
rev = sc->caps & HPET_CAP_REV_ID;
|
|
num_timers = 1 + ((sc->caps & HPET_CAP_NUM_TIM) >> 8);
|
|
/*
|
|
* ATI/AMD violates IA-PC HPET (High Precision Event Timers)
|
|
* Specification and provides an off by one number
|
|
* of timers/comparators.
|
|
* Additionally, they use unregistered value in VENDOR_ID field.
|
|
*/
|
|
if (vendor == HPET_VENDID_AMD && rev < 0x10 && num_timers > 0)
|
|
num_timers--;
|
|
sc->num_timers = num_timers;
|
|
if (bootverbose) {
|
|
device_printf(dev,
|
|
"vendor 0x%x, rev 0x%x, %jdHz%s, %d timers,%s\n",
|
|
vendor, rev, sc->freq,
|
|
(sc->caps & HPET_CAP_COUNT_SIZE) ? " 64bit" : "",
|
|
num_timers,
|
|
(sc->caps & HPET_CAP_LEG_RT) ? " legacy route" : "");
|
|
}
|
|
for (i = 0; i < num_timers; i++) {
|
|
t = &sc->t[i];
|
|
t->sc = sc;
|
|
t->num = i;
|
|
t->mode = 0;
|
|
t->intr_rid = -1;
|
|
t->irq = -1;
|
|
t->pcpu_cpu = -1;
|
|
t->pcpu_misrouted = 0;
|
|
t->pcpu_master = -1;
|
|
t->caps = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i));
|
|
t->vectors = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i) + 4);
|
|
if (bootverbose) {
|
|
device_printf(dev,
|
|
" t%d: irqs 0x%08x (%d)%s%s%s\n", i,
|
|
t->vectors, (t->caps & HPET_TCNF_INT_ROUTE) >> 9,
|
|
(t->caps & HPET_TCAP_FSB_INT_DEL) ? ", MSI" : "",
|
|
(t->caps & HPET_TCAP_SIZE) ? ", 64bit" : "",
|
|
(t->caps & HPET_TCAP_PER_INT) ? ", periodic" : "");
|
|
}
|
|
}
|
|
if (testenv("debug.acpi.hpet_test"))
|
|
hpet_test(sc);
|
|
/*
|
|
* Don't attach if the timer never increments. Since the spec
|
|
* requires it to be at least 10 MHz, it has to change in 1 us.
|
|
*/
|
|
val = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
|
|
DELAY(1);
|
|
val2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
|
|
if (val == val2) {
|
|
device_printf(dev, "HPET never increments, disabling\n");
|
|
hpet_disable(sc);
|
|
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
|
|
return (ENXIO);
|
|
}
|
|
/* Announce first HPET as timecounter. */
|
|
if (device_get_unit(dev) == 0) {
|
|
sc->tc.tc_get_timecount = hpet_get_timecount,
|
|
sc->tc.tc_counter_mask = ~0u,
|
|
sc->tc.tc_name = "HPET",
|
|
sc->tc.tc_quality = 950,
|
|
sc->tc.tc_frequency = sc->freq;
|
|
sc->tc.tc_priv = sc;
|
|
tc_init(&sc->tc);
|
|
}
|
|
/* If not disabled - setup and announce event timers. */
|
|
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"clock", &i) == 0 && i == 0)
|
|
return (0);
|
|
|
|
/* Check whether we can and want legacy routing. */
|
|
sc->legacy_route = 0;
|
|
resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"legacy_route", &sc->legacy_route);
|
|
if ((sc->caps & HPET_CAP_LEG_RT) == 0)
|
|
sc->legacy_route = 0;
|
|
if (sc->legacy_route) {
|
|
sc->t[0].vectors = 0;
|
|
sc->t[1].vectors = 0;
|
|
}
|
|
|
|
/* Check what IRQs we want use. */
|
|
/* By default allow any PCI IRQs. */
|
|
sc->allowed_irqs = 0xffff0000;
|
|
/*
|
|
* HPETs in AMD chipsets before SB800 have problems with IRQs >= 16
|
|
* Lower are also not always working for different reasons.
