freebsd-skq/lib/libc/softfloat/bits64/softfloat.c
Olivier Houchard 15144b0f96 Import the softfloat emulation library, needed for FreeBSD/arm right now.
It should become useless when gcc 3.4 will be imported, as libgcc from
gcc 3.4 contains this bits for arm.
2004-05-14 12:13:06 +00:00

5501 lines
184 KiB
C

/* $NetBSD: softfloat.c,v 1.2 2003/07/26 19:24:52 salo Exp $ */
/*
* This version hacked for use with gcc -msoft-float by bjh21.
* (Mostly a case of #ifdefing out things GCC doesn't need or provides
* itself).
*/
/*
* Things you may want to define:
*
* SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with
* -msoft-float) to work. Include "softfloat-for-gcc.h" to get them
* properly renamed.
*/
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef SOFTFLOAT_FOR_GCC
#include "softfloat-for-gcc.h"
#endif
#include "milieu.h"
#include "softfloat.h"
/*
* Conversions between floats as stored in memory and floats as
* SoftFloat uses them
*/
#ifndef FLOAT64_DEMANGLE
#define FLOAT64_DEMANGLE(a) (a)
#endif
#ifndef FLOAT64_MANGLE
#define FLOAT64_MANGLE(a) (a)
#endif
/*
-------------------------------------------------------------------------------
Floating-point rounding mode, extended double-precision rounding precision,
and exception flags.
-------------------------------------------------------------------------------
*/
fp_rnd_t float_rounding_mode = float_round_nearest_even;
fp_except float_exception_flags = 0;
#ifdef FLOATX80
int8 floatx80_rounding_precision = 80;
#endif
/*
-------------------------------------------------------------------------------
Primitive arithmetic functions, including multi-word arithmetic, and
division and square root approximations. (Can be specialized to target if
desired.)
-------------------------------------------------------------------------------
*/
#include "softfloat-macros"
/*
-------------------------------------------------------------------------------
Functions and definitions to determine: (1) whether tininess for underflow
is detected before or after rounding by default, (2) what (if anything)
happens when exceptions are raised, (3) how signaling NaNs are distinguished
from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
are propagated from function inputs to output. These details are target-
specific.
-------------------------------------------------------------------------------
*/
#include "softfloat-specialize"
#if !defined(SOFTFLOAT_FOR_GCC) || defined(FLOATX80) || defined(FLOAT128)
/*
-------------------------------------------------------------------------------
Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
and 7, and returns the properly rounded 32-bit integer corresponding to the
input. If `zSign' is 1, the input is negated before being converted to an
integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
is simply rounded to an integer, with the inexact exception raised if the
input cannot be represented exactly as an integer. However, if the fixed-
point input is too large, the invalid exception is raised and the largest
positive or negative integer is returned.
-------------------------------------------------------------------------------
*/
static int32 roundAndPackInt32( flag zSign, bits64 absZ )
{
int8 roundingMode;
flag roundNearestEven;
int8 roundIncrement, roundBits;
int32 z;
roundingMode = float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
roundIncrement = 0x40;
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
roundIncrement = 0;
}
else {
roundIncrement = 0x7F;
if ( zSign ) {
if ( roundingMode == float_round_up ) roundIncrement = 0;
}
else {
if ( roundingMode == float_round_down ) roundIncrement = 0;
}
}
}
roundBits = absZ & 0x7F;
absZ = ( absZ + roundIncrement )>>7;
absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
z = absZ;
if ( zSign ) z = - z;
if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
float_raise( float_flag_invalid );
return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
}
if ( roundBits ) float_exception_flags |= float_flag_inexact;
return z;
}
/*
-------------------------------------------------------------------------------
Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
`absZ1', with binary point between bits 63 and 64 (between the input words),
and returns the properly rounded 64-bit integer corresponding to the input.
If `zSign' is 1, the input is negated before being converted to an integer.
Ordinarily, the fixed-point input is simply rounded to an integer, with
the inexact exception raised if the input cannot be represented exactly as
an integer. However, if the fixed-point input is too large, the invalid
exception is raised and the largest positive or negative integer is
returned.
-------------------------------------------------------------------------------
*/
static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 )
{
int8 roundingMode;
flag roundNearestEven, increment;
int64 z;
roundingMode = float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
increment = ( (sbits64) absZ1 < 0 );
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
increment = 0;
}
else {
if ( zSign ) {
increment = ( roundingMode == float_round_down ) && absZ1;
}
else {
increment = ( roundingMode == float_round_up ) && absZ1;
}
}
}
if ( increment ) {
++absZ0;
if ( absZ0 == 0 ) goto overflow;
absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven );
}
z = absZ0;
if ( zSign ) z = - z;
if ( z && ( ( z < 0 ) ^ zSign ) ) {
overflow:
float_raise( float_flag_invalid );
return
zSign ? (sbits64) LIT64( 0x8000000000000000 )
: LIT64( 0x7FFFFFFFFFFFFFFF );
}
if ( absZ1 ) float_exception_flags |= float_flag_inexact;
return z;
}
#endif
/*
-------------------------------------------------------------------------------
Returns the fraction bits of the single-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE bits32 extractFloat32Frac( float32 a )
{
return a & 0x007FFFFF;
}
/*
-------------------------------------------------------------------------------
Returns the exponent bits of the single-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE int16 extractFloat32Exp( float32 a )
{
return ( a>>23 ) & 0xFF;
}
/*
-------------------------------------------------------------------------------
Returns the sign bit of the single-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE flag extractFloat32Sign( float32 a )
{
return a>>31;
}
/*
-------------------------------------------------------------------------------
Normalizes the subnormal single-precision floating-point value represented
by the denormalized significand `aSig'. The normalized exponent and
significand are stored at the locations pointed to by `zExpPtr' and
`zSigPtr', respectively.
-------------------------------------------------------------------------------
*/
static void
normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
{
int8 shiftCount;
shiftCount = countLeadingZeros32( aSig ) - 8;
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
}
/*
-------------------------------------------------------------------------------
Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
single-precision floating-point value, returning the result. After being
shifted into the proper positions, the three fields are simply added
together to form the result. This means that any integer portion of `zSig'
will be added into the exponent. Since a properly normalized significand
will have an integer portion equal to 1, the `zExp' input should be 1 less
than the desired result exponent whenever `zSig' is a complete, normalized
significand.
-------------------------------------------------------------------------------
*/
INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
{
return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
}
/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and significand `zSig', and returns the proper single-precision floating-
point value corresponding to the abstract input. Ordinarily, the abstract
value is simply rounded and packed into the single-precision format, with
the inexact exception raised if the abstract input cannot be represented
exactly. However, if the abstract value is too large, the overflow and
inexact exceptions are raised and an infinity or maximal finite value is
returned. If the abstract value is too small, the input value is rounded to
a subnormal number, and the underflow and inexact exceptions are raised if
the abstract input cannot be represented exactly as a subnormal single-
precision floating-point number.
The input significand `zSig' has its binary point between bits 30
and 29, which is 7 bits to the left of the usual location. This shifted
significand must be normalized or smaller. If `zSig' is not normalized,
`zExp' must be 0; in that case, the result returned is a subnormal number,
and it must not require rounding. In the usual case that `zSig' is
normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
The handling of underflow and overflow follows the IEC/IEEE Standard for
Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
{
int8 roundingMode;
flag roundNearestEven;
int8 roundIncrement, roundBits;
flag isTiny;
roundingMode = float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
roundIncrement = 0x40;
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
roundIncrement = 0;
}
else {
roundIncrement = 0x7F;
if ( zSign ) {
if ( roundingMode == float_round_up ) roundIncrement = 0;
}
else {
if ( roundingMode == float_round_down ) roundIncrement = 0;
}
}
}
roundBits = zSig & 0x7F;
if ( 0xFD <= (bits16) zExp ) {
if ( ( 0xFD < zExp )
|| ( ( zExp == 0xFD )
&& ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
) {
float_raise( float_flag_overflow | float_flag_inexact );
return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
}
if ( zExp < 0 ) {
isTiny =
( float_detect_tininess == float_tininess_before_rounding )
|| ( zExp < -1 )
|| ( zSig + roundIncrement < 0x80000000 );
shift32RightJamming( zSig, - zExp, &zSig );
zExp = 0;
roundBits = zSig & 0x7F;
if ( isTiny && roundBits ) float_raise( float_flag_underflow );
}
}
if ( roundBits ) float_exception_flags |= float_flag_inexact;
zSig = ( zSig + roundIncrement )>>7;
zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
if ( zSig == 0 ) zExp = 0;
return packFloat32( zSign, zExp, zSig );
}
/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and significand `zSig', and returns the proper single-precision floating-
point value corresponding to the abstract input. This routine is just like
`roundAndPackFloat32' except that `zSig' does not have to be normalized.
Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
floating-point exponent.
-------------------------------------------------------------------------------
*/
static float32
normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
{
int8 shiftCount;
shiftCount = countLeadingZeros32( zSig ) - 1;
return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
}
/*
-------------------------------------------------------------------------------
Returns the fraction bits of the double-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE bits64 extractFloat64Frac( float64 a )
{
return FLOAT64_DEMANGLE(a) & LIT64( 0x000FFFFFFFFFFFFF );
}
/*
-------------------------------------------------------------------------------
Returns the exponent bits of the double-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE int16 extractFloat64Exp( float64 a )
{
return ( FLOAT64_DEMANGLE(a)>>52 ) & 0x7FF;
}
/*
-------------------------------------------------------------------------------
Returns the sign bit of the double-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE flag extractFloat64Sign( float64 a )
{
return FLOAT64_DEMANGLE(a)>>63;
}
/*
-------------------------------------------------------------------------------
Normalizes the subnormal double-precision floating-point value represented
by the denormalized significand `aSig'. The normalized exponent and
significand are stored at the locations pointed to by `zExpPtr' and
`zSigPtr', respectively.
-------------------------------------------------------------------------------
*/
static void
normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
{
int8 shiftCount;
shiftCount = countLeadingZeros64( aSig ) - 11;
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
}
/*
-------------------------------------------------------------------------------
Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
double-precision floating-point value, returning the result. After being
shifted into the proper positions, the three fields are simply added
together to form the result. This means that any integer portion of `zSig'
will be added into the exponent. Since a properly normalized significand
will have an integer portion equal to 1, the `zExp' input should be 1 less
than the desired result exponent whenever `zSig' is a complete, normalized
significand.
-------------------------------------------------------------------------------
*/
INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
{
return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) +
( ( (bits64) zExp )<<52 ) + zSig );
}
/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and significand `zSig', and returns the proper double-precision floating-
point value corresponding to the abstract input. Ordinarily, the abstract
value is simply rounded and packed into the double-precision format, with
the inexact exception raised if the abstract input cannot be represented
exactly. However, if the abstract value is too large, the overflow and
inexact exceptions are raised and an infinity or maximal finite value is
returned. If the abstract value is too small, the input value is rounded to
a subnormal number, and the underflow and inexact exceptions are raised if
the abstract input cannot be represented exactly as a subnormal double-
precision floating-point number.
The input significand `zSig' has its binary point between bits 62
and 61, which is 10 bits to the left of the usual location. This shifted
significand must be normalized or smaller. If `zSig' is not normalized,
`zExp' must be 0; in that case, the result returned is a subnormal number,
and it must not require rounding. In the usual case that `zSig' is
normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
The handling of underflow and overflow follows the IEC/IEEE Standard for
Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
{
int8 roundingMode;
flag roundNearestEven;
int16 roundIncrement, roundBits;
flag isTiny;
roundingMode = float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
roundIncrement = 0x200;
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
roundIncrement = 0;
}
else {
roundIncrement = 0x3FF;
if ( zSign ) {
if ( roundingMode == float_round_up ) roundIncrement = 0;
}
else {
if ( roundingMode == float_round_down ) roundIncrement = 0;
}
}
}
roundBits = zSig & 0x3FF;
if ( 0x7FD <= (bits16) zExp ) {
if ( ( 0x7FD < zExp )
|| ( ( zExp == 0x7FD )
&& ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
) {
float_raise( float_flag_overflow | float_flag_inexact );
return FLOAT64_MANGLE(
FLOAT64_DEMANGLE(packFloat64( zSign, 0x7FF, 0 )) -
( roundIncrement == 0 ));
}
if ( zExp < 0 ) {
isTiny =
( float_detect_tininess == float_tininess_before_rounding )
|| ( zExp < -1 )
|| ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
shift64RightJamming( zSig, - zExp, &zSig );
zExp = 0;
roundBits = zSig & 0x3FF;
if ( isTiny && roundBits ) float_raise( float_flag_underflow );
}
}
if ( roundBits ) float_exception_flags |= float_flag_inexact;
zSig = ( zSig + roundIncrement )>>10;
zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
if ( zSig == 0 ) zExp = 0;
return packFloat64( zSign, zExp, zSig );
}
/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and significand `zSig', and returns the proper double-precision floating-
point value corresponding to the abstract input. This routine is just like
`roundAndPackFloat64' except that `zSig' does not have to be normalized.
Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
floating-point exponent.
-------------------------------------------------------------------------------
*/
static float64
normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
{
int8 shiftCount;
shiftCount = countLeadingZeros64( zSig ) - 1;
return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount );
}
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Returns the fraction bits of the extended double-precision floating-point
value `a'.
-------------------------------------------------------------------------------
*/
INLINE bits64 extractFloatx80Frac( floatx80 a )
{
return a.low;
}
/*
-------------------------------------------------------------------------------
Returns the exponent bits of the extended double-precision floating-point
value `a'.
-------------------------------------------------------------------------------
*/
INLINE int32 extractFloatx80Exp( floatx80 a )
{
return a.high & 0x7FFF;
}
/*
-------------------------------------------------------------------------------
Returns the sign bit of the extended double-precision floating-point value
`a'.
-------------------------------------------------------------------------------
*/
INLINE flag extractFloatx80Sign( floatx80 a )
{
return a.high>>15;
}
/*
-------------------------------------------------------------------------------
Normalizes the subnormal extended double-precision floating-point value
represented by the denormalized significand `aSig'. The normalized exponent
and significand are stored at the locations pointed to by `zExpPtr' and
`zSigPtr', respectively.
