freebsd-skq/sys/arm/broadcom/bcm2835/bcm2835_cpufreq.c
rpaulo d78172d28f Driver for CPU frequency/voltage control on the Raspberry Pi.
Differential Revision:	https://reviews.freebsd.org/D1025
Submitted by:	Daisuke Aoyama aoyama@peach.ne.jp
Reviewed by:	ian (earlier version), rpaulo
MFC after:	1 month
Relnotes:	yes
2014-12-20 19:15:10 +00:00

1819 lines
46 KiB
C

/*-
* Copyright (C) 2013-2014 Daisuke Aoyama <aoyama@peach.ne.jp>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/sema.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <arm/broadcom/bcm2835/bcm2835_mbox.h>
#include <arm/broadcom/bcm2835/bcm2835_mbox_prop.h>
#include <arm/broadcom/bcm2835/bcm2835_vcbus.h>
#include "cpufreq_if.h"
#include "mbox_if.h"
#ifdef DEBUG
#define DPRINTF(fmt, ...) do { \
printf("%s:%u: ", __func__, __LINE__); \
printf(fmt, ##__VA_ARGS__); \
} while (0)
#else
#define DPRINTF(fmt, ...)
#endif
#define HZ2MHZ(freq) ((freq) / (1000 * 1000))
#define MHZ2HZ(freq) ((freq) * (1000 * 1000))
#define OFFSET2MVOLT(val) (1200 + ((val) * 25))
#define MVOLT2OFFSET(val) (((val) - 1200) / 25)
#define RAW2K(temp) (((temp) + 273150) / 1000)
#define K2RAW(temp) (((temp) * 1000) - 273150)
#define DEFAULT_ARM_FREQUENCY 700
#define DEFAULT_CORE_FREQUENCY 250
#define DEFAULT_SDRAM_FREQUENCY 400
#define DEFAULT_LOWEST_FREQ 300
#define TRANSITION_LATENCY 1000
#define MIN_OVER_VOLTAGE -16
#define MAX_OVER_VOLTAGE 6
#define MSG_ERROR -999999999
#define MHZSTEP 100
#define HZSTEP (MHZ2HZ(MHZSTEP))
#define VC_LOCK(sc) do { \
sema_wait(&vc_sema); \
} while (0)
#define VC_UNLOCK(sc) do { \
sema_post(&vc_sema); \
} while (0)
/* ARM->VC mailbox property semaphore */
static struct sema vc_sema;
static struct sysctl_ctx_list bcm2835_sysctl_ctx;
struct bcm2835_cpufreq_softc {
device_t dev;
int arm_max_freq;
int arm_min_freq;
int core_max_freq;
int core_min_freq;
int sdram_max_freq;
int sdram_min_freq;
int max_voltage_core;
int min_voltage_core;
/* the values written in mbox */
int voltage_core;
int voltage_sdram;
int voltage_sdram_c;
int voltage_sdram_i;
int voltage_sdram_p;
int turbo_mode;
/* mbox buffer (physical address) */
bus_dma_tag_t dma_tag;
bus_dmamap_t dma_map;
bus_size_t dma_size;
void *dma_buf;
bus_addr_t dma_phys;
/* initial hook for waiting mbox intr */
struct intr_config_hook init_hook;
};
static int cpufreq_verbose = 0;
TUNABLE_INT("hw.bcm2835.cpufreq.verbose", &cpufreq_verbose);
static int cpufreq_lowest_freq = DEFAULT_LOWEST_FREQ;
TUNABLE_INT("hw.bcm2835.cpufreq.lowest_freq", &cpufreq_lowest_freq);
#ifdef DEBUG
static void
bcm2835_dump(const void *data, int len)
{
const uint8_t *p = (const uint8_t*)data;
int i;
printf("dump @ %p:\n", data);
for (i = 0; i < len; i++) {
printf("%2.2x ", p[i]);
if ((i % 4) == 3)
printf(" ");
if ((i % 16) == 15)
printf("\n");
}
printf("\n");
}
#endif
static int
bcm2835_mbox_call_prop(struct bcm2835_cpufreq_softc *sc)
{
struct bcm2835_mbox_hdr *msg = (struct bcm2835_mbox_hdr *)sc->dma_buf;
struct bcm2835_mbox_tag_hdr *tag, *last;
uint8_t *up;
device_t mbox;
size_t hdr_size;
int idx;
int err;
/*
* For multiple calls, locking is not here. The caller must have
* VC semaphore.