|
|
* SB800 fixed it, but seems do not implements level triggering
|
|
* properly, that makes it very unreliable - it freezes after any
|
|
* interrupt loss. Avoid legacy IRQs for AMD.
|
|
*/
|
|
if (vendor == HPET_VENDID_AMD || vendor == HPET_VENDID_AMD2)
|
|
sc->allowed_irqs = 0x00000000;
|
|
/*
|
|
* NVidia MCP5x chipsets have number of unexplained interrupt
|
|
* problems. For some reason, using HPET interrupts breaks HDA sound.
|
|
*/
|
|
if (vendor == HPET_VENDID_NVIDIA && rev <= 0x01)
|
|
sc->allowed_irqs = 0x00000000;
|
|
/*
|
|
* ServerWorks HT1000 reported to have problems with IRQs >= 16.
|
|
* Lower IRQs are working, but allowed mask is not set correctly.
|
|
* Legacy_route mode works fine.
|
|
*/
|
|
if (vendor == HPET_VENDID_SW && rev <= 0x01)
|
|
sc->allowed_irqs = 0x00000000;
|
|
/*
|
|
* Neither QEMU nor VirtualBox report supported IRQs correctly.
|
|
* The only way to use HPET there is to specify IRQs manually
|
|
* and/or use legacy_route. Legacy_route mode works on both.
|
|
*/
|
|
if (vm_guest)
|
|
sc->allowed_irqs = 0x00000000;
|
|
/* Let user override. */
|
|
resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"allowed_irqs", &sc->allowed_irqs);
|
|
|
|
/* Get how much per-CPU timers we should try to provide. */
|
|
sc->per_cpu = 1;
|
|
resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"per_cpu", &sc->per_cpu);
|
|
|
|
num_msi = 0;
|
|
sc->useirq = 0;
|
|
/* Find IRQ vectors for all timers. */
|
|
cvectors = sc->allowed_irqs & 0xffff0000;
|
|
dvectors = sc->allowed_irqs & 0x0000ffff;
|
|
if (sc->legacy_route)
|
|
dvectors &= 0x0000fefe;
|
|
for (i = 0; i < num_timers; i++) {
|
|
t = &sc->t[i];
|
|
if (sc->legacy_route && i < 2)
|
|
t->irq = (i == 0) ? 0 : 8;
|
|
#ifdef DEV_APIC
|
|
else if (t->caps & HPET_TCAP_FSB_INT_DEL) {
|
|
if ((j = PCIB_ALLOC_MSIX(
|
|
device_get_parent(device_get_parent(dev)), dev,
|
|
&t->irq))) {
|
|
device_printf(dev,
|
|
"Can't allocate interrupt for t%d: %d\n",
|
|
i, j);
|
|
}
|
|
}
|
|
#endif
|
|
else if (dvectors & t->vectors) {
|
|
t->irq = ffs(dvectors & t->vectors) - 1;
|
|
dvectors &= ~(1 << t->irq);
|
|
}
|
|
if (t->irq >= 0) {
|
|
t->intr_rid = hpet_find_irq_rid(dev, t->irq, t->irq);
|
|
t->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
|
|
&t->intr_rid, t->irq, t->irq, 1, RF_ACTIVE);
|
|
if (t->intr_res == NULL) {
|
|
t->irq = -1;
|
|
device_printf(dev,
|
|
"Can't map interrupt for t%d.\n", i);
|
|
} else if (bus_setup_intr(dev, t->intr_res,
|
|
INTR_TYPE_CLK, hpet_intr_single, NULL, t,
|
|
&t->intr_handle) != 0) {
|
|
t->irq = -1;
|
|
device_printf(dev,
|
|
"Can't setup interrupt for t%d.\n", i);
|
|
} else {
|
|
bus_describe_intr(dev, t->intr_res,
|
|
t->intr_handle, "t%d", i);
|
|
num_msi++;
|
|
}
|
|
}
|
|
if (t->irq < 0 && (cvectors & t->vectors) != 0) {
|
|
cvectors &= t->vectors;
|
|
sc->useirq |= (1 << i);
|
|
}
|
|
}
|
|
if (sc->legacy_route && sc->t[0].irq < 0 && sc->t[1].irq < 0)
|
|
sc->legacy_route = 0;
|
|
if (sc->legacy_route)
|
|
hpet_enable(sc);
|
|
/* Group timers for per-CPU operation. */
|
|
num_percpu_et = min(num_msi / mp_ncpus, sc->per_cpu);
|
|
num_percpu_t = num_percpu_et * mp_ncpus;
|
|
pcpu_master = 0;
|
|
cur_cpu = CPU_FIRST();
|
|
for (i = 0; i < num_timers; i++) {
|
|
t = &sc->t[i];
|
|
if (t->irq >= 0 && num_percpu_t > 0) {
|
|
if (cur_cpu == CPU_FIRST())
|
|
pcpu_master = i;
|
|
t->pcpu_cpu = cur_cpu;
|
|
t->pcpu_master = pcpu_master;
|
|
sc->t[pcpu_master].