-------------------------------------------------------------------------------
*/
static void
normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
{
int8 shiftCount;
shiftCount = countLeadingZeros64( aSig );
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
}
/*
-------------------------------------------------------------------------------
Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
extended double-precision floating-point value, returning the result.
-------------------------------------------------------------------------------
*/
INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
{
floatx80 z;
z.low = zSig;
z.high = ( ( (bits16) zSign )<<15 ) + zExp;
return z;
}
/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and extended significand formed by the concatenation of `zSig0' and `zSig1',
and returns the proper extended double-precision floating-point value
corresponding to the abstract input. Ordinarily, the abstract value is
rounded and packed into the extended double-precision format, with the
inexact exception raised if the abstract input cannot be represented
exactly. However, if the abstract value is too large, the overflow and
inexact exceptions are raised and an infinity or maximal finite value is
returned. If the abstract value is too small, the input value is rounded to
a subnormal number, and the underflow and inexact exceptions are raised if
the abstract input cannot be represented exactly as a subnormal extended
double-precision floating-point number.
If `roundingPrecision' is 32 or 64, the result is rounded to the same
number of bits as single or double precision, respectively. Otherwise, the
result is rounded to the full precision of the extended double-precision
format.
The input significand must be normalized or smaller. If the input
significand is not normalized, `zExp' must be 0; in that case, the result
returned is a subnormal number, and it must not require rounding. The
handling of underflow and overflow follows the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static floatx80
roundAndPackFloatx80(
int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
)
{
int8 roundingMode;
flag roundNearestEven, increment, isTiny;
int64 roundIncrement, roundMask, roundBits;
roundingMode = float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
if ( roundingPrecision == 80 ) goto precision80;
if ( roundingPrecision == 64 ) {
roundIncrement = LIT64( 0x0000000000000400 );
roundMask = LIT64( 0x00000000000007FF );
}
else if ( roundingPrecision == 32 ) {
roundIncrement = LIT64( 0x0000008000000000 );
roundMask = LIT64( 0x000000FFFFFFFFFF );
}
else {
goto precision80;
}
zSig0 |= ( zSig1 != 0 );
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
roundIncrement = 0;
}
else {
roundIncrement = roundMask;
if ( zSign ) {
if ( roundingMode == float_round_up ) roundIncrement = 0;
}
else {
if ( roundingMode == float_round_down ) roundIncrement = 0;
}
}
}
roundBits = zSig0 & roundMask;
if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
if ( ( 0x7FFE < zExp )
|| ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
) {
goto overflow;
}
if ( zExp <= 0 ) {
isTiny =
( float_detect_tininess == float_tininess_before_rounding )
|| ( zExp < 0 )
|| ( zSig0 <= zSig0 + roundIncrement );
shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
zExp = 0;
roundBits = zSig0 & roundMask;
if ( isTiny && roundBits ) float_raise( float_flag_underflow );
if ( roundBits ) float_exception_flags |= float_flag_inexact;
zSig0 += roundIncrement;
if ( (sbits64) zSig0 < 0 ) zExp = 1;
roundIncrement = roundMask + 1;
if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
roundMask |= roundIncrement;
}
zSig0 &= ~ roundMask;
return packFloatx80( zSign, zExp, zSig0 );
}
}
if ( roundBits ) float_exception_flags |= float_flag_inexact;
zSig0 += roundIncrement;
if ( zSig0 < roundIncrement ) {
++zExp;
zSig0 = LIT64( 0x8000000000000000 );
}
roundIncrement = roundMask + 1;
if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
roundMask |= roundIncrement;
}
zSig0 &= ~ roundMask;
if ( zSig0 == 0 ) zExp = 0;
return packFloatx80( zSign, zExp, zSig0 );
precision80:
increment = ( (sbits64) zSig1 < 0 );
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
increment = 0;
}
else {
if ( zSign ) {
increment = ( roundingMode == float_round_down ) && zSig1;
}
else {
increment = ( roundingMode == float_round_up ) && zSig1;
}
}
}
if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
if ( ( 0x7FFE < zExp )
|| ( ( zExp == 0x7FFE )
&& ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
&& increment
)
) {
roundMask = 0;
overflow:
float_raise( float_flag_overflow | float_flag_inexact );
if ( ( roundingMode == float_round_to_zero )
|| ( zSign && ( roundingMode == float_round_up ) )
|| ( ! zSign && ( roundingMode == float_round_down ) )
) {
return packFloatx80( zSign, 0x7FFE, ~ roundMask );
}
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( zExp <= 0 ) {
isTiny =
( float_detect_tininess == float_tininess_before_rounding )
|| ( zExp < 0 )
|| ! increment
|| ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
zExp = 0;
if ( isTiny && zSig1 ) float_raise( float_flag_underflow );
if ( zSig1 ) float_exception_flags |= float_flag_inexact;
if ( roundNearestEven ) {
increment = ( (sbits64) zSig1 < 0 );
}
else {
if ( zSign ) {
increment = ( roundingMode == float_round_down ) && zSig1;
}
else {
increment = ( roundingMode == float_round_up ) && zSig1;
}
}
if ( increment ) {
++zSig0;
zSig0 &=
~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
if ( (sbits64) zSig0 < 0 ) zExp = 1;
}
return packFloatx80( zSign, zExp, zSig0 );
}
}
if ( zSig1 ) float_exception_flags |= float_flag_inexact;
if ( increment ) {
++zSig0;
if ( zSig0 == 0 ) {
++zExp;
zSig0 = LIT64( 0x8000000000000000 );
}
else {
zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
}
}
else {
if ( zSig0 == 0 ) zExp = 0;
}
return packFloatx80( zSign, zExp, zSig0 );
}
/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent
`zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
and returns the proper extended double-precision floating-point value
corresponding to the abstract input. This routine is just like
`roundAndPackFloatx80' except that the input significand does not have to be
normalized.
-------------------------------------------------------------------------------
*/
static floatx80
normalizeRoundAndPackFloatx80(
int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
)
{
int8 shiftCount;
if ( zSig0 == 0 ) {
zSig0 = zSig1;
zSig1 = 0;
zExp -= 64;
}
shiftCount = countLeadingZeros64( zSig0 );
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
zExp -= shiftCount;
return
roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 );
}
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Returns the least-significant 64 fraction bits of the quadruple-precision
floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE bits64 extractFloat128Frac1( float128 a )
{
return a.low;
}
/*
-------------------------------------------------------------------------------
Returns the most-significant 48 fraction bits of the quadruple-precision
floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE bits64 extractFloat128Frac0( float128 a )
{
return a.high & LIT64( 0x0000FFFFFFFFFFFF );
}
/*
-------------------------------------------------------------------------------
Returns the exponent bits of the quadruple-precision floating-point value
`a'.
-------------------------------------------------------------------------------
*/
INLINE int32 extractFloat128Exp( float128 a )
{
return ( a.high>>48 ) & 0x7FFF;
}
/*
-------------------------------------------------------------------------------
Returns the sign bit of the quadruple-precision floating-point value `a'.
-------------------------------------------------------------------------------
*/
INLINE flag extractFloat128Sign( float128 a )
{
return a.high>>63;
}
/*
-------------------------------------------------------------------------------
Normalizes the subnormal quadruple-precision floating-point value
represented by the denormalized significand formed by the concatenation of
`aSig0' and `aSig1'. The normalized exponent is stored at the location
pointed to by `zExpPtr'. The most significant 49 bits of the normalized
significand are stored at the location pointed to by `zSig0Ptr', and the
least significant 64 bits of the normalized significand are stored at the
location pointed to by `zSig1Ptr'.
-------------------------------------------------------------------------------
*/
static void
normalizeFloat128Subnormal(
bits64 aSig0,
bits64 aSig1,
int32 *zExpPtr,
bits64 *zSig0Ptr,
bits64 *zSig1Ptr
)
{
int8 shiftCount;
if ( aSig0 == 0 ) {
shiftCount = countLeadingZeros64( aSig1 ) - 15;
if ( shiftCount < 0 ) {
*zSig0Ptr = aSig1>>( - shiftCount );
*zSig1Ptr = aSig1<<( shiftCount & 63 );
}
else {
*zSig0Ptr = aSig1<<shiftCount;
*zSig1Ptr = 0;
}
*zExpPtr = - shiftCount - 63;
}
else {
shiftCount = countLeadingZeros64( aSig0 ) - 15;
shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
*zExpPtr = 1 - shiftCount;
}
}
/*
-------------------------------------------------------------------------------
Packs the sign `zSign', the exponent `zExp', and the significand formed
by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
floating-point value, returning the result. After being shifted into the
proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
added together to form the most significant 32 bits of the result. This
means that any integer portion of `zSig0' will be added into the exponent.
Since a properly normalized significand will have an integer portion equal
to 1, the `zExp' input should be 1 less than the desired result exponent
whenever `zSig0' and `zSig1' concatenated form a complete, normalized
significand.
-------------------------------------------------------------------------------
*/
INLINE float128
packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
{
float128 z;
z.low = zSig1;
z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
return z;
}
/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and extended significand formed by the concatenation of `zSig0', `zSig1',
and `zSig2', and returns the proper quadruple-precision floating-point value
corresponding to the abstract input. Ordinarily, the abstract value is
simply rounded and packed into the quadruple-precision format, with the
inexact exception raised if the abstract input cannot be represented
exactly. However, if the abstract value is too large, the overflow and
inexact exceptions are raised and an infinity or maximal finite value is
returned. If the abstract value is too small, the input value is rounded to
a subnormal number, and the underflow and inexact exceptions are raised if
the abstract input cannot be represented exactly as a subnormal quadruple-
precision floating-point number.
The input significand must be normalized or smaller. If the input
significand is not normalized, `zExp' must be 0; in that case, the result
returned is a subnormal number, and it must not require rounding. In the
usual case that the input significand is normalized, `zExp' must be 1 less
than the ``true'' floating-point exponent. The handling of underflow and
overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static float128
roundAndPackFloat128(
flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 )
{
int8 roundingMode;
flag roundNearestEven, increment, isTiny;
roundingMode = float_rounding_mode;
roundNearestEven = ( roundingMode == float_round_nearest_even );
increment = ( (sbits64) zSig2 < 0 );
if ( ! roundNearestEven ) {
if ( roundingMode == float_round_to_zero ) {
increment = 0;
}
else {
if ( zSign ) {
increment = ( roundingMode == float_round_down ) && zSig2;
}
else {
increment = ( roundingMode == float_round_up ) && zSig2;
}
}
}
if ( 0x7FFD <= (bits32) zExp ) {
if ( ( 0x7FFD < zExp )
|| ( ( zExp == 0x7FFD )
&& eq128(
LIT64( 0x0001FFFFFFFFFFFF ),
LIT64( 0xFFFFFFFFFFFFFFFF ),
zSig0,
zSig1
)
&& increment
)
) {
float_raise( float_flag_overflow | float_flag_inexact );
if ( ( roundingMode == float_round_to_zero )
|| ( zSign && ( roundingMode == float_round_up ) )
|| ( ! zSign && ( roundingMode == float_round_down ) )
) {
return
packFloat128(
zSign,
0x7FFE,
LIT64( 0x0000FFFFFFFFFFFF ),
LIT64( 0xFFFFFFFFFFFFFFFF )
);
}
return packFloat128( zSign, 0x7FFF, 0, 0 );
}
if ( zExp < 0 ) {
isTiny =
( float_detect_tininess == float_tininess_before_rounding )
|| ( zExp < -1 )
|| ! increment
|| lt128(
zSig0,
zSig1,
LIT64( 0x0001FFFFFFFFFFFF ),
LIT64( 0xFFFFFFFFFFFFFFFF )
);
shift128ExtraRightJamming(
zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
zExp = 0;
if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
if ( roundNearestEven ) {
increment = ( (sbits64) zSig2 < 0 );
}
else {
if ( zSign ) {
increment = ( roundingMode == float_round_down ) && zSig2;
}
else {
increment = ( roundingMode == float_round_up ) && zSig2;
}
}
}
}
if ( zSig2 ) float_exception_flags |= float_flag_inexact;
if ( increment ) {
add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
}
else {
if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
}
return packFloat128( zSign, zExp, zSig0, zSig1 );
}
/*
-------------------------------------------------------------------------------
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
and significand formed by the concatenation of `zSig0' and `zSig1', and
returns the proper quadruple-precision floating-point value corresponding
to the abstract input. This routine is just like `roundAndPackFloat128'
except that the input significand has fewer bits and does not have to be
normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
point exponent.