*/
/* get mbox device */
mbox = devclass_get_device(devclass_find("mbox"), 0);
if (mbox == NULL) {
device_printf(sc->dev, "can't find mbox\n");
return (-1);
}
/* go mailbox property */
#ifdef PROP_DEBUG
bcm2835_dump(msg, 64);
#endif
bus_dmamap_sync(sc->dma_tag, sc->dma_map,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
MBOX_WRITE(mbox, BCM2835_MBOX_CHAN_PROP, (uint32_t)sc->dma_phys);
MBOX_READ(mbox, BCM2835_MBOX_CHAN_PROP, &err);
bus_dmamap_sync(sc->dma_tag, sc->dma_map, BUS_DMASYNC_POSTREAD);
#ifdef PROP_DEBUG
bcm2835_dump(msg, 64);
#endif
/* check response code */
if (msg->code != BCM2835_MBOX_CODE_RESP_SUCCESS) {
device_printf(sc->dev, "mbox response error\n");
return (-1);
}
/* tag = first tag */
up = (uint8_t *)msg;
hdr_size = sizeof(struct bcm2835_mbox_hdr);
tag = (struct bcm2835_mbox_tag_hdr *)(up + hdr_size);
/* last = end of buffer specified by header */
last = (struct bcm2835_mbox_tag_hdr *)(up + msg->buf_size);
/* loop unitl end tag (=0x0) */
hdr_size = sizeof(struct bcm2835_mbox_tag_hdr);
for (idx = 0; tag->tag != 0; idx++) {
if ((tag->val_len & BCM2835_MBOX_TAG_VAL_LEN_RESPONSE) == 0) {
device_printf(sc->dev, "tag%d response error\n", idx);
return (-1);
}
/* clear response bit */
tag->val_len &= ~BCM2835_MBOX_TAG_VAL_LEN_RESPONSE;
/* get next tag */
up = (uint8_t *)tag;
tag = (struct bcm2835_mbox_tag_hdr *)(up + hdr_size +
tag->val_buf_size);
/* check buffer size of header */
if (tag > last) {
device_printf(sc->dev, "mbox buffer size error\n");
return (-1);
}
}
return (0);
}
static int
bcm2835_cpufreq_get_clock_rate(struct bcm2835_cpufreq_softc *sc,
uint32_t clock_id)
{
struct msg_get_clock_rate *msg;
int rate;
int err;
/*
* Get clock rate
* Tag: 0x00030002
* Request:
* Length: 4
* Value:
* u32: clock id
* Response:
* Length: 8
* Value:
* u32: clock id
* u32: rate (in Hz)
*/
/* using DMA buffer for VC */
msg = (struct msg_get_clock_rate *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_GET_CLOCK_RATE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.clock_id = clock_id;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't get clock rate (id=%u)\n",
clock_id);
return (MSG_ERROR);
}
/* result (Hz) */
rate = (int)msg->body.resp.rate_hz;
DPRINTF("clock = %d(Hz)\n", rate);
return (rate);
}
static int
bcm2835_cpufreq_get_max_clock_rate(struct bcm2835_cpufreq_softc *sc,
uint32_t clock_id)
{
struct msg_get_max_clock_rate *msg;
int rate;
int err;
/*
* Get max clock rate
* Tag: 0x00030004
* Request:
* Length: 4
* Value:
* u32: clock id
* Response:
* Length: 8
* Value:
* u32: clock id
* u32: rate (in Hz)
*/
/* using DMA buffer for VC */
msg = (struct msg_get_max_clock_rate *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_GET_MAX_CLOCK_RATE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.clock_id = clock_id;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't get max clock rate (id=%u)\n",
clock_id);
return (MSG_ERROR);
}
/* result (Hz) */
rate = (int)msg->body.resp.rate_hz;
DPRINTF("clock = %d(Hz)\n", rate);
return (rate);
}
static int
bcm2835_cpufreq_get_min_clock_rate(struct bcm2835_cpufreq_softc *sc,
uint32_t clock_id)
{
struct msg_get_min_clock_rate *msg;
int rate;
int err;
/*