|
|
pcpu_slaves[cur_cpu] = i;
|
|
bus_bind_intr(dev, t->intr_res, cur_cpu);
|
|
cur_cpu = CPU_NEXT(cur_cpu);
|
|
num_percpu_t--;
|
|
} else if (t->irq >= 0)
|
|
bus_bind_intr(dev, t->intr_res, CPU_FIRST());
|
|
}
|
|
bus_write_4(sc->mem_res, HPET_ISR, 0xffffffff);
|
|
sc->irq = -1;
|
|
/* If at least one timer needs legacy IRQ - set it up. */
|
|
if (sc->useirq) {
|
|
j = i = fls(cvectors) - 1;
|
|
while (j > 0 && (cvectors & (1 << (j - 1))) != 0)
|
|
j--;
|
|
sc->intr_rid = hpet_find_irq_rid(dev, j, i);
|
|
sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
|
|
&sc->intr_rid, j, i, 1, RF_SHAREABLE | RF_ACTIVE);
|
|
if (sc->intr_res == NULL)
|
|
device_printf(dev, "Can't map interrupt.\n");
|
|
else if (bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
|
|
hpet_intr, NULL, sc, &sc->intr_handle) != 0) {
|
|
device_printf(dev, "Can't setup interrupt.\n");
|
|
} else {
|
|
sc->irq = rman_get_start(sc->intr_res);
|
|
/* Bind IRQ to BSP to avoid live migration. */
|
|
bus_bind_intr(dev, sc->intr_res, CPU_FIRST());
|
|
}
|
|
}
|
|
/* Program and announce event timers. */
|
|
for (i = 0; i < num_timers; i++) {
|
|
t = &sc->t[i];
|
|
t->caps &= ~(HPET_TCNF_FSB_EN | HPET_TCNF_INT_ROUTE);
|
|
t->caps &= ~(HPET_TCNF_VAL_SET | HPET_TCNF_INT_ENB);
|
|
t->caps &= ~(HPET_TCNF_INT_TYPE);
|
|
t->caps |= HPET_TCNF_32MODE;
|
|
if (t->irq >= 0 && sc->legacy_route && i < 2) {
|
|
/* Legacy route doesn't need more configuration. */
|
|
} else
|
|
#ifdef DEV_APIC
|
|
if ((t->caps & HPET_TCAP_FSB_INT_DEL) && t->irq >= 0) {
|
|
uint64_t addr;
|
|
uint32_t data;
|
|
|
|
if (PCIB_MAP_MSI(
|
|
device_get_parent(device_get_parent(dev)), dev,
|
|
t->irq, &addr, &data) == 0) {
|
|
bus_write_4(sc->mem_res,
|
|
HPET_TIMER_FSB_ADDR(i), addr);
|
|
bus_write_4(sc->mem_res,
|
|
HPET_TIMER_FSB_VAL(i), data);
|
|
t->caps |= HPET_TCNF_FSB_EN;
|
|
} else
|
|
t->irq = -2;
|
|
} else
|
|
#endif
|
|
if (t->irq >= 0)
|
|
t->caps |= (t->irq << 9);
|
|
else if (sc->irq >= 0 && (t->vectors & (1 << sc->irq)))
|
|
t->caps |= (sc->irq << 9) | HPET_TCNF_INT_TYPE;
|
|
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(i), t->caps);
|
|
/* Skip event timers without set up IRQ. */
|
|
if (t->irq < 0 &&
|
|