-------------------------------------------------------------------------------
*/
static float128
normalizeRoundAndPackFloat128(
flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
{
int8 shiftCount;
bits64 zSig2;
if ( zSig0 == 0 ) {
zSig0 = zSig1;
zSig1 = 0;
zExp -= 64;
}
shiftCount = countLeadingZeros64( zSig0 ) - 15;
if ( 0 <= shiftCount ) {
zSig2 = 0;
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
}
else {
shift128ExtraRightJamming(
zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
}
zExp -= shiftCount;
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
}
#endif
/*
-------------------------------------------------------------------------------
Returns the result of converting the 32-bit two's complement integer `a'
to the single-precision floating-point format. The conversion is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 int32_to_float32( int32 a )
{
flag zSign;
if ( a == 0 ) return 0;
if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
zSign = ( a < 0 );
return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the 32-bit two's complement integer `a'
to the double-precision floating-point format. The conversion is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 int32_to_float64( int32 a )
{
flag zSign;
uint32 absA;
int8 shiftCount;
bits64 zSig;
if ( a == 0 ) return 0;
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros32( absA ) + 21;
zSig = absA;
return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
}
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Returns the result of converting the 32-bit two's complement integer `a'
to the extended double-precision floating-point format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 int32_to_floatx80( int32 a )
{
flag zSign;
uint32 absA;
int8 shiftCount;
bits64 zSig;
if ( a == 0 ) return packFloatx80( 0, 0, 0 );
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros32( absA ) + 32;
zSig = absA;
return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
}
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Returns the result of converting the 32-bit two's complement integer `a' to
the quadruple-precision floating-point format. The conversion is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 int32_to_float128( int32 a )
{
flag zSign;
uint32 absA;
int8 shiftCount;
bits64 zSig0;
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros32( absA ) + 17;
zSig0 = absA;
return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
}
#endif
#ifndef SOFTFLOAT_FOR_GCC /* __floatdi?f is in libgcc2.c */
/*
-------------------------------------------------------------------------------
Returns the result of converting the 64-bit two's complement integer `a'
to the single-precision floating-point format. The conversion is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 int64_to_float32( int64 a )
{
flag zSign;
uint64 absA;
int8 shiftCount;
if ( a == 0 ) return 0;
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros64( absA ) - 40;
if ( 0 <= shiftCount ) {
return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
}
else {
shiftCount += 7;
if ( shiftCount < 0 ) {
shift64RightJamming( absA, - shiftCount, &absA );
}
else {
absA <<= shiftCount;
}
return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA );
}
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the 64-bit two's complement integer `a'
to the double-precision floating-point format. The conversion is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 int64_to_float64( int64 a )
{
flag zSign;
if ( a == 0 ) return 0;
if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {
return packFloat64( 1, 0x43E, 0 );
}
zSign = ( a < 0 );
return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a );
}
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Returns the result of converting the 64-bit two's complement integer `a'
to the extended double-precision floating-point format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 int64_to_floatx80( int64 a )
{
flag zSign;
uint64 absA;
int8 shiftCount;
if ( a == 0 ) return packFloatx80( 0, 0, 0 );
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros64( absA );
return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
}
#endif
#endif /* !SOFTFLOAT_FOR_GCC */
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Returns the result of converting the 64-bit two's complement integer `a' to
the quadruple-precision floating-point format. The conversion is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 int64_to_float128( int64 a )
{
flag zSign;
uint64 absA;
int8 shiftCount;
int32 zExp;
bits64 zSig0, zSig1;
if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
zSign = ( a < 0 );
absA = zSign ? - a : a;
shiftCount = countLeadingZeros64( absA ) + 49;
zExp = 0x406E - shiftCount;
if ( 64 <= shiftCount ) {
zSig1 = 0;
zSig0 = absA;
shiftCount -= 64;
}
else {
zSig1 = absA;
zSig0 = 0;
}
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
return packFloat128( zSign, zExp, zSig0, zSig1 );
}
#endif
#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the 32-bit two's complement integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic---which means in particular that the conversion is rounded
according to the current rounding mode. If `a' is a NaN, the largest
positive integer is returned. Otherwise, if the conversion overflows, the
largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int32 float32_to_int32( float32 a )
{
flag aSign;
int16 aExp, shiftCount;
bits32 aSig;
bits64 aSig64;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
if ( aExp ) aSig |= 0x00800000;
shiftCount = 0xAF - aExp;
aSig64 = aSig;
aSig64 <<= 32;
if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
return roundAndPackInt32( aSign, aSig64 );
}
#endif /* !SOFTFLOAT_FOR_GCC */
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the 32-bit two's complement integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic, except that the conversion is always rounded toward zero.
If `a' is a NaN, the largest positive integer is returned. Otherwise, if
the conversion overflows, the largest integer with the same sign as `a' is
returned.
-------------------------------------------------------------------------------
*/
int32 float32_to_int32_round_to_zero( float32 a )
{
flag aSign;
int16 aExp, shiftCount;
bits32 aSig;
int32 z;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
shiftCount = aExp - 0x9E;
if ( 0 <= shiftCount ) {
if ( a != 0xCF000000 ) {
float_raise( float_flag_invalid );
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
}
return (sbits32) 0x80000000;
}
else if ( aExp <= 0x7E ) {
if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
return 0;
}
aSig = ( aSig | 0x00800000 )<<8;
z = aSig>>( - shiftCount );
if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
float_exception_flags |= float_flag_inexact;
}
if ( aSign ) z = - z;
return z;
}
#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the 64-bit two's complement integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic---which means in particular that the conversion is rounded
according to the current rounding mode. If `a' is a NaN, the largest
positive integer is returned. Otherwise, if the conversion overflows, the
largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int64 float32_to_int64( float32 a )
{
flag aSign;
int16 aExp, shiftCount;
bits32 aSig;
bits64 aSig64, aSigExtra;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
shiftCount = 0xBE - aExp;
if ( shiftCount < 0 ) {
float_raise( float_flag_invalid );
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
return (sbits64) LIT64( 0x8000000000000000 );
}
if ( aExp ) aSig |= 0x00800000;
aSig64 = aSig;
aSig64 <<= 40;
shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
return roundAndPackInt64( aSign, aSig64, aSigExtra );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the 64-bit two's complement integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic, except that the conversion is always rounded toward zero. If
`a' is a NaN, the largest positive integer is returned. Otherwise, if the
conversion overflows, the largest integer with the same sign as `a' is
returned.
-------------------------------------------------------------------------------
*/
int64 float32_to_int64_round_to_zero( float32 a )
{
flag aSign;
int16 aExp, shiftCount;
bits32 aSig;
bits64 aSig64;
int64 z;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
shiftCount = aExp - 0xBE;
if ( 0 <= shiftCount ) {
if ( a != 0xDF000000 ) {
float_raise( float_flag_invalid );
if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
}
return (sbits64) LIT64( 0x8000000000000000 );
}
else if ( aExp <= 0x7E ) {
if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
return 0;
}
aSig64 = aSig | 0x00800000;
aSig64 <<= 40;
z = aSig64>>( - shiftCount );
if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {
float_exception_flags |= float_flag_inexact;
}
if ( aSign ) z = - z;
return z;
}
#endif /* !SOFTFLOAT_FOR_GCC */
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the double-precision floating-point format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float32_to_float64( float32 a )
{
flag aSign;
int16 aExp;
bits32 aSig;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
return packFloat64( aSign, 0x7FF, 0 );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
--aExp;
}
return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
}
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the extended double-precision floating-point format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 float32_to_floatx80( float32 a )
{
flag aSign;
int16 aExp;
bits32 aSig;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
}
aSig |= 0x00800000;
return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
}
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the double-precision floating-point format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
float128 float32_to_float128( float32 a )
{
flag aSign;
int16 aExp;
bits32 aSig;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) );
return packFloat128( aSign, 0x7FFF, 0, 0 );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
--aExp;
}
return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
}
#endif
#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
/*
-------------------------------------------------------------------------------
Rounds the single-precision floating-point value `a' to an integer, and
returns the result as a single-precision floating-point value. The
operation is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_round_to_int( float32 a )
{
flag aSign;
int16 aExp;
bits32 lastBitMask, roundBitsMask;
int8 roundingMode;
float32 z;
aExp = extractFloat32Exp( a );
if ( 0x96 <= aExp ) {
if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
return propagateFloat32NaN( a, a );
}
return a;
}
if ( aExp <= 0x7E ) {
if ( (bits32) ( a<<1 ) == 0 ) return a;
float_exception_flags |= float_flag_inexact;
aSign = extractFloat32Sign( a );
switch ( float_rounding_mode ) {
case float_round_nearest_even:
if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
return packFloat32( aSign, 0x7F, 0 );
}
break;
case float_round_to_zero:
break;
case float_round_down:
return aSign ? 0xBF800000 : 0;
case float_round_up:
return aSign ? 0x80000000 : 0x3F800000;
}
return packFloat32( aSign, 0, 0 );
}
lastBitMask = 1;
lastBitMask <<= 0x96 - aExp;
roundBitsMask = lastBitMask - 1;
z = a;
roundingMode = float_rounding_mode;
if ( roundingMode == float_round_nearest_even ) {
z += lastBitMask>>1;
if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
}
else if ( roundingMode != float_round_to_zero ) {
if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
z += roundBitsMask;
}
}
z &= ~ roundBitsMask;
if ( z != a ) float_exception_flags |= float_flag_inexact;
return z;
}
#endif /* !SOFTFLOAT_FOR_GCC */
/*
-------------------------------------------------------------------------------
Returns the result of adding the absolute values of the single-precision
floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
before being returned. `zSign' is ignored if the result is a NaN.
The addition is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
{
int16 aExp, bExp, zExp;
bits32 aSig, bSig, zSig;
int16 expDiff;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
bSig = extractFloat32Frac( b );
bExp = extractFloat32Exp( b );
expDiff = aExp - bExp;
aSig <<= 6;
bSig <<= 6;
if ( 0 < expDiff ) {
if ( aExp == 0xFF ) {
if ( aSig ) return propagateFloat32NaN( a, b );
return a;
}
if ( bExp == 0 ) {
--expDiff;
}
else {
bSig |= 0x20000000;
}
shift32RightJamming( bSig, expDiff, &bSig );
zExp = aExp;
}
else if ( expDiff < 0 ) {
if ( bExp == 0xFF ) {
if ( bSig ) return propagateFloat32NaN( a, b );
return packFloat32( zSign, 0xFF, 0 );
}
if ( aExp == 0 ) {
++expDiff;
}
else {
aSig |= 0x20000000;
}
shift32RightJamming( aSig, - expDiff, &aSig );
zExp = bExp;
}
else {
if ( aExp == 0xFF ) {
if ( aSig | bSig ) return propagateFloat32NaN( a, b );
return a;
}
if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
zSig = 0x40000000 + aSig + bSig;
zExp = aExp;
goto roundAndPack;
}
aSig |= 0x20000000;
zSig = ( aSig + bSig )<<1;
--zExp;
if ( (sbits32) zSig < 0 ) {
zSig = aSig + bSig;
++zExp;
}
roundAndPack:
return roundAndPackFloat32( zSign, zExp, zSig );
}
/*
-------------------------------------------------------------------------------
Returns the result of subtracting the absolute values of the single-
precision floating-point values `a' and `b'. If `zSign' is 1, the
difference is negated before being returned. `zSign' is ignored if the
result is a NaN. The subtraction is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
{
int16 aExp, bExp, zExp;
bits32 aSig, bSig, zSig;
int16 expDiff;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
bSig = extractFloat32Frac( b );
bExp = extractFloat32Exp( b );
expDiff = aExp - bExp;
aSig <<= 7;
bSig <<= 7;
if ( 0 < expDiff ) goto aExpBigger;
if ( expDiff < 0 ) goto bExpBigger;
if ( aExp == 0xFF ) {
if ( aSig | bSig ) return propagateFloat32NaN( a, b );
float_raise( float_flag_invalid );
return float32_default_nan;
}
if ( aExp == 0 ) {
aExp = 1;
bExp = 1;
}
if ( bSig < aSig ) goto aBigger;
if ( aSig < bSig ) goto bBigger;
return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
bExpBigger:
if ( bExp == 0xFF ) {
if ( bSig ) return propagateFloat32NaN( a, b );
return packFloat32( zSign ^ 1, 0xFF, 0 );
}
if ( aExp == 0 ) {
++expDiff;
}
else {
aSig |= 0x40000000;
}
shift32RightJamming( aSig, - expDiff, &aSig );
bSig |= 0x40000000;
bBigger:
zSig = bSig - aSig;
zExp = bExp;
zSign ^= 1;
goto normalizeRoundAndPack;
aExpBigger:
if ( aExp == 0xFF ) {
if ( aSig ) return propagateFloat32NaN( a, b );
return a;
}
if ( bExp == 0 ) {
--expDiff;
}
else {
bSig |= 0x40000000;
}
shift32RightJamming( bSig, expDiff, &bSig );
aSig |= 0x40000000;
aBigger:
zSig = aSig - bSig;
zExp = aExp;
normalizeRoundAndPack:
--zExp;
return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
}
/*
-------------------------------------------------------------------------------
Returns the result of adding the single-precision floating-point values `a'
and `b'. The operation is performed according to the IEC/IEEE Standard for
Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_add( float32 a, float32 b )
{
flag aSign, bSign;
aSign = extractFloat32Sign( a );
bSign = extractFloat32Sign( b );
if ( aSign == bSign ) {
return addFloat32Sigs( a, b, aSign );
}
else {
return subFloat32Sigs( a, b, aSign );
}
}
/*
-------------------------------------------------------------------------------
Returns the result of subtracting the single-precision floating-point values
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_sub( float32 a, float32 b )
{
flag aSign, bSign;
aSign = extractFloat32Sign( a );
bSign = extractFloat32Sign( b );
if ( aSign == bSign ) {
return subFloat32Sigs( a, b, aSign );
}
else {
return addFloat32Sigs( a, b, aSign );
}
}
/*
-------------------------------------------------------------------------------
Returns the result of multiplying the single-precision floating-point values
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_mul( float32 a, float32 b )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, zExp;
bits32 aSig, bSig;
bits64 zSig64;
bits32 zSig;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
bSig = extractFloat32Frac( b );
bExp = extractFloat32Exp( b );
bSign = extractFloat32Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0xFF ) {
if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
return propagateFloat32NaN( a, b );
}
if ( ( bExp | bSig ) == 0 ) {
float_raise( float_flag_invalid );
return float32_default_nan;
}
return packFloat32( zSign, 0xFF, 0 );
}
if ( bExp == 0xFF ) {
if ( bSig ) return propagateFloat32NaN( a, b );
if ( ( aExp | aSig ) == 0 ) {
float_raise( float_flag_invalid );
return float32_default_nan;
}
return packFloat32( zSign, 0xFF, 0 );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
}
if ( bExp == 0 ) {
if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
}
zExp = aExp + bExp - 0x7F;
aSig = ( aSig | 0x00800000 )<<7;
bSig = ( bSig | 0x00800000 )<<8;
shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
zSig = zSig64;
if ( 0 <= (sbits32) ( zSig<<1 ) ) {
zSig <<= 1;
--zExp;
}
return roundAndPackFloat32( zSign, zExp, zSig );
}
/*
-------------------------------------------------------------------------------
Returns the result of dividing the single-precision floating-point value `a'
by the corresponding value `b'. The operation is performed according to the
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_div( float32 a, float32 b )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, zExp;
bits32 aSig, bSig, zSig;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
bSig = extractFloat32Frac( b );
bExp = extractFloat32Exp( b );
bSign = extractFloat32Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0xFF ) {
if ( aSig ) return propagateFloat32NaN( a, b );
if ( bExp == 0xFF ) {
if ( bSig ) return propagateFloat32NaN( a, b );
float_raise( float_flag_invalid );
return float32_default_nan;
}
return packFloat32( zSign, 0xFF, 0 );
}
if ( bExp == 0xFF ) {
if ( bSig ) return propagateFloat32NaN( a, b );
return packFloat32( zSign, 0, 0 );
}
if ( bExp == 0 ) {
if ( bSig == 0 ) {
if ( ( aExp | aSig ) == 0 ) {
float_raise( float_flag_invalid );
return float32_default_nan;
}
float_raise( float_flag_divbyzero );
return packFloat32( zSign, 0xFF, 0 );
}
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
}
zExp = aExp - bExp + 0x7D;
aSig = ( aSig | 0x00800000 )<<7;
bSig = ( bSig | 0x00800000 )<<8;
if ( bSig <= ( aSig + aSig ) ) {
aSig >>= 1;
++zExp;
}
zSig = ( ( (bits64) aSig )<<32 ) / bSig;
if ( ( zSig & 0x3F ) == 0 ) {
zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 );
}
return roundAndPackFloat32( zSign, zExp, zSig );
}
#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
/*
-------------------------------------------------------------------------------
Returns the remainder of the single-precision floating-point value `a'
with respect to the corresponding value `b'. The operation is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_rem( float32 a, float32 b )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, expDiff;
bits32 aSig, bSig;
bits32 q;
bits64 aSig64, bSig64, q64;
bits32 alternateASig;
sbits32 sigMean;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
bSig = extractFloat32Frac( b );
bExp = extractFloat32Exp( b );
bSign = extractFloat32Sign( b );
if ( aExp == 0xFF ) {
if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
return propagateFloat32NaN( a, b );
}
float_raise( float_flag_invalid );
return float32_default_nan;
}
if ( bExp == 0xFF ) {
if ( bSig ) return propagateFloat32NaN( a, b );
return a;
}
if ( bExp == 0 ) {
if ( bSig == 0 ) {
float_raise( float_flag_invalid );
return float32_default_nan;
}
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return a;
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
}
expDiff = aExp - bExp;
aSig |= 0x00800000;
bSig |= 0x00800000;
if ( expDiff < 32 ) {
aSig <<= 8;
bSig <<= 8;
if ( expDiff < 0 ) {
if ( expDiff < -1 ) return a;
aSig >>= 1;
}
q = ( bSig <= aSig );
if ( q ) aSig -= bSig;
if ( 0 < expDiff ) {
q = ( ( (bits64) aSig )<<32 ) / bSig;
q >>= 32 - expDiff;
bSig >>= 2;
aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
}
else {
aSig >>= 2;
bSig >>= 2;
}
}
else {
if ( bSig <= aSig ) aSig -= bSig;
aSig64 = ( (bits64) aSig )<<40;
bSig64 = ( (bits64) bSig )<<40;
expDiff -= 64;
while ( 0 < expDiff ) {
q64 = estimateDiv128To64( aSig64, 0, bSig64 );
q64 = ( 2 < q64 ) ? q64 - 2 : 0;
aSig64 = - ( ( bSig * q64 )<<38 );
expDiff -= 62;
}
expDiff += 64;
q64 = estimateDiv128To64( aSig64, 0, bSig64 );
q64 = ( 2 < q64 ) ? q64 - 2 : 0;
q = q64>>( 64 - expDiff );
bSig <<= 6;
aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
}
do {
alternateASig = aSig;
++q;
aSig -= bSig;
} while ( 0 <= (sbits32) aSig );
sigMean = aSig + alternateASig;
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
aSig = alternateASig;
}
zSign = ( (sbits32) aSig < 0 );
if ( zSign ) aSig = - aSig;
return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
}
#endif /* !SOFTFLOAT_FOR_GCC */
#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
/*
-------------------------------------------------------------------------------
Returns the square root of the single-precision floating-point value `a'.