* Get min clock rate
* Tag: 0x00030007
* Request:
* Length: 4
* Value:
* u32: clock id
* Response:
* Length: 8
* Value:
* u32: clock id
* u32: rate (in Hz)
*/
/* using DMA buffer for VC */
msg = (struct msg_get_min_clock_rate *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_GET_MIN_CLOCK_RATE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.clock_id = clock_id;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't get min clock rate (id=%u)\n",
clock_id);
return (MSG_ERROR);
}
/* result (Hz) */
rate = (int)msg->body.resp.rate_hz;
DPRINTF("clock = %d(Hz)\n", rate);
return (rate);
}
static int
bcm2835_cpufreq_set_clock_rate(struct bcm2835_cpufreq_softc *sc,
uint32_t clock_id, uint32_t rate_hz)
{
struct msg_set_clock_rate *msg;
int rate;
int err;
/*
* Set clock rate
* Tag: 0x00038002
* Request:
* Length: 8
* Value:
* u32: clock id
* u32: rate (in Hz)
* Response:
* Length: 8
* Value:
* u32: clock id
* u32: rate (in Hz)
*/
/* using DMA buffer for VC */
msg = (struct msg_set_clock_rate *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_SET_CLOCK_RATE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.clock_id = clock_id;
msg->body.req.rate_hz = rate_hz;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't set clock rate (id=%u)\n",
clock_id);
return (MSG_ERROR);
}
/* workaround for core clock */
if (clock_id == BCM2835_MBOX_CLOCK_ID_CORE) {
/* for safety (may change voltage without changing clock) */
DELAY(TRANSITION_LATENCY);
/*
* XXX: the core clock is unable to change at once,
* to change certainly, write it twice now.
*/
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_SET_CLOCK_RATE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.clock_id = clock_id;
msg->body.req.rate_hz = rate_hz;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev,
"can't set clock rate (id=%u)\n", clock_id);
return (MSG_ERROR);
}
}
/* result (Hz) */
rate = (int)msg->body.resp.rate_hz;
DPRINTF("clock = %d(Hz)\n", rate);
return (rate);
}
static int
bcm2835_cpufreq_get_turbo(struct bcm2835_cpufreq_softc *sc)
{
struct msg_get_turbo *msg;
int level;
int err;
/*
* Get turbo
* Tag: 0x00030009
* Request:
* Length: 4
* Value:
* u32: id
* Response:
* Length: 8
* Value:
* u32: id
* u32: level
*/
/* using DMA buffer for VC */
msg = (struct msg_get_turbo *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_GET_TURBO;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.id = 0;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't get turbo\n");
return (MSG_ERROR);
}
/* result 0=non-turbo, 1=turbo */
level = (int)msg->body.resp.level;
DPRINTF("level = %d\n", level);
return (level);
}
static int
bcm2835_cpufreq_set_turbo(struct bcm2835_cpufreq_softc *sc, uint32_t level)
{
struct msg_set_turbo *msg;
int value;
int err;
/*
* Set turbo
* Tag: 0x00038009
* Request:
* Length: 8
* Value:
* u32: id
* u32: level
* Response:
* Length: 8
* Value:
* u32: id
* u32: level
*/
/* using DMA buffer for VC */
msg = (struct msg_set_turbo *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* replace unknown value to OFF */
if (level != BCM2835_MBOX_TURBO_ON && level != BCM2835_MBOX_TURBO_OFF)
level = BCM2835_MBOX_TURBO_OFF;