(sc->irq < 0 || (t->vectors & (1 << sc->irq)) == 0))
|
|
continue;
|
|
/* Announce the reset. */
|
|
if (maxhpetet == 0)
|
|
t->et.et_name = "HPET";
|
|
else {
|
|
sprintf(t->name, "HPET%d", maxhpetet);
|
|
t->et.et_name = t->name;
|
|
}
|
|
t->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
|
|
t->et.et_quality = 450;
|
|
if (t->pcpu_master >= 0) {
|
|
t->et.et_flags |= ET_FLAGS_PERCPU;
|
|
t->et.et_quality += 100;
|
|
} else if (mp_ncpus >= 8)
|
|
t->et.et_quality -= 100;
|
|
if ((t->caps & HPET_TCAP_PER_INT) == 0)
|
|
t->et.et_quality -= 10;
|
|
t->et.et_frequency = sc->freq;
|
|
t->et.et_min_period =
|
|
((uint64_t)(HPET_MIN_CYCLES * 2) << 32) / sc->freq;
|
|
t->et.et_max_period = (0xfffffffeLLU << 32) / sc->freq;
|
|
t->et.et_start = hpet_start;
|
|
t->et.et_stop = hpet_stop;
|
|
t->et.et_priv = &sc->t[i];
|
|
if (t->pcpu_master < 0 || t->pcpu_master == i) {
|
|
et_register(&t->et);
|
|
maxhpetet++;
|
|
}
|
|
}
|
|
|
|
sc->pdev = make_dev(&hpet_cdevsw, 0, UID_ROOT, GID_WHEEL,
|
|
0600, "hpet%d", device_get_unit(dev));
|
|
if (sc->pdev) {
|
|
sc->pdev->si_drv1 = sc;
|
|
sc->mmap_allow = 1;
|
|
TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow",
|
|
&sc->mmap_allow);
|
|
sc->mmap_allow_write = 1;
|
|
TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow_write",
|
|
&sc->mmap_allow_write);
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "mmap_allow",
|
|
CTLFLAG_RW, &sc->mmap_allow, 0,
|
|
"Allow userland to memory map HPET");
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "mmap_allow_write",
|
|
CTLFLAG_RW, &sc->mmap_allow_write, 0,
|
|
"Allow userland write to the HPET register space");
|
|
} else
|
|
device_printf(dev, "could not create /dev/hpet%d\n",
|
|
device_get_unit(dev));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hpet_detach(device_t dev)
|
|
{
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
|
|
|
|
/* XXX Without a tc_remove() function, we can't detach. */
|
|
return (EBUSY);
|
|
}
|
|
|
|
static int
|
|
hpet_suspend(device_t dev)
|
|
{
|
|
// struct hpet_softc *sc;
|
|
|
|
/*
|
|
* Disable the timer during suspend. The timer will not lose
|
|
* its state in S1 or S2, but we are required to disable
|
|
* it.