The operation is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float32_sqrt( float32 a )
{
flag aSign;
int16 aExp, zExp;
bits32 aSig, zSig;
bits64 rem, term;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
if ( aExp == 0xFF ) {
if ( aSig ) return propagateFloat32NaN( a, 0 );
if ( ! aSign ) return a;
float_raise( float_flag_invalid );
return float32_default_nan;
}
if ( aSign ) {
if ( ( aExp | aSig ) == 0 ) return a;
float_raise( float_flag_invalid );
return float32_default_nan;
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return 0;
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
}
zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
aSig = ( aSig | 0x00800000 )<<8;
zSig = estimateSqrt32( aExp, aSig ) + 2;
if ( ( zSig & 0x7F ) <= 5 ) {
if ( zSig < 2 ) {
zSig = 0x7FFFFFFF;
goto roundAndPack;
}
aSig >>= aExp & 1;
term = ( (bits64) zSig ) * zSig;
rem = ( ( (bits64) aSig )<<32 ) - term;
while ( (sbits64) rem < 0 ) {
--zSig;
rem += ( ( (bits64) zSig )<<1 ) | 1;
}
zSig |= ( rem != 0 );
}
shift32RightJamming( zSig, 1, &zSig );
roundAndPack:
return roundAndPackFloat32( 0, zExp, zSig );
}
#endif /* !SOFTFLOAT_FOR_GCC */
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is equal to
the corresponding value `b', and 0 otherwise. The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_eq( float32 a, float32 b )
{
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is less than
or equal to the corresponding value `b', and 0 otherwise. The comparison
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_le( float32 a, float32 b )
{
flag aSign, bSign;
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
float_raise( float_flag_invalid );
return 0;
}
aSign = extractFloat32Sign( a );
bSign = extractFloat32Sign( b );
if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
return ( a == b ) || ( aSign ^ ( a < b ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise. The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_lt( float32 a, float32 b )
{
flag aSign, bSign;
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
float_raise( float_flag_invalid );
return 0;
}
aSign = extractFloat32Sign( a );
bSign = extractFloat32Sign( b );
if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
return ( a != b ) && ( aSign ^ ( a < b ) );
}
#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is equal to
the corresponding value `b', and 0 otherwise. The invalid exception is
raised if either operand is a NaN. Otherwise, the comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_eq_signaling( float32 a, float32 b )
{
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
float_raise( float_flag_invalid );
return 0;
}
return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is less than or
equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
cause an exception. Otherwise, the comparison is performed according to the
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_le_quiet( float32 a, float32 b )
{
flag aSign, bSign;
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
aSign = extractFloat32Sign( a );
bSign = extractFloat32Sign( b );
if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
return ( a == b ) || ( aSign ^ ( a < b ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
exception. Otherwise, the comparison is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float32_lt_quiet( float32 a, float32 b )
{
flag aSign, bSign;
if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
) {
if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
aSign = extractFloat32Sign( a );
bSign = extractFloat32Sign( b );
if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
return ( a != b ) && ( aSign ^ ( a < b ) );
}
#endif /* !SOFTFLOAT_FOR_GCC */
#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the 32-bit two's complement integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic---which means in particular that the conversion is rounded
according to the current rounding mode. If `a' is a NaN, the largest
positive integer is returned. Otherwise, if the conversion overflows, the
largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int32 float64_to_int32( float64 a )
{
flag aSign;
int16 aExp, shiftCount;
bits64 aSig;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
shiftCount = 0x42C - aExp;
if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
return roundAndPackInt32( aSign, aSig );
}
#endif /* !SOFTFLOAT_FOR_GCC */
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the 32-bit two's complement integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic, except that the conversion is always rounded toward zero.
If `a' is a NaN, the largest positive integer is returned. Otherwise, if
the conversion overflows, the largest integer with the same sign as `a' is
returned.
-------------------------------------------------------------------------------
*/
int32 float64_to_int32_round_to_zero( float64 a )
{
flag aSign;
int16 aExp, shiftCount;
bits64 aSig, savedASig;
int32 z;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( 0x41E < aExp ) {
if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
goto invalid;
}
else if ( aExp < 0x3FF ) {
if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
return 0;
}
aSig |= LIT64( 0x0010000000000000 );
shiftCount = 0x433 - aExp;
savedASig = aSig;
aSig >>= shiftCount;
z = aSig;
if ( aSign ) z = - z;
if ( ( z < 0 ) ^ aSign ) {
invalid:
float_raise( float_flag_invalid );
return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
}
if ( ( aSig<<shiftCount ) != savedASig ) {
float_exception_flags |= float_flag_inexact;
}
return z;
}
#ifndef SOFTFLOAT_FOR_GCC /* Not needed */
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the 64-bit two's complement integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic---which means in particular that the conversion is rounded
according to the current rounding mode. If `a' is a NaN, the largest
positive integer is returned. Otherwise, if the conversion overflows, the
largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int64 float64_to_int64( float64 a )
{
flag aSign;
int16 aExp, shiftCount;
bits64 aSig, aSigExtra;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
shiftCount = 0x433 - aExp;
if ( shiftCount <= 0 ) {
if ( 0x43E < aExp ) {
float_raise( float_flag_invalid );
if ( ! aSign
|| ( ( aExp == 0x7FF )
&& ( aSig != LIT64( 0x0010000000000000 ) ) )
) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
return (sbits64) LIT64( 0x8000000000000000 );
}
aSigExtra = 0;
aSig <<= - shiftCount;
}
else {
shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
}
return roundAndPackInt64( aSign, aSig, aSigExtra );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the 64-bit two's complement integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic, except that the conversion is always rounded toward zero.
If `a' is a NaN, the largest positive integer is returned. Otherwise, if
the conversion overflows, the largest integer with the same sign as `a' is
returned.
-------------------------------------------------------------------------------
*/
int64 float64_to_int64_round_to_zero( float64 a )
{
flag aSign;
int16 aExp, shiftCount;
bits64 aSig;
int64 z;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
shiftCount = aExp - 0x433;
if ( 0 <= shiftCount ) {
if ( 0x43E <= aExp ) {
if ( a != LIT64( 0xC3E0000000000000 ) ) {
float_raise( float_flag_invalid );
if ( ! aSign
|| ( ( aExp == 0x7FF )
&& ( aSig != LIT64( 0x0010000000000000 ) ) )
) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
}
return (sbits64) LIT64( 0x8000000000000000 );
}
z = aSig<<shiftCount;
}
else {
if ( aExp < 0x3FE ) {
if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
return 0;
}
z = aSig>>( - shiftCount );
if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
float_exception_flags |= float_flag_inexact;
}
}
if ( aSign ) z = - z;
return z;
}
#endif /* !SOFTFLOAT_FOR_GCC */
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the single-precision floating-point format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float64_to_float32( float64 a )
{
flag aSign;
int16 aExp;
bits64 aSig;
bits32 zSig;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp == 0x7FF ) {
if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
return packFloat32( aSign, 0xFF, 0 );
}
shift64RightJamming( aSig, 22, &aSig );
zSig = aSig;
if ( aExp || zSig ) {
zSig |= 0x40000000;
aExp -= 0x381;
}
return roundAndPackFloat32( aSign, aExp, zSig );
}
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the extended double-precision floating-point format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 float64_to_floatx80( float64 a )
{
flag aSign;
int16 aExp;
bits64 aSig;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp == 0x7FF ) {
if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
}
return
packFloatx80(
aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
}
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the quadruple-precision floating-point format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
float128 float64_to_float128( float64 a )
{
flag aSign;
int16 aExp;
bits64 aSig, zSig0, zSig1;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp == 0x7FF ) {
if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) );
return packFloat128( aSign, 0x7FFF, 0, 0 );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
--aExp;
}
shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
}
#endif
#ifndef SOFTFLOAT_FOR_GCC
/*
-------------------------------------------------------------------------------
Rounds the double-precision floating-point value `a' to an integer, and
returns the result as a double-precision floating-point value. The
operation is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_round_to_int( float64 a )
{
flag aSign;
int16 aExp;
bits64 lastBitMask, roundBitsMask;
int8 roundingMode;
float64 z;
aExp = extractFloat64Exp( a );
if ( 0x433 <= aExp ) {
if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
return propagateFloat64NaN( a, a );
}
return a;
}
if ( aExp < 0x3FF ) {
if ( (bits64) ( a<<1 ) == 0 ) return a;
float_exception_flags |= float_flag_inexact;
aSign = extractFloat64Sign( a );
switch ( float_rounding_mode ) {
case float_round_nearest_even:
if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
return packFloat64( aSign, 0x3FF, 0 );
}
break;
case float_round_to_zero:
break;
case float_round_down:
return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
case float_round_up:
return
aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
}
return packFloat64( aSign, 0, 0 );
}
lastBitMask = 1;
lastBitMask <<= 0x433 - aExp;
roundBitsMask = lastBitMask - 1;
z = a;
roundingMode = float_rounding_mode;
if ( roundingMode == float_round_nearest_even ) {
z += lastBitMask>>1;
if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
}
else if ( roundingMode != float_round_to_zero ) {
if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
z += roundBitsMask;
}
}
z &= ~ roundBitsMask;
if ( z != a ) float_exception_flags |= float_flag_inexact;
return z;
}
#endif
/*
-------------------------------------------------------------------------------
Returns the result of adding the absolute values of the double-precision
floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
before being returned. `zSign' is ignored if the result is a NaN.