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_SET_TURBO;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.id = 0;
msg->body.req.level = level;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't set turbo\n");
return (MSG_ERROR);
}
/* result 0=non-turbo, 1=turbo */
value = (int)msg->body.resp.level;
DPRINTF("level = %d\n", value);
return (value);
}
static int
bcm2835_cpufreq_get_voltage(struct bcm2835_cpufreq_softc *sc,
uint32_t voltage_id)
{
struct msg_get_voltage *msg;
int value;
int err;
/*
* Get voltage
* Tag: 0x00030003
* Request:
* Length: 4
* Value:
* u32: voltage id
* Response:
* Length: 8
* Value:
* u32: voltage id
* u32: value (offset from 1.2V in units of 0.025V)
*/
/* using DMA buffer for VC */
msg = (struct msg_get_voltage *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_GET_VOLTAGE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.voltage_id = voltage_id;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't get voltage\n");
return (MSG_ERROR);
}
/* result (offset from 1.2V) */
value = (int)msg->body.resp.value;
DPRINTF("value = %d\n", value);
return (value);
}
static int
bcm2835_cpufreq_get_max_voltage(struct bcm2835_cpufreq_softc *sc,
uint32_t voltage_id)
{
struct msg_get_max_voltage *msg;
int value;
int err;
/*
* Get voltage
* Tag: 0x00030005
* Request:
* Length: 4
* Value:
* u32: voltage id
* Response:
* Length: 8
* Value:
* u32: voltage id
* u32: value (offset from 1.2V in units of 0.025V)
*/
/* using DMA buffer for VC */
msg = (struct msg_get_max_voltage *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_GET_MAX_VOLTAGE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.voltage_id = voltage_id;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't get max voltage\n");
return (MSG_ERROR);
}
/* result (offset from 1.2V) */
value = (int)msg->body.resp.value;
DPRINTF("value = %d\n", value);
return (value);
}
static int
bcm2835_cpufreq_get_min_voltage(struct bcm2835_cpufreq_softc *sc,
uint32_t voltage_id)
{
struct msg_get_min_voltage *msg;
int value;
int err;
/*
* Get voltage
* Tag: 0x00030008
* Request:
* Length: 4
* Value:
* u32: voltage id
* Response:
* Length: 8
* Value:
* u32: voltage id
* u32: value (offset from 1.2V in units of 0.025V)
*/
/* using DMA buffer for VC */
msg = (struct msg_get_min_voltage *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_GET_MIN_VOLTAGE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.voltage_id = voltage_id;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't get min voltage\n");
return (MSG_ERROR);
}
/* result (offset from 1.2V) */
value = (int)msg->body.resp.value;
DPRINTF("value = %d\n", value);
return (value);
}
static int
bcm2835_cpufreq_set_voltage(struct bcm2835_cpufreq_softc *sc,
uint32_t voltage_id, int32_t value)
{
struct msg_set_voltage *msg;
int err;
/*
* Set voltage
* Tag: 0x00038003
* Request:
* Length: 4
* Value:
* u32: voltage id
* u32: value (offset from 1.2V in units of 0.025V)
* Response:
* Length: 8
* Value:
* u32: voltage id
* u32: value (offset from 1.2V in units of 0.025V)
*/
/*
* over_voltage:
* 0 (1.2 V). Values above 6 are only allowed when force_turbo or
* current_limit_override are specified (which set the warranty bit).