|
|
*/
|
|
// sc = device_get_softc(dev);
|
|
// hpet_disable(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
hpet_resume(device_t dev)
|
|
{
|
|
struct hpet_softc *sc;
|
|
struct hpet_timer *t;
|
|
int i;
|
|
|
|
/* Re-enable the timer after a resume to keep the clock advancing. */
|
|
sc = device_get_softc(dev);
|
|
hpet_enable(sc);
|
|
/* Restart event timers that were running on suspend. */
|
|
for (i = 0; i < sc->num_timers; i++) {
|
|
t = &sc->t[i];
|
|
#ifdef DEV_APIC
|
|
if (t->irq >= 0 && (sc->legacy_route == 0 || i >= 2)) {
|
|
uint64_t addr;
|
|
uint32_t data;
|
|
|
|
if (PCIB_MAP_MSI(
|
|
device_get_parent(device_get_parent(dev)), dev,
|
|
t->irq, &addr, &data) == 0) {
|
|
bus_write_4(sc->mem_res,
|
|
HPET_TIMER_FSB_ADDR(i), addr);
|
|
bus_write_4(sc->mem_res,
|
|
HPET_TIMER_FSB_VAL(i), data);
|
|
}
|
|
}
|
|
#endif
|
|
if (t->mode == 0)
|
|
continue;
|
|
t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
|
|
if (t->mode == 1 && (t->caps & HPET_TCAP_PER_INT)) {
|
|
t->caps |= HPET_TCNF_TYPE;
|
|
t->next += t->div;
|
|
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
|
|
t->caps | HPET_TCNF_VAL_SET);
|
|
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
|
|
t->next);
|
|
bus_read_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num));
|
|
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
|
|
t->div);
|
|
} else {
|
|
t->next += sc->freq / 1024;
|
|
bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
|
|
t->next);
|
|
}
|
|
bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
|
|
bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* Print some basic latency/rate information to assist in debugging. */
|
|
static void
|
|
hpet_test(struct hpet_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t u1, u2;
|
|
struct bintime b0, b1, b2;
|
|
struct timespec ts;
|
|
|
|
binuptime(&b0);
|
|
binuptime(&b0);
|
|
binuptime(&b1);
|
|
u1 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
|
|
for (i = 1; i < 1000; i++)
|
|
u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
|
|
binuptime(&b2);
|
|
u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
|
|
|
|
bintime_sub(&b2, &b1);
|
|
bintime_sub(&b1, &b0);
|
|
bintime_sub(&b2, &b1);
|
|
bintime2timespec(&b2, &ts);
|
|
|
|
device_printf(sc->dev, "%ld.%09ld: %u ... %u = %u\n",
|
|
(long)ts.tv_sec, ts.tv_nsec, u1, u2, u2 - u1);
|
|
|
|
device_printf(sc->dev, "time per call: %ld ns\n", ts.tv_nsec / 1000);
|
|
}
|
|
|
|
#ifdef DEV_APIC
|
|
static int
|
|
hpet_remap_intr(device_t dev, device_t child, u_int irq)
|
|
{
|
|
struct hpet_softc *sc = device_get_softc(dev);
|
|
struct hpet_timer *t;
|
|
uint64_t addr;
|
|
uint32_t data;
|
|
int error, i;
|
|
|
|
for (i = 0; i < sc->num_timers; i++) {
|
|
t = &sc->t[i];
|
|
if (t->irq != irq)
|
|
continue;
|
|
error = PCIB_MAP_MSI(
|
|
device_get_parent(device_get_parent(dev)), dev,
|
|
irq, &addr, &data);
|
|
if (error)
|
|
return (error);
|
|
hpet_disable(sc); /* Stop timer to avoid interrupt loss. */
|
|
bus_write_4(sc->mem_res, HPET_TIMER_FSB_ADDR(i), addr);
|
|
bus_write_4(sc->mem_res, HPET_TIMER_FSB_VAL(i), data);
|
|
hpet_enable(sc);
|
|
return (0);
|
|
}
|
|
return (ENOENT);
|
|
}
|
|
#endif
|
|
|
|
static device_method_t hpet_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_identify, hpet_identify),
|
|
DEVMETHOD(device_probe, hpet_probe),
|
|
DEVMETHOD(device_attach, hpet_attach),
|
|
DEVMETHOD(device_detach, hpet_detach),
|
|
DEVMETHOD(device_suspend, hpet_suspend),
|
|
DEVMETHOD(device_resume, hpet_resume),
|
|
|
|
#ifdef DEV_APIC
|
|
DEVMETHOD(bus_remap_intr, hpet_remap_intr),
|
|
#endif
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t hpet_driver = {
|
|
"hpet",
|
|
hpet_methods,
|
|
sizeof(struct hpet_softc),
|
|
};
|
|
|
|
DRIVER_MODULE(hpet, acpi, hpet_driver, hpet_devclass, 0, 0);
|
|
MODULE_DEPEND(hpet, acpi, 1, 1, 1);
|