The addition is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
{
int16 aExp, bExp, zExp;
bits64 aSig, bSig, zSig;
int16 expDiff;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
bSig = extractFloat64Frac( b );
bExp = extractFloat64Exp( b );
expDiff = aExp - bExp;
aSig <<= 9;
bSig <<= 9;
if ( 0 < expDiff ) {
if ( aExp == 0x7FF ) {
if ( aSig ) return propagateFloat64NaN( a, b );
return a;
}
if ( bExp == 0 ) {
--expDiff;
}
else {
bSig |= LIT64( 0x2000000000000000 );
}
shift64RightJamming( bSig, expDiff, &bSig );
zExp = aExp;
}
else if ( expDiff < 0 ) {
if ( bExp == 0x7FF ) {
if ( bSig ) return propagateFloat64NaN( a, b );
return packFloat64( zSign, 0x7FF, 0 );
}
if ( aExp == 0 ) {
++expDiff;
}
else {
aSig |= LIT64( 0x2000000000000000 );
}
shift64RightJamming( aSig, - expDiff, &aSig );
zExp = bExp;
}
else {
if ( aExp == 0x7FF ) {
if ( aSig | bSig ) return propagateFloat64NaN( a, b );
return a;
}
if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
zExp = aExp;
goto roundAndPack;
}
aSig |= LIT64( 0x2000000000000000 );
zSig = ( aSig + bSig )<<1;
--zExp;
if ( (sbits64) zSig < 0 ) {
zSig = aSig + bSig;
++zExp;
}
roundAndPack:
return roundAndPackFloat64( zSign, zExp, zSig );
}
/*
-------------------------------------------------------------------------------
Returns the result of subtracting the absolute values of the double-
precision floating-point values `a' and `b'. If `zSign' is 1, the
difference is negated before being returned. `zSign' is ignored if the
result is a NaN. The subtraction is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
{
int16 aExp, bExp, zExp;
bits64 aSig, bSig, zSig;
int16 expDiff;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
bSig = extractFloat64Frac( b );
bExp = extractFloat64Exp( b );
expDiff = aExp - bExp;
aSig <<= 10;
bSig <<= 10;
if ( 0 < expDiff ) goto aExpBigger;
if ( expDiff < 0 ) goto bExpBigger;
if ( aExp == 0x7FF ) {
if ( aSig | bSig ) return propagateFloat64NaN( a, b );
float_raise( float_flag_invalid );
return float64_default_nan;
}
if ( aExp == 0 ) {
aExp = 1;
bExp = 1;
}
if ( bSig < aSig ) goto aBigger;
if ( aSig < bSig ) goto bBigger;
return packFloat64( float_rounding_mode == float_round_down, 0, 0 );
bExpBigger:
if ( bExp == 0x7FF ) {
if ( bSig ) return propagateFloat64NaN( a, b );
return packFloat64( zSign ^ 1, 0x7FF, 0 );
}
if ( aExp == 0 ) {
++expDiff;
}
else {
aSig |= LIT64( 0x4000000000000000 );
}
shift64RightJamming( aSig, - expDiff, &aSig );
bSig |= LIT64( 0x4000000000000000 );
bBigger:
zSig = bSig - aSig;
zExp = bExp;
zSign ^= 1;
goto normalizeRoundAndPack;
aExpBigger:
if ( aExp == 0x7FF ) {
if ( aSig ) return propagateFloat64NaN( a, b );
return a;
}
if ( bExp == 0 ) {
--expDiff;
}
else {
bSig |= LIT64( 0x4000000000000000 );
}
shift64RightJamming( bSig, expDiff, &bSig );
aSig |= LIT64( 0x4000000000000000 );
aBigger:
zSig = aSig - bSig;
zExp = aExp;
normalizeRoundAndPack:
--zExp;
return normalizeRoundAndPackFloat64( zSign, zExp, zSig );
}
/*
-------------------------------------------------------------------------------
Returns the result of adding the double-precision floating-point values `a'
and `b'. The operation is performed according to the IEC/IEEE Standard for
Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_add( float64 a, float64 b )
{
flag aSign, bSign;
aSign = extractFloat64Sign( a );
bSign = extractFloat64Sign( b );
if ( aSign == bSign ) {
return addFloat64Sigs( a, b, aSign );
}
else {
return subFloat64Sigs( a, b, aSign );
}
}
/*
-------------------------------------------------------------------------------
Returns the result of subtracting the double-precision floating-point values
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_sub( float64 a, float64 b )
{
flag aSign, bSign;
aSign = extractFloat64Sign( a );
bSign = extractFloat64Sign( b );
if ( aSign == bSign ) {
return subFloat64Sigs( a, b, aSign );
}
else {
return addFloat64Sigs( a, b, aSign );
}
}
/*
-------------------------------------------------------------------------------
Returns the result of multiplying the double-precision floating-point values
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_mul( float64 a, float64 b )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, zExp;
bits64 aSig, bSig, zSig0, zSig1;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
bSig = extractFloat64Frac( b );
bExp = extractFloat64Exp( b );
bSign = extractFloat64Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0x7FF ) {
if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
return propagateFloat64NaN( a, b );
}
if ( ( bExp | bSig ) == 0 ) {
float_raise( float_flag_invalid );
return float64_default_nan;
}
return packFloat64( zSign, 0x7FF, 0 );
}
if ( bExp == 0x7FF ) {
if ( bSig ) return propagateFloat64NaN( a, b );
if ( ( aExp | aSig ) == 0 ) {
float_raise( float_flag_invalid );
return float64_default_nan;
}
return packFloat64( zSign, 0x7FF, 0 );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
}
if ( bExp == 0 ) {
if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
normalizeFloat64Subnormal( bSig, &bExp, &bSig );
}
zExp = aExp + bExp - 0x3FF;
aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
mul64To128( aSig, bSig, &zSig0, &zSig1 );
zSig0 |= ( zSig1 != 0 );
if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
zSig0 <<= 1;
--zExp;
}
return roundAndPackFloat64( zSign, zExp, zSig0 );
}
/*
-------------------------------------------------------------------------------
Returns the result of dividing the double-precision floating-point value `a'
by the corresponding value `b'. The operation is performed according to
the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_div( float64 a, float64 b )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, zExp;
bits64 aSig, bSig, zSig;
bits64 rem0, rem1;
bits64 term0, term1;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
bSig = extractFloat64Frac( b );
bExp = extractFloat64Exp( b );
bSign = extractFloat64Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0x7FF ) {
if ( aSig ) return propagateFloat64NaN( a, b );
if ( bExp == 0x7FF ) {
if ( bSig ) return propagateFloat64NaN( a, b );
float_raise( float_flag_invalid );
return float64_default_nan;
}
return packFloat64( zSign, 0x7FF, 0 );
}
if ( bExp == 0x7FF ) {
if ( bSig ) return propagateFloat64NaN( a, b );
return packFloat64( zSign, 0, 0 );
}
if ( bExp == 0 ) {
if ( bSig == 0 ) {
if ( ( aExp | aSig ) == 0 ) {
float_raise( float_flag_invalid );
return float64_default_nan;
}
float_raise( float_flag_divbyzero );
return packFloat64( zSign, 0x7FF, 0 );
}
normalizeFloat64Subnormal( bSig, &bExp, &bSig );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
}
zExp = aExp - bExp + 0x3FD;
aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
if ( bSig <= ( aSig + aSig ) ) {
aSig >>= 1;
++zExp;
}
zSig = estimateDiv128To64( aSig, 0, bSig );
if ( ( zSig & 0x1FF ) <= 2 ) {
mul64To128( bSig, zSig, &term0, &term1 );
sub128( aSig, 0, term0, term1, &rem0, &rem1 );
while ( (sbits64) rem0 < 0 ) {
--zSig;
add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
}
zSig |= ( rem1 != 0 );
}
return roundAndPackFloat64( zSign, zExp, zSig );
}
#ifndef SOFTFLOAT_FOR_GCC
/*
-------------------------------------------------------------------------------
Returns the remainder of the double-precision floating-point value `a'
with respect to the corresponding value `b'. The operation is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_rem( float64 a, float64 b )
{
flag aSign, bSign, zSign;
int16 aExp, bExp, expDiff;
bits64 aSig, bSig;
bits64 q, alternateASig;
sbits64 sigMean;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
bSig = extractFloat64Frac( b );
bExp = extractFloat64Exp( b );
bSign = extractFloat64Sign( b );
if ( aExp == 0x7FF ) {
if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
return propagateFloat64NaN( a, b );
}
float_raise( float_flag_invalid );
return float64_default_nan;
}
if ( bExp == 0x7FF ) {
if ( bSig ) return propagateFloat64NaN( a, b );
return a;
}
if ( bExp == 0 ) {
if ( bSig == 0 ) {
float_raise( float_flag_invalid );
return float64_default_nan;
}
normalizeFloat64Subnormal( bSig, &bExp, &bSig );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return a;
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
}
expDiff = aExp - bExp;
aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
if ( expDiff < 0 ) {
if ( expDiff < -1 ) return a;
aSig >>= 1;
}
q = ( bSig <= aSig );
if ( q ) aSig -= bSig;
expDiff -= 64;
while ( 0 < expDiff ) {
q = estimateDiv128To64( aSig, 0, bSig );
q = ( 2 < q ) ? q - 2 : 0;
aSig = - ( ( bSig>>2 ) * q );
expDiff -= 62;
}
expDiff += 64;
if ( 0 < expDiff ) {
q = estimateDiv128To64( aSig, 0, bSig );
q = ( 2 < q ) ? q - 2 : 0;
q >>= 64 - expDiff;
bSig >>= 2;
aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
}
else {
aSig >>= 2;
bSig >>= 2;
}
do {
alternateASig = aSig;
++q;
aSig -= bSig;
} while ( 0 <= (sbits64) aSig );
sigMean = aSig + alternateASig;
if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
aSig = alternateASig;
}
zSign = ( (sbits64) aSig < 0 );
if ( zSign ) aSig = - aSig;
return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig );
}
/*
-------------------------------------------------------------------------------
Returns the square root of the double-precision floating-point value `a'.
The operation is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float64_sqrt( float64 a )
{
flag aSign;
int16 aExp, zExp;
bits64 aSig, zSig, doubleZSig;
bits64 rem0, rem1, term0, term1;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if ( aExp == 0x7FF ) {
if ( aSig ) return propagateFloat64NaN( a, a );
if ( ! aSign ) return a;
float_raise( float_flag_invalid );
return float64_default_nan;
}
if ( aSign ) {
if ( ( aExp | aSig ) == 0 ) return a;
float_raise( float_flag_invalid );
return float64_default_nan;
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return 0;
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
}
zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
aSig |= LIT64( 0x0010000000000000 );
zSig = estimateSqrt32( aExp, aSig>>21 );
aSig <<= 9 - ( aExp & 1 );
zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
if ( ( zSig & 0x1FF ) <= 5 ) {
doubleZSig = zSig<<1;
mul64To128( zSig, zSig, &term0, &term1 );
sub128( aSig, 0, term0, term1, &rem0, &rem1 );
while ( (sbits64) rem0 < 0 ) {
--zSig;
doubleZSig -= 2;
add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
}
zSig |= ( ( rem0 | rem1 ) != 0 );
}
return roundAndPackFloat64( 0, zExp, zSig );
}
#endif
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is equal to the
corresponding value `b', and 0 otherwise. The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_eq( float64 a, float64 b )
{
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
return ( a == b ) ||
( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is less than or
equal to the corresponding value `b', and 0 otherwise. The comparison is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_le( float64 a, float64 b )
{
flag aSign, bSign;
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
float_raise( float_flag_invalid );
return 0;
}
aSign = extractFloat64Sign( a );
bSign = extractFloat64Sign( b );
if ( aSign != bSign )
return aSign ||
( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) ==
0 );
return ( a == b ) ||
( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise. The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_lt( float64 a, float64 b )
{
flag aSign, bSign;
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
float_raise( float_flag_invalid );
return 0;
}
aSign = extractFloat64Sign( a );
bSign = extractFloat64Sign( b );
if ( aSign != bSign )
return aSign &&
( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) !=
0 );
return ( a != b ) &&
( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
}
#ifndef SOFTFLOAT_FOR_GCC
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is equal to the
corresponding value `b', and 0 otherwise. The invalid exception is raised
if either operand is a NaN. Otherwise, the comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_eq_signaling( float64 a, float64 b )
{
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
float_raise( float_flag_invalid );
return 0;
}
return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is less than or
equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
cause an exception. Otherwise, the comparison is performed according to the
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_le_quiet( float64 a, float64 b )
{
flag aSign, bSign;
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
aSign = extractFloat64Sign( a );
bSign = extractFloat64Sign( b );
if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
return ( a == b ) || ( aSign ^ ( a < b ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
exception. Otherwise, the comparison is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float64_lt_quiet( float64 a, float64 b )
{
flag aSign, bSign;
if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
) {
if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
aSign = extractFloat64Sign( a );
bSign = extractFloat64Sign( b );
if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
return ( a != b ) && ( aSign ^ ( a < b ) );
}
#endif
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the 32-bit two's complement integer format. The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic---which means in particular that the conversion
is rounded according to the current rounding mode. If `a' is a NaN, the
largest positive integer is returned. Otherwise, if the conversion
overflows, the largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int32 floatx80_to_int32( floatx80 a )
{
flag aSign;
int32 aExp, shiftCount;
bits64 aSig;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
shiftCount = 0x4037 - aExp;
if ( shiftCount <= 0 ) shiftCount = 1;
shift64RightJamming( aSig, shiftCount, &aSig );
return roundAndPackInt32( aSign, aSig );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the 32-bit two's complement integer format. The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic, except that the conversion is always rounded
toward zero. If `a' is a NaN, the largest positive integer is returned.
Otherwise, if the conversion overflows, the largest integer with the same
sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int32 floatx80_to_int32_round_to_zero( floatx80 a )
{
flag aSign;
int32 aExp, shiftCount;
bits64 aSig, savedASig;
int32 z;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( 0x401E < aExp ) {
if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
goto invalid;
}
else if ( aExp < 0x3FFF ) {
if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
return 0;
}
shiftCount = 0x403E - aExp;
savedASig = aSig;
aSig >>= shiftCount;
z = aSig;
if ( aSign ) z = - z;
if ( ( z < 0 ) ^ aSign ) {
invalid:
float_raise( float_flag_invalid );
return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
}
if ( ( aSig<<shiftCount ) != savedASig ) {
float_exception_flags |= float_flag_inexact;
}
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the 64-bit two's complement integer format. The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic---which means in particular that the conversion
is rounded according to the current rounding mode. If `a' is a NaN,
the largest positive integer is returned. Otherwise, if the conversion
overflows, the largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int64 floatx80_to_int64( floatx80 a )
{
flag aSign;
int32 aExp, shiftCount;
bits64 aSig, aSigExtra;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
shiftCount = 0x403E - aExp;
if ( shiftCount <= 0 ) {
if ( shiftCount ) {
float_raise( float_flag_invalid );
if ( ! aSign
|| ( ( aExp == 0x7FFF )
&& ( aSig != LIT64( 0x8000000000000000 ) ) )
) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
return (sbits64) LIT64( 0x8000000000000000 );
}
aSigExtra = 0;
}
else {
shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
}
return roundAndPackInt64( aSign, aSig, aSigExtra );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the 64-bit two's complement integer format. The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic, except that the conversion is always rounded
toward zero. If `a' is a NaN, the largest positive integer is returned.