*/
if (value > MAX_OVER_VOLTAGE || value < MIN_OVER_VOLTAGE) {
/* currently not supported */
device_printf(sc->dev, "not supported voltage: %d\n", value);
return (MSG_ERROR);
}
/* using DMA buffer for VC */
msg = (struct msg_set_voltage *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_SET_VOLTAGE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.voltage_id = voltage_id;
msg->body.req.value = (uint32_t)value;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't set voltage\n");
return (MSG_ERROR);
}
/* result (offset from 1.2V) */
value = (int)msg->body.resp.value;
DPRINTF("value = %d\n", value);
return (value);
}
static int
bcm2835_cpufreq_get_temperature(struct bcm2835_cpufreq_softc *sc)
{
struct msg_get_temperature *msg;
int value;
int err;
/*
* Get temperature
* Tag: 0x00030006
* Request:
* Length: 4
* Value:
* u32: temperature id
* Response:
* Length: 8
* Value:
* u32: temperature id
* u32: value
*/
/* using DMA buffer for VC */
msg = (struct msg_get_temperature *)sc->dma_buf;
if (sizeof(*msg) > sc->dma_size) {
device_printf(sc->dev, "DMA size overflow (%zu>%lu)\n",
sizeof(*msg), sc->dma_size);
return (MSG_ERROR);
}
/* setup single tag buffer */
memset(msg, 0, sizeof(*msg));
msg->hdr.buf_size = sizeof(*msg);
msg->hdr.code = BCM2835_MBOX_CODE_REQ;
msg->tag_hdr.tag = BCM2835_MBOX_TAG_GET_TEMPERATURE;
msg->tag_hdr.val_buf_size = sizeof(msg->body);
msg->tag_hdr.val_len = sizeof(msg->body.req);
msg->body.req.temperature_id = 0;
msg->end_tag = 0;
/* call mailbox property */
err = bcm2835_mbox_call_prop(sc);
if (err) {
device_printf(sc->dev, "can't get temperature\n");
return (MSG_ERROR);
}
/* result (temperature of degree C) */
value = (int)msg->body.resp.value;
DPRINTF("value = %d\n", value);
return (value);
}
static int
sysctl_bcm2835_cpufreq_arm_freq(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_ARM);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
VC_LOCK(sc);
err = bcm2835_cpufreq_set_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_ARM,
val);
VC_UNLOCK(sc);
if (err == MSG_ERROR) {
device_printf(sc->dev, "set clock arm_freq error\n");
return (EIO);
}
DELAY(TRANSITION_LATENCY);
return (0);
}
static int
sysctl_bcm2835_cpufreq_core_freq(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_CORE);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
VC_LOCK(sc);
err = bcm2835_cpufreq_set_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_CORE,
val);
if (err == MSG_ERROR) {
VC_UNLOCK(sc);
device_printf(sc->dev, "set clock core_freq error\n");
return (EIO);
}
VC_UNLOCK(sc);
DELAY(TRANSITION_LATENCY);
return (0);
}
static int
sysctl_bcm2835_cpufreq_sdram_freq(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_SDRAM);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
VC_LOCK(sc);
err = bcm2835_cpufreq_set_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_SDRAM,
val);
VC_UNLOCK(sc);
if (err == MSG_ERROR) {
device_printf(sc->dev, "set clock sdram_freq error\n");
return (EIO);
}
DELAY(TRANSITION_LATENCY);
return (0);
}
static int
sysctl_bcm2835_cpufreq_turbo(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_turbo(sc);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
if (val > 0)
sc->turbo_mode = BCM2835_MBOX_TURBO_ON;
else
sc->turbo_mode = BCM2835_MBOX_TURBO_OFF;
VC_LOCK(sc);
err = bcm2835_cpufreq_set_turbo(sc, sc->turbo_mode);
VC_UNLOCK(sc);
if (err == MSG_ERROR) {
device_printf(sc->dev, "set turbo error\n");
return (EIO);
}
DELAY(TRANSITION_LATENCY);
return (0);
}
static int
sysctl_bcm2835_cpufreq_voltage_core(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_CORE);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