Otherwise, if the conversion overflows, the largest integer with the same
sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int64 floatx80_to_int64_round_to_zero( floatx80 a )
{
flag aSign;
int32 aExp, shiftCount;
bits64 aSig;
int64 z;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
shiftCount = aExp - 0x403E;
if ( 0 <= shiftCount ) {
aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
if ( ( a.high != 0xC03E ) || aSig ) {
float_raise( float_flag_invalid );
if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
}
return (sbits64) LIT64( 0x8000000000000000 );
}
else if ( aExp < 0x3FFF ) {
if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
return 0;
}
z = aSig>>( - shiftCount );
if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
float_exception_flags |= float_flag_inexact;
}
if ( aSign ) z = - z;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the single-precision floating-point format. The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float32 floatx80_to_float32( floatx80 a )
{
flag aSign;
int32 aExp;
bits64 aSig;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( aExp == 0x7FFF ) {
if ( (bits64) ( aSig<<1 ) ) {
return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
}
return packFloat32( aSign, 0xFF, 0 );
}
shift64RightJamming( aSig, 33, &aSig );
if ( aExp || aSig ) aExp -= 0x3F81;
return roundAndPackFloat32( aSign, aExp, aSig );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the double-precision floating-point format. The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float64 floatx80_to_float64( floatx80 a )
{
flag aSign;
int32 aExp;
bits64 aSig, zSig;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( aExp == 0x7FFF ) {
if ( (bits64) ( aSig<<1 ) ) {
return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
}
return packFloat64( aSign, 0x7FF, 0 );
}
shift64RightJamming( aSig, 1, &zSig );
if ( aExp || aSig ) aExp -= 0x3C01;
return roundAndPackFloat64( aSign, aExp, zSig );
}
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point value `a' to the quadruple-precision floating-point format. The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 floatx80_to_float128( floatx80 a )
{
flag aSign;
int16 aExp;
bits64 aSig, zSig0, zSig1;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
return commonNaNToFloat128( floatx80ToCommonNaN( a ) );
}
shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
return packFloat128( aSign, aExp, zSig0, zSig1 );
}
#endif
/*
-------------------------------------------------------------------------------
Rounds the extended double-precision floating-point value `a' to an integer,
and returns the result as an extended quadruple-precision floating-point
value. The operation is performed according to the IEC/IEEE Standard for
Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_round_to_int( floatx80 a )
{
flag aSign;
int32 aExp;
bits64 lastBitMask, roundBitsMask;
int8 roundingMode;
floatx80 z;
aExp = extractFloatx80Exp( a );
if ( 0x403E <= aExp ) {
if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
return propagateFloatx80NaN( a, a );
}
return a;
}
if ( aExp < 0x3FFF ) {
if ( ( aExp == 0 )
&& ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
return a;
}
float_exception_flags |= float_flag_inexact;
aSign = extractFloatx80Sign( a );
switch ( float_rounding_mode ) {
case float_round_nearest_even:
if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
) {
return
packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
}
break;
case float_round_to_zero:
break;
case float_round_down:
return
aSign ?
packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
: packFloatx80( 0, 0, 0 );
case float_round_up:
return
aSign ? packFloatx80( 1, 0, 0 )
: packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
}
return packFloatx80( aSign, 0, 0 );
}
lastBitMask = 1;
lastBitMask <<= 0x403E - aExp;
roundBitsMask = lastBitMask - 1;
z = a;
roundingMode = float_rounding_mode;
if ( roundingMode == float_round_nearest_even ) {
z.low += lastBitMask>>1;
if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
}
else if ( roundingMode != float_round_to_zero ) {
if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
z.low += roundBitsMask;
}
}
z.low &= ~ roundBitsMask;
if ( z.low == 0 ) {
++z.high;
z.low = LIT64( 0x8000000000000000 );
}
if ( z.low != a.low ) float_exception_flags |= float_flag_inexact;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of adding the absolute values of the extended double-
precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
negated before being returned. `zSign' is ignored if the result is a NaN.
The addition is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
{
int32 aExp, bExp, zExp;
bits64 aSig, bSig, zSig0, zSig1;
int32 expDiff;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
bSig = extractFloatx80Frac( b );
bExp = extractFloatx80Exp( b );
expDiff = aExp - bExp;
if ( 0 < expDiff ) {
if ( aExp == 0x7FFF ) {
if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
return a;
}
if ( bExp == 0 ) --expDiff;
shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
zExp = aExp;
}
else if ( expDiff < 0 ) {
if ( bExp == 0x7FFF ) {
if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) ++expDiff;
shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
zExp = bExp;
}
else {
if ( aExp == 0x7FFF ) {
if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
return propagateFloatx80NaN( a, b );
}
return a;
}
zSig1 = 0;
zSig0 = aSig + bSig;
if ( aExp == 0 ) {
normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
goto roundAndPack;
}
zExp = aExp;
goto shiftRight1;
}
zSig0 = aSig + bSig;
if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
shiftRight1:
shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
zSig0 |= LIT64( 0x8000000000000000 );
++zExp;
roundAndPack:
return
roundAndPackFloatx80(
floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
}
/*
-------------------------------------------------------------------------------
Returns the result of subtracting the absolute values of the extended
double-precision floating-point values `a' and `b'. If `zSign' is 1, the
difference is negated before being returned. `zSign' is ignored if the
result is a NaN. The subtraction is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
{
int32 aExp, bExp, zExp;
bits64 aSig, bSig, zSig0, zSig1;
int32 expDiff;
floatx80 z;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
bSig = extractFloatx80Frac( b );
bExp = extractFloatx80Exp( b );
expDiff = aExp - bExp;
if ( 0 < expDiff ) goto aExpBigger;
if ( expDiff < 0 ) goto bExpBigger;
if ( aExp == 0x7FFF ) {
if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
return propagateFloatx80NaN( a, b );
}
float_raise( float_flag_invalid );
z.low = floatx80_default_nan_low;
z.high = floatx80_default_nan_high;
return z;
}
if ( aExp == 0 ) {
aExp = 1;
bExp = 1;
}
zSig1 = 0;
if ( bSig < aSig ) goto aBigger;
if ( aSig < bSig ) goto bBigger;
return packFloatx80( float_rounding_mode == float_round_down, 0, 0 );
bExpBigger:
if ( bExp == 0x7FFF ) {
if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) ++expDiff;
shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
bBigger:
sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
zExp = bExp;
zSign ^= 1;
goto normalizeRoundAndPack;
aExpBigger:
if ( aExp == 0x7FFF ) {
if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
return a;
}
if ( bExp == 0 ) --expDiff;
shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
aBigger:
sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
zExp = aExp;
normalizeRoundAndPack:
return
normalizeRoundAndPackFloatx80(
floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
}
/*
-------------------------------------------------------------------------------
Returns the result of adding the extended double-precision floating-point
values `a' and `b'. The operation is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_add( floatx80 a, floatx80 b )
{
flag aSign, bSign;
aSign = extractFloatx80Sign( a );
bSign = extractFloatx80Sign( b );
if ( aSign == bSign ) {
return addFloatx80Sigs( a, b, aSign );
}
else {
return subFloatx80Sigs( a, b, aSign );
}
}
/*
-------------------------------------------------------------------------------
Returns the result of subtracting the extended double-precision floating-
point values `a' and `b'. The operation is performed according to the
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_sub( floatx80 a, floatx80 b )
{
flag aSign, bSign;
aSign = extractFloatx80Sign( a );
bSign = extractFloatx80Sign( b );
if ( aSign == bSign ) {
return subFloatx80Sigs( a, b, aSign );
}
else {
return addFloatx80Sigs( a, b, aSign );
}
}
/*
-------------------------------------------------------------------------------
Returns the result of multiplying the extended double-precision floating-
point values `a' and `b'. The operation is performed according to the
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_mul( floatx80 a, floatx80 b )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, zExp;
bits64 aSig, bSig, zSig0, zSig1;
floatx80 z;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
bSig = extractFloatx80Frac( b );
bExp = extractFloatx80Exp( b );
bSign = extractFloatx80Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0x7FFF ) {
if ( (bits64) ( aSig<<1 )
|| ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
return propagateFloatx80NaN( a, b );
}
if ( ( bExp | bSig ) == 0 ) goto invalid;
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( bExp == 0x7FFF ) {
if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
if ( ( aExp | aSig ) == 0 ) {
invalid:
float_raise( float_flag_invalid );
z.low = floatx80_default_nan_low;
z.high = floatx80_default_nan_high;
return z;
}
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
}
if ( bExp == 0 ) {
if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
}
zExp = aExp + bExp - 0x3FFE;
mul64To128( aSig, bSig, &zSig0, &zSig1 );
if ( 0 < (sbits64) zSig0 ) {
shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
--zExp;
}
return
roundAndPackFloatx80(
floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
}
/*
-------------------------------------------------------------------------------
Returns the result of dividing the extended double-precision floating-point
value `a' by the corresponding value `b'. The operation is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_div( floatx80 a, floatx80 b )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, zExp;
bits64 aSig, bSig, zSig0, zSig1;
bits64 rem0, rem1, rem2, term0, term1, term2;
floatx80 z;
aSig = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
bSig = extractFloatx80Frac( b );
bExp = extractFloatx80Exp( b );
bSign = extractFloatx80Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0x7FFF ) {
if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
if ( bExp == 0x7FFF ) {
if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
goto invalid;
}
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( bExp == 0x7FFF ) {
if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
return packFloatx80( zSign, 0, 0 );
}
if ( bExp == 0 ) {
if ( bSig == 0 ) {
if ( ( aExp | aSig ) == 0 ) {
invalid:
float_raise( float_flag_invalid );
z.low = floatx80_default_nan_low;
z.high = floatx80_default_nan_high;
return z;
}
float_raise( float_flag_divbyzero );
return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
}
if ( aExp == 0 ) {
if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
}
zExp = aExp - bExp + 0x3FFE;
rem1 = 0;
if ( bSig <= aSig ) {
shift128Right( aSig, 0, 1, &aSig, &rem1 );
++zExp;
}
zSig0 = estimateDiv128To64( aSig, rem1, bSig );
mul64To128( bSig, zSig0, &term0, &term1 );
sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
while ( (sbits64) rem0 < 0 ) {
--zSig0;
add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
}
zSig1 = estimateDiv128To64( rem1, 0, bSig );
if ( (bits64) ( zSig1<<1 ) <= 8 ) {
mul64To128( bSig, zSig1, &term1, &term2 );
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
while ( (sbits64) rem1 < 0 ) {
--zSig1;
add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
}
zSig1 |= ( ( rem1 | rem2 ) != 0 );
}
return
roundAndPackFloatx80(
floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
}
/*
-------------------------------------------------------------------------------
Returns the remainder of the extended double-precision floating-point value
`a' with respect to the corresponding value `b'. The operation is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_rem( floatx80 a, floatx80 b )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, expDiff;
bits64 aSig0, aSig1, bSig;
bits64 q, term0, term1, alternateASig0, alternateASig1;
floatx80 z;
aSig0 = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
bSig = extractFloatx80Frac( b );
bExp = extractFloatx80Exp( b );
bSign = extractFloatx80Sign( b );
if ( aExp == 0x7FFF ) {
if ( (bits64) ( aSig0<<1 )
|| ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
return propagateFloatx80NaN( a, b );
}
goto invalid;
}
if ( bExp == 0x7FFF ) {
if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
return a;
}
if ( bExp == 0 ) {
if ( bSig == 0 ) {
invalid:
float_raise( float_flag_invalid );
z.low = floatx80_default_nan_low;
z.high = floatx80_default_nan_high;
return z;
}
normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
}
if ( aExp == 0 ) {
if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
}
bSig |= LIT64( 0x8000000000000000 );
zSign = aSign;
expDiff = aExp - bExp;
aSig1 = 0;
if ( expDiff < 0 ) {
if ( expDiff < -1 ) return a;
shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
expDiff = 0;
}
q = ( bSig <= aSig0 );
if ( q ) aSig0 -= bSig;
expDiff -= 64;
while ( 0 < expDiff ) {
q = estimateDiv128To64( aSig0, aSig1, bSig );
q = ( 2 < q ) ? q - 2 : 0;
mul64To128( bSig, q, &term0, &term1 );
sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
expDiff -= 62;
}
expDiff += 64;
if ( 0 < expDiff ) {
q = estimateDiv128To64( aSig0, aSig1, bSig );
q = ( 2 < q ) ? q - 2 : 0;
q >>= 64 - expDiff;
mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
while ( le128( term0, term1, aSig0, aSig1 ) ) {
++q;
sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
}
}
else {
term1 = 0;
term0 = bSig;
}
sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
|| ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
&& ( q & 1 ) )
) {
aSig0 = alternateASig0;
aSig1 = alternateASig1;
zSign = ! zSign;
}
return
normalizeRoundAndPackFloatx80(
80, zSign, bExp + expDiff, aSig0, aSig1 );
}
/*
-------------------------------------------------------------------------------
Returns the square root of the extended double-precision floating-point
value `a'. The operation is performed according to the IEC/IEEE Standard
for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_sqrt( floatx80 a )
{
flag aSign;
int32 aExp, zExp;
bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
floatx80 z;
aSig0 = extractFloatx80Frac( a );
aExp = extractFloatx80Exp( a );
aSign = extractFloatx80Sign( a );
if ( aExp == 0x7FFF ) {
if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
if ( ! aSign ) return a;
goto invalid;
}
if ( aSign ) {
if ( ( aExp | aSig0 ) == 0 ) return a;
invalid:
float_raise( float_flag_invalid );
z.low = floatx80_default_nan_low;
z.high = floatx80_default_nan_high;
return z;
}
if ( aExp == 0 ) {
if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
}
zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
zSig0 = estimateSqrt32( aExp, aSig0>>32 );
shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
doubleZSig0 = zSig0<<1;
mul64To128( zSig0, zSig0, &term0, &term1 );
sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
while ( (sbits64) rem0 < 0 ) {
--zSig0;
doubleZSig0 -= 2;
add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
}
zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
if ( zSig1 == 0 ) zSig1 = 1;
mul64To128( doubleZSig0, zSig1, &term1, &term2 );
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
mul64To128( zSig1, zSig1, &term2, &term3 );
sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
while ( (sbits64) rem1 < 0 ) {
--zSig1;
shortShift128Left( 0, zSig1, 1, &term2, &term3 );
term3 |= 1;
term2 |= doubleZSig0;
add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
}
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
}
shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
zSig0 |= doubleZSig0;
return
roundAndPackFloatx80(
floatx80_rounding_precision, 0, zExp, zSig0, zSig1 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is
equal to the corresponding value `b', and 0 otherwise. The comparison is
performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_eq( floatx80 a, floatx80 b )
{
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
) {
if ( floatx80_is_signaling_nan( a )
|| floatx80_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
return
( a.low == b.low )
&& ( ( a.high == b.high )
|| ( ( a.low == 0 )
&& ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
);
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is
less than or equal to the corresponding value `b', and 0 otherwise. The
comparison is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_le( floatx80 a, floatx80 b )
{
flag aSign, bSign;
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
) {
float_raise( float_flag_invalid );
return 0;
}
aSign = extractFloatx80Sign( a );
bSign = extractFloatx80Sign( b );
if ( aSign != bSign ) {
return
aSign
|| ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
== 0 );
}
return
aSign ? le128( b.high, b.low, a.high, a.low )
: le128( a.high, a.low, b.high, b.low );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is
less than the corresponding value `b', and 0 otherwise. The comparison
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_lt( floatx80 a, floatx80 b )
{
flag aSign, bSign;
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
) {
float_raise( float_flag_invalid );
return 0;
}
aSign = extractFloatx80Sign( a );
bSign = extractFloatx80Sign( b );
if ( aSign != bSign ) {
return
aSign
&& ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
!= 0 );
}
return
aSign ? lt128( b.high, b.low, a.high, a.low )
: lt128( a.high, a.low, b.high, b.low );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is equal
to the corresponding value `b', and 0 otherwise. The invalid exception is
raised if either operand is a NaN. Otherwise, the comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_eq_signaling( floatx80 a, floatx80 b )
{
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
) {
float_raise( float_flag_invalid );
return 0;
}
return
( a.low == b.low )
&& ( ( a.high == b.high )
|| ( ( a.low == 0 )
&& ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
);
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is less
than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
do not cause an exception. Otherwise, the comparison is performed according
to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_le_quiet( floatx80 a, floatx80 b )
{
flag aSign, bSign;
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
) {
if ( floatx80_is_signaling_nan( a )
|| floatx80_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
aSign = extractFloatx80Sign( a );
bSign = extractFloatx80Sign( b );
if ( aSign != bSign ) {
return
aSign
|| ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
== 0 );
}
return
aSign ? le128( b.high, b.low, a.high, a.low )
: le128( a.high, a.low, b.high, b.low );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is less
than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
an exception. Otherwise, the comparison is performed according to the
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag floatx80_lt_quiet( floatx80 a, floatx80 b )
{
flag aSign, bSign;
if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
|| ( ( extractFloatx80Exp( b ) == 0x7FFF )
&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
) {
if ( floatx80_is_signaling_nan( a )
|| floatx80_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
aSign = extractFloatx80Sign( a );
bSign = extractFloatx80Sign( b );
if ( aSign != bSign ) {
return
aSign
&& ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
!= 0 );
}
return
aSign ? lt128( b.high, b.low, a.high, a.low )
: lt128( a.high, a.low, b.high, b.low );
}
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point
value `a' to the 32-bit two's complement integer format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic---which means in particular that the conversion is rounded
according to the current rounding mode. If `a' is a NaN, the largest
positive integer is returned. Otherwise, if the conversion overflows, the
largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int32 float128_to_int32( float128 a )
{
flag aSign;
int32 aExp, shiftCount;
bits64 aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
aSig0 |= ( aSig1 != 0 );
shiftCount = 0x4028 - aExp;
if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
return roundAndPackInt32( aSign, aSig0 );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point
value `a' to the 32-bit two's complement integer format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic, except that the conversion is always rounded toward zero. If
`a' is a NaN, the largest positive integer is returned. Otherwise, if the
conversion overflows, the largest integer with the same sign as `a' is
returned.
-------------------------------------------------------------------------------
*/
int32 float128_to_int32_round_to_zero( float128 a )
{
flag aSign;
int32 aExp, shiftCount;
bits64 aSig0, aSig1, savedASig;
int32 z;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
aSig0 |= ( aSig1 != 0 );
if ( 0x401E < aExp ) {
if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
goto invalid;
}
else if ( aExp < 0x3FFF ) {
if ( aExp || aSig0 ) float_exception_flags |= float_flag_inexact;
return 0;
}
aSig0 |= LIT64( 0x0001000000000000 );
shiftCount = 0x402F - aExp;
savedASig = aSig0;
aSig0 >>= shiftCount;
z = aSig0;
if ( aSign ) z = - z;
if ( ( z < 0 ) ^ aSign ) {
invalid:
float_raise( float_flag_invalid );
return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
}
if ( ( aSig0<<shiftCount ) != savedASig ) {
float_exception_flags |= float_flag_inexact;
}
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point
value `a' to the 64-bit two's complement integer format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic---which means in particular that the conversion is rounded
according to the current rounding mode. If `a' is a NaN, the largest
positive integer is returned. Otherwise, if the conversion overflows, the
largest integer with the same sign as `a' is returned.
-------------------------------------------------------------------------------
*/
int64 float128_to_int64( float128 a )
{
flag aSign;
int32 aExp, shiftCount;
bits64 aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
shiftCount = 0x402F - aExp;
if ( shiftCount <= 0 ) {
if ( 0x403E < aExp ) {
float_raise( float_flag_invalid );
if ( ! aSign
|| ( ( aExp == 0x7FFF )
&& ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
)
) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
return (sbits64) LIT64( 0x8000000000000000 );
}
shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
}
else {
shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
}
return roundAndPackInt64( aSign, aSig0, aSig1 );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point
value `a' to the 64-bit two's complement integer format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic, except that the conversion is always rounded toward zero.
If `a' is a NaN, the largest positive integer is returned. Otherwise, if
the conversion overflows, the largest integer with the same sign as `a' is
returned.
-------------------------------------------------------------------------------
*/
int64 float128_to_int64_round_to_zero( float128 a )
{
flag aSign;
int32 aExp, shiftCount;
bits64 aSig0, aSig1;
int64 z;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
shiftCount = aExp - 0x402F;
if ( 0 < shiftCount ) {
if ( 0x403E <= aExp ) {
aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
if ( ( a.high == LIT64( 0xC03E000000000000 ) )
&& ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
if ( aSig1 ) float_exception_flags |= float_flag_inexact;
}
else {
float_raise( float_flag_invalid );
if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
return LIT64( 0x7FFFFFFFFFFFFFFF );
}
}
return (sbits64) LIT64( 0x8000000000000000 );
}
z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
if ( (bits64) ( aSig1<<shiftCount ) ) {
float_exception_flags |= float_flag_inexact;
}
}
else {
if ( aExp < 0x3FFF ) {
if ( aExp | aSig0 | aSig1 ) {
float_exception_flags |= float_flag_inexact;
}
return 0;
}
z = aSig0>>( - shiftCount );
if ( aSig1
|| ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
float_exception_flags |= float_flag_inexact;
}
}
if ( aSign ) z = - z;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point
value `a' to the single-precision floating-point format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
float32 float128_to_float32( float128 a )
{
flag aSign;
int32 aExp;
bits64 aSig0, aSig1;
bits32 zSig;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) {
return commonNaNToFloat32( float128ToCommonNaN( a ) );
}
return packFloat32( aSign, 0xFF, 0 );
}
aSig0 |= ( aSig1 != 0 );
shift64RightJamming( aSig0, 18, &aSig0 );
zSig = aSig0;
if ( aExp || zSig ) {
zSig |= 0x40000000;
aExp -= 0x3F81;
}
return roundAndPackFloat32( aSign, aExp, zSig );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point
value `a' to the double-precision floating-point format. The conversion
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
float64 float128_to_float64( float128 a )
{
flag aSign;
int32 aExp;
bits64 aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) {
return commonNaNToFloat64( float128ToCommonNaN( a ) );
}
return packFloat64( aSign, 0x7FF, 0 );
}
shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
aSig0 |= ( aSig1 != 0 );
if ( aExp || aSig0 ) {
aSig0 |= LIT64( 0x4000000000000000 );
aExp -= 0x3C01;
}
return roundAndPackFloat64( aSign, aExp, aSig0 );
}
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point
value `a' to the extended double-precision floating-point format. The
conversion is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
floatx80 float128_to_floatx80( float128 a )
{
flag aSign;
int32 aExp;
bits64 aSig0, aSig1;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) {
return commonNaNToFloatx80( float128ToCommonNaN( a ) );
}
return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
}
if ( aExp == 0 ) {
if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
}
else {
aSig0 |= LIT64( 0x0001000000000000 );
}
shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 );
}
#endif
/*
-------------------------------------------------------------------------------
Rounds the quadruple-precision floating-point value `a' to an integer, and
returns the result as a quadruple-precision floating-point value. The
operation is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 float128_round_to_int( float128 a )
{
flag aSign;
int32 aExp;
bits64 lastBitMask, roundBitsMask;
int8 roundingMode;
float128 z;
aExp = extractFloat128Exp( a );
if ( 0x402F <= aExp ) {
if ( 0x406F <= aExp ) {
if ( ( aExp == 0x7FFF )
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
) {
return propagateFloat128NaN( a, a );
}
return a;
}
lastBitMask = 1;
lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
roundBitsMask = lastBitMask - 1;
z = a;
roundingMode = float_rounding_mode;
if ( roundingMode == float_round_nearest_even ) {
if ( lastBitMask ) {
add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
}
else {
if ( (sbits64) z.low < 0 ) {
++z.high;
if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
}
}
}
else if ( roundingMode != float_round_to_zero ) {
if ( extractFloat128Sign( z )
^ ( roundingMode == float_round_up ) ) {
add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
}
}
z.low &= ~ roundBitsMask;
}
else {
if ( aExp < 0x3FFF ) {
if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
float_exception_flags |= float_flag_inexact;
aSign = extractFloat128Sign( a );
switch ( float_rounding_mode ) {
case float_round_nearest_even:
if ( ( aExp == 0x3FFE )
&& ( extractFloat128Frac0( a )
| extractFloat128Frac1( a ) )
) {
return packFloat128( aSign, 0x3FFF, 0, 0 );
}
break;
case float_round_to_zero:
break;
case float_round_down:
return
aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
: packFloat128( 0, 0, 0, 0 );
case float_round_up:
return
aSign ? packFloat128( 1, 0, 0, 0 )
: packFloat128( 0, 0x3FFF, 0, 0 );
}
return packFloat128( aSign, 0, 0, 0 );
}
lastBitMask = 1;
lastBitMask <<= 0x402F - aExp;
roundBitsMask = lastBitMask - 1;
z.low = 0;
z.high = a.high;
roundingMode = float_rounding_mode;
if ( roundingMode == float_round_nearest_even ) {
z.high += lastBitMask>>1;
if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
z.high &= ~ lastBitMask;
}
}
else if ( roundingMode != float_round_to_zero ) {
if ( extractFloat128Sign( z )
^ ( roundingMode == float_round_up ) ) {
z.high |= ( a.low != 0 );
z.high += roundBitsMask;
}
}
z.high &= ~ roundBitsMask;
}
if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
float_exception_flags |= float_flag_inexact;
}
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of adding the absolute values of the quadruple-precision
floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
before being returned. `zSign' is ignored if the result is a NaN.