if (val > MAX_OVER_VOLTAGE || val < MIN_OVER_VOLTAGE)
return (EINVAL);
sc->voltage_core = val;
VC_LOCK(sc);
err = bcm2835_cpufreq_set_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_CORE,
sc->voltage_core);
VC_UNLOCK(sc);
if (err == MSG_ERROR) {
device_printf(sc->dev, "set voltage core error\n");
return (EIO);
}
DELAY(TRANSITION_LATENCY);
return (0);
}
static int
sysctl_bcm2835_cpufreq_voltage_sdram_c(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_SDRAM_C);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
if (val > MAX_OVER_VOLTAGE || val < MIN_OVER_VOLTAGE)
return (EINVAL);
sc->voltage_sdram_c = val;
VC_LOCK(sc);
err = bcm2835_cpufreq_set_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_SDRAM_C,
sc->voltage_sdram_c);
VC_UNLOCK(sc);
if (err == MSG_ERROR) {
device_printf(sc->dev, "set voltage sdram_c error\n");
return (EIO);
}
DELAY(TRANSITION_LATENCY);
return (0);
}
static int
sysctl_bcm2835_cpufreq_voltage_sdram_i(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_SDRAM_I);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
if (val > MAX_OVER_VOLTAGE || val < MIN_OVER_VOLTAGE)
return (EINVAL);
sc->voltage_sdram_i = val;
VC_LOCK(sc);
err = bcm2835_cpufreq_set_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_SDRAM_I,
sc->voltage_sdram_i);
VC_UNLOCK(sc);
if (err == MSG_ERROR) {
device_printf(sc->dev, "set voltage sdram_i error\n");
return (EIO);
}
DELAY(TRANSITION_LATENCY);
return (0);
}
static int
sysctl_bcm2835_cpufreq_voltage_sdram_p(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_SDRAM_P);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
if (val > MAX_OVER_VOLTAGE || val < MIN_OVER_VOLTAGE)
return (EINVAL);
sc->voltage_sdram_p = val;
VC_LOCK(sc);
err = bcm2835_cpufreq_set_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_SDRAM_P,
sc->voltage_sdram_p);
VC_UNLOCK(sc);
if (err == MSG_ERROR) {
device_printf(sc->dev, "set voltage sdram_p error\n");
return (EIO);
}
DELAY(TRANSITION_LATENCY);
return (0);
}
static int
sysctl_bcm2835_cpufreq_voltage_sdram(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* multiple write only */
if (!req->newptr)
return (EINVAL);
val = 0;
err = sysctl_handle_int(oidp, &val, 0, req);
if (err)
return (err);
/* write request */
if (val > MAX_OVER_VOLTAGE || val < MIN_OVER_VOLTAGE)
return (EINVAL);
sc->voltage_sdram = val;
VC_LOCK(sc);
err = bcm2835_cpufreq_set_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_SDRAM_C,
val);
if (err == MSG_ERROR) {
VC_UNLOCK(sc);
device_printf(sc->dev, "set voltage sdram_c error\n");
return (EIO);
}
err = bcm2835_cpufreq_set_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_SDRAM_I,
val);
if (err == MSG_ERROR) {
VC_UNLOCK(sc);
device_printf(sc->dev, "set voltage sdram_i error\n");
return (EIO);
}
err = bcm2835_cpufreq_set_voltage(sc, BCM2835_MBOX_VOLTAGE_ID_SDRAM_P,
val);
if (err == MSG_ERROR) {
VC_UNLOCK(sc);
device_printf(sc->dev, "set voltage sdram_p error\n");
return (EIO);
}
VC_UNLOCK(sc);
DELAY(TRANSITION_LATENCY);
return (0);
}
static int
sysctl_bcm2835_cpufreq_temperature(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_temperature(sc);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
return (EINVAL);
}
static int
sysctl_bcm2835_devcpu_temperature(SYSCTL_HANDLER_ARGS)
{
struct bcm2835_cpufreq_softc *sc = arg1;
int val;
int err;
/* get realtime value */
VC_LOCK(sc);
val = bcm2835_cpufreq_get_temperature(sc);
VC_UNLOCK(sc);
if (val == MSG_ERROR)
return (EIO);
/* 1/1000 celsius (raw) to 1/10 kelvin */
val = RAW2K(val) * 10;
err = sysctl_handle_int(oidp, &val, 0, req);
if (err || !req->newptr) /* error || read request */
return (err);
/* write request */