The addition is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static float128 addFloat128Sigs( float128 a, float128 b, flag zSign )
{
int32 aExp, bExp, zExp;
bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
int32 expDiff;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
bSig1 = extractFloat128Frac1( b );
bSig0 = extractFloat128Frac0( b );
bExp = extractFloat128Exp( b );
expDiff = aExp - bExp;
if ( 0 < expDiff ) {
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
return a;
}
if ( bExp == 0 ) {
--expDiff;
}
else {
bSig0 |= LIT64( 0x0001000000000000 );
}
shift128ExtraRightJamming(
bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
zExp = aExp;
}
else if ( expDiff < 0 ) {
if ( bExp == 0x7FFF ) {
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
return packFloat128( zSign, 0x7FFF, 0, 0 );
}
if ( aExp == 0 ) {
++expDiff;
}
else {
aSig0 |= LIT64( 0x0001000000000000 );
}
shift128ExtraRightJamming(
aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
zExp = bExp;
}
else {
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
return propagateFloat128NaN( a, b );
}
return a;
}
add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 );
zSig2 = 0;
zSig0 |= LIT64( 0x0002000000000000 );
zExp = aExp;
goto shiftRight1;
}
aSig0 |= LIT64( 0x0001000000000000 );
add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
--zExp;
if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
++zExp;
shiftRight1:
shift128ExtraRightJamming(
zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
roundAndPack:
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
}
/*
-------------------------------------------------------------------------------
Returns the result of subtracting the absolute values of the quadruple-
precision floating-point values `a' and `b'. If `zSign' is 1, the
difference is negated before being returned. `zSign' is ignored if the
result is a NaN. The subtraction is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
static float128 subFloat128Sigs( float128 a, float128 b, flag zSign )
{
int32 aExp, bExp, zExp;
bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
int32 expDiff;
float128 z;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
bSig1 = extractFloat128Frac1( b );
bSig0 = extractFloat128Frac0( b );
bExp = extractFloat128Exp( b );
expDiff = aExp - bExp;
shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
if ( 0 < expDiff ) goto aExpBigger;
if ( expDiff < 0 ) goto bExpBigger;
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
return propagateFloat128NaN( a, b );
}
float_raise( float_flag_invalid );
z.low = float128_default_nan_low;
z.high = float128_default_nan_high;
return z;
}
if ( aExp == 0 ) {
aExp = 1;
bExp = 1;
}
if ( bSig0 < aSig0 ) goto aBigger;
if ( aSig0 < bSig0 ) goto bBigger;
if ( bSig1 < aSig1 ) goto aBigger;
if ( aSig1 < bSig1 ) goto bBigger;
return packFloat128( float_rounding_mode == float_round_down, 0, 0, 0 );
bExpBigger:
if ( bExp == 0x7FFF ) {
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
}
if ( aExp == 0 ) {
++expDiff;
}
else {
aSig0 |= LIT64( 0x4000000000000000 );
}
shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
bSig0 |= LIT64( 0x4000000000000000 );
bBigger:
sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
zExp = bExp;
zSign ^= 1;
goto normalizeRoundAndPack;
aExpBigger:
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
return a;
}
if ( bExp == 0 ) {
--expDiff;
}
else {
bSig0 |= LIT64( 0x4000000000000000 );
}
shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
aSig0 |= LIT64( 0x4000000000000000 );
aBigger:
sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
zExp = aExp;
normalizeRoundAndPack:
--zExp;
return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 );
}
/*
-------------------------------------------------------------------------------
Returns the result of adding the quadruple-precision floating-point values
`a' and `b'. The operation is performed according to the IEC/IEEE Standard
for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 float128_add( float128 a, float128 b )
{
flag aSign, bSign;
aSign = extractFloat128Sign( a );
bSign = extractFloat128Sign( b );
if ( aSign == bSign ) {
return addFloat128Sigs( a, b, aSign );
}
else {
return subFloat128Sigs( a, b, aSign );
}
}
/*
-------------------------------------------------------------------------------
Returns the result of subtracting the quadruple-precision floating-point
values `a' and `b'. The operation is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 float128_sub( float128 a, float128 b )
{
flag aSign, bSign;
aSign = extractFloat128Sign( a );
bSign = extractFloat128Sign( b );
if ( aSign == bSign ) {
return subFloat128Sigs( a, b, aSign );
}
else {
return addFloat128Sigs( a, b, aSign );
}
}
/*
-------------------------------------------------------------------------------
Returns the result of multiplying the quadruple-precision floating-point
values `a' and `b'. The operation is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 float128_mul( float128 a, float128 b )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, zExp;
bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
float128 z;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
bSig1 = extractFloat128Frac1( b );
bSig0 = extractFloat128Frac0( b );
bExp = extractFloat128Exp( b );
bSign = extractFloat128Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0x7FFF ) {
if ( ( aSig0 | aSig1 )
|| ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
return propagateFloat128NaN( a, b );
}
if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
return packFloat128( zSign, 0x7FFF, 0, 0 );
}
if ( bExp == 0x7FFF ) {
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
invalid:
float_raise( float_flag_invalid );
z.low = float128_default_nan_low;
z.high = float128_default_nan_high;
return z;
}
return packFloat128( zSign, 0x7FFF, 0, 0 );
}
if ( aExp == 0 ) {
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
}
if ( bExp == 0 ) {
if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
}
zExp = aExp + bExp - 0x4000;
aSig0 |= LIT64( 0x0001000000000000 );
shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
zSig2 |= ( zSig3 != 0 );
if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
shift128ExtraRightJamming(
zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
++zExp;
}
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
}
/*
-------------------------------------------------------------------------------
Returns the result of dividing the quadruple-precision floating-point value
`a' by the corresponding value `b'. The operation is performed according to
the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 float128_div( float128 a, float128 b )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, zExp;
bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
float128 z;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
bSig1 = extractFloat128Frac1( b );
bSig0 = extractFloat128Frac0( b );
bExp = extractFloat128Exp( b );
bSign = extractFloat128Sign( b );
zSign = aSign ^ bSign;
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
if ( bExp == 0x7FFF ) {
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
goto invalid;
}
return packFloat128( zSign, 0x7FFF, 0, 0 );
}
if ( bExp == 0x7FFF ) {
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
return packFloat128( zSign, 0, 0, 0 );
}
if ( bExp == 0 ) {
if ( ( bSig0 | bSig1 ) == 0 ) {
if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
invalid:
float_raise( float_flag_invalid );
z.low = float128_default_nan_low;
z.high = float128_default_nan_high;
return z;
}
float_raise( float_flag_divbyzero );
return packFloat128( zSign, 0x7FFF, 0, 0 );
}
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
}
if ( aExp == 0 ) {
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
}
zExp = aExp - bExp + 0x3FFD;
shortShift128Left(
aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
shortShift128Left(
bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
++zExp;
}
zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
while ( (sbits64) rem0 < 0 ) {
--zSig0;
add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
}
zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
if ( ( zSig1 & 0x3FFF ) <= 4 ) {
mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
while ( (sbits64) rem1 < 0 ) {
--zSig1;
add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
}
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
}
shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
}
/*
-------------------------------------------------------------------------------
Returns the remainder of the quadruple-precision floating-point value `a'
with respect to the corresponding value `b'. The operation is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 float128_rem( float128 a, float128 b )
{
flag aSign, bSign, zSign;
int32 aExp, bExp, expDiff;
bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
bits64 allZero, alternateASig0, alternateASig1, sigMean1;
sbits64 sigMean0;
float128 z;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
bSig1 = extractFloat128Frac1( b );
bSig0 = extractFloat128Frac0( b );
bExp = extractFloat128Exp( b );
bSign = extractFloat128Sign( b );
if ( aExp == 0x7FFF ) {
if ( ( aSig0 | aSig1 )
|| ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
return propagateFloat128NaN( a, b );
}
goto invalid;
}
if ( bExp == 0x7FFF ) {
if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
return a;
}
if ( bExp == 0 ) {
if ( ( bSig0 | bSig1 ) == 0 ) {
invalid:
float_raise( float_flag_invalid );
z.low = float128_default_nan_low;
z.high = float128_default_nan_high;
return z;
}
normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
}
if ( aExp == 0 ) {
if ( ( aSig0 | aSig1 ) == 0 ) return a;
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
}
expDiff = aExp - bExp;
if ( expDiff < -1 ) return a;
shortShift128Left(
aSig0 | LIT64( 0x0001000000000000 ),
aSig1,
15 - ( expDiff < 0 ),
&aSig0,
&aSig1
);
shortShift128Left(
bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
q = le128( bSig0, bSig1, aSig0, aSig1 );
if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
expDiff -= 64;
while ( 0 < expDiff ) {
q = estimateDiv128To64( aSig0, aSig1, bSig0 );
q = ( 4 < q ) ? q - 4 : 0;
mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
expDiff -= 61;
}
if ( -64 < expDiff ) {
q = estimateDiv128To64( aSig0, aSig1, bSig0 );
q = ( 4 < q ) ? q - 4 : 0;
q >>= - expDiff;
shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
expDiff += 52;
if ( expDiff < 0 ) {
shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
}
else {
shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
}
mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
}
else {
shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
}
do {
alternateASig0 = aSig0;
alternateASig1 = aSig1;
++q;
sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
} while ( 0 <= (sbits64) aSig0 );
add128(
aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
if ( ( sigMean0 < 0 )
|| ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
aSig0 = alternateASig0;
aSig1 = alternateASig1;
}
zSign = ( (sbits64) aSig0 < 0 );
if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
return
normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
}
/*
-------------------------------------------------------------------------------
Returns the square root of the quadruple-precision floating-point value `a'.
The operation is performed according to the IEC/IEEE Standard for Binary
Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
float128 float128_sqrt( float128 a )
{
flag aSign;
int32 aExp, zExp;
bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
float128 z;
aSig1 = extractFloat128Frac1( a );
aSig0 = extractFloat128Frac0( a );
aExp = extractFloat128Exp( a );
aSign = extractFloat128Sign( a );
if ( aExp == 0x7FFF ) {
if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a );
if ( ! aSign ) return a;
goto invalid;
}
if ( aSign ) {
if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
invalid:
float_raise( float_flag_invalid );
z.low = float128_default_nan_low;
z.high = float128_default_nan_high;
return z;
}
if ( aExp == 0 ) {
if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
}
zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
aSig0 |= LIT64( 0x0001000000000000 );
zSig0 = estimateSqrt32( aExp, aSig0>>17 );
shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
doubleZSig0 = zSig0<<1;
mul64To128( zSig0, zSig0, &term0, &term1 );
sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
while ( (sbits64) rem0 < 0 ) {
--zSig0;
doubleZSig0 -= 2;
add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
}
zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
if ( ( zSig1 & 0x1FFF ) <= 5 ) {
if ( zSig1 == 0 ) zSig1 = 1;
mul64To128( doubleZSig0, zSig1, &term1, &term2 );
sub128( rem1, 0, term1, term2, &rem1, &rem2 );
mul64To128( zSig1, zSig1, &term2, &term3 );
sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
while ( (sbits64) rem1 < 0 ) {
--zSig1;
shortShift128Left( 0, zSig1, 1, &term2, &term3 );
term3 |= 1;
term2 |= doubleZSig0;
add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
}
zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
}
shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is equal to
the corresponding value `b', and 0 otherwise. The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float128_eq( float128 a, float128 b )
{
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
if ( float128_is_signaling_nan( a )
|| float128_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
return
( a.low == b.low )
&& ( ( a.high == b.high )
|| ( ( a.low == 0 )
&& ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
);
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is less than
or equal to the corresponding value `b', and 0 otherwise. The comparison
is performed according to the IEC/IEEE Standard for Binary Floating-Point
Arithmetic.
-------------------------------------------------------------------------------
*/
flag float128_le( float128 a, float128 b )
{
flag aSign, bSign;
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
float_raise( float_flag_invalid );
return 0;
}
aSign = extractFloat128Sign( a );
bSign = extractFloat128Sign( b );
if ( aSign != bSign ) {
return
aSign
|| ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
== 0 );
}
return
aSign ? le128( b.high, b.low, a.high, a.low )
: le128( a.high, a.low, b.high, b.low );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise. The comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float128_lt( float128 a, float128 b )
{
flag aSign, bSign;
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
float_raise( float_flag_invalid );
return 0;
}
aSign = extractFloat128Sign( a );
bSign = extractFloat128Sign( b );
if ( aSign != bSign ) {
return
aSign
&& ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
!= 0 );
}
return
aSign ? lt128( b.high, b.low, a.high, a.low )
: lt128( a.high, a.low, b.high, b.low );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is equal to
the corresponding value `b', and 0 otherwise. The invalid exception is
raised if either operand is a NaN. Otherwise, the comparison is performed
according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float128_eq_signaling( float128 a, float128 b )
{
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
float_raise( float_flag_invalid );
return 0;
}
return
( a.low == b.low )
&& ( ( a.high == b.high )
|| ( ( a.low == 0 )
&& ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
);
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is less than
or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
cause an exception. Otherwise, the comparison is performed according to the
IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float128_le_quiet( float128 a, float128 b )
{
flag aSign, bSign;
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
if ( float128_is_signaling_nan( a )
|| float128_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
aSign = extractFloat128Sign( a );
bSign = extractFloat128Sign( b );
if ( aSign != bSign ) {
return
aSign
|| ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
== 0 );
}
return
aSign ? le128( b.high, b.low, a.high, a.low )
: le128( a.high, a.low, b.high, b.low );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is less than
the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
exception. Otherwise, the comparison is performed according to the IEC/IEEE
Standard for Binary Floating-Point Arithmetic.
-------------------------------------------------------------------------------
*/
flag float128_lt_quiet( float128 a, float128 b )
{
flag aSign, bSign;
if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
|| ( ( extractFloat128Exp( b ) == 0x7FFF )
&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
) {
if ( float128_is_signaling_nan( a )
|| float128_is_signaling_nan( b ) ) {
float_raise( float_flag_invalid );
}
return 0;
}
aSign = extractFloat128Sign( a );
bSign = extractFloat128Sign( b );
if ( aSign != bSign ) {
return
aSign
&& ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
!= 0 );
}
return
aSign ? lt128( b.high, b.low, a.high, a.low )
: lt128( a.high, a.low, b.high, b.low );
}
#endif
#if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS)
/*
* These two routines are not part of the original softfloat distribution.
*
* They are based on the corresponding conversions to integer but return
* unsigned numbers instead since these functions are required by GCC.
*
* Added by Mark Brinicombe <mark@NetBSD.org> 27/09/97
*
* float64 version overhauled for SoftFloat 2a [bjh21 2000-07-15]
*/
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point value
`a' to the 32-bit unsigned integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic, except that the conversion is always rounded toward zero. If
`a' is a NaN, the largest positive integer is returned. If the conversion
overflows, the largest integer positive is returned.
-------------------------------------------------------------------------------
*/
uint32 float64_to_uint32_round_to_zero( float64 a )
{
flag aSign;
int16 aExp, shiftCount;
bits64 aSig, savedASig;
uint32 z;
aSig = extractFloat64Frac( a );
aExp = extractFloat64Exp( a );
aSign = extractFloat64Sign( a );
if (aSign) {
float_raise( float_flag_invalid );
return(0);
}
if ( 0x41E < aExp ) {
float_raise( float_flag_invalid );
return 0xffffffff;
}
else if ( aExp < 0x3FF ) {
if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
return 0;
}
aSig |= LIT64( 0x0010000000000000 );
shiftCount = 0x433 - aExp;
savedASig = aSig;
aSig >>= shiftCount;
z = aSig;
if ( ( aSig<<shiftCount ) != savedASig ) {
float_exception_flags |= float_flag_inexact;
}
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point value
`a' to the 32-bit unsigned integer format. The conversion is
performed according to the IEC/IEEE Standard for Binary Floating-point
Arithmetic, except that the conversion is always rounded toward zero. If
`a' is a NaN, the largest positive integer is returned. If the conversion
overflows, the largest positive integer is returned.
-------------------------------------------------------------------------------
*/
uint32 float32_to_uint32_round_to_zero( float32 a )
{
flag aSign;
int16 aExp, shiftCount;
bits32 aSig;
uint32 z;
aSig = extractFloat32Frac( a );
aExp = extractFloat32Exp( a );
aSign = extractFloat32Sign( a );
shiftCount = aExp - 0x9E;
if (aSign) {
float_raise( float_flag_invalid );
return(0);
}
if ( 0 < shiftCount ) {
float_raise( float_flag_invalid );
return 0xFFFFFFFF;
}
else if ( aExp <= 0x7E ) {
if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
return 0;
}
aSig = ( aSig | 0x800000 )<<8;
z = aSig>>( - shiftCount );
if ( aSig<<( shiftCount & 31 ) ) {
float_exception_flags |= float_flag_inexact;
}
return z;
}
#endif