return (EINVAL);
}
static void
bcm2835_cpufreq_init(void *arg)
{
struct bcm2835_cpufreq_softc *sc = arg;
struct sysctl_ctx_list *ctx;
device_t cpu;
int arm_freq, core_freq, sdram_freq;
int arm_max_freq, arm_min_freq, core_max_freq, core_min_freq;
int sdram_max_freq, sdram_min_freq;
int voltage_core, voltage_sdram_c, voltage_sdram_i, voltage_sdram_p;
int max_voltage_core, min_voltage_core;
int max_voltage_sdram_c, min_voltage_sdram_c;
int max_voltage_sdram_i, min_voltage_sdram_i;
int max_voltage_sdram_p, min_voltage_sdram_p;
int turbo, temperature;
VC_LOCK(sc);
/* current clock */
arm_freq = bcm2835_cpufreq_get_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_ARM);
core_freq = bcm2835_cpufreq_get_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_CORE);
sdram_freq = bcm2835_cpufreq_get_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_SDRAM);
/* max/min clock */
arm_max_freq = bcm2835_cpufreq_get_max_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_ARM);
arm_min_freq = bcm2835_cpufreq_get_min_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_ARM);
core_max_freq = bcm2835_cpufreq_get_max_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_CORE);
core_min_freq = bcm2835_cpufreq_get_min_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_CORE);
sdram_max_freq = bcm2835_cpufreq_get_max_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_SDRAM);
sdram_min_freq = bcm2835_cpufreq_get_min_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_SDRAM);
/* turbo mode */
turbo = bcm2835_cpufreq_get_turbo(sc);
if (turbo > 0)
sc->turbo_mode = BCM2835_MBOX_TURBO_ON;
else
sc->turbo_mode = BCM2835_MBOX_TURBO_OFF;
/* voltage */
voltage_core = bcm2835_cpufreq_get_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_CORE);
voltage_sdram_c = bcm2835_cpufreq_get_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_SDRAM_C);
voltage_sdram_i = bcm2835_cpufreq_get_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_SDRAM_I);
voltage_sdram_p = bcm2835_cpufreq_get_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_SDRAM_P);
/* current values (offset from 1.2V) */
sc->voltage_core = voltage_core;
sc->voltage_sdram = voltage_sdram_c;
sc->voltage_sdram_c = voltage_sdram_c;
sc->voltage_sdram_i = voltage_sdram_i;
sc->voltage_sdram_p = voltage_sdram_p;
/* max/min voltage */
max_voltage_core = bcm2835_cpufreq_get_max_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_CORE);
min_voltage_core = bcm2835_cpufreq_get_min_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_CORE);
max_voltage_sdram_c = bcm2835_cpufreq_get_max_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_SDRAM_C);
max_voltage_sdram_i = bcm2835_cpufreq_get_max_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_SDRAM_I);
max_voltage_sdram_p = bcm2835_cpufreq_get_max_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_SDRAM_P);
min_voltage_sdram_c = bcm2835_cpufreq_get_min_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_SDRAM_C);
min_voltage_sdram_i = bcm2835_cpufreq_get_min_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_SDRAM_I);
min_voltage_sdram_p = bcm2835_cpufreq_get_min_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_SDRAM_P);
/* temperature */
temperature = bcm2835_cpufreq_get_temperature(sc);
/* show result */
if (cpufreq_verbose || bootverbose) {
device_printf(sc->dev, "Boot settings:\n");
device_printf(sc->dev,
"current ARM %dMHz, Core %dMHz, SDRAM %dMHz, Turbo %s\n",
HZ2MHZ(arm_freq), HZ2MHZ(core_freq), HZ2MHZ(sdram_freq),
(sc->turbo_mode == BCM2835_MBOX_TURBO_ON) ? "ON" : "OFF");
device_printf(sc->dev,
"max/min ARM %d/%dMHz, Core %d/%dMHz, SDRAM %d/%dMHz\n",
HZ2MHZ(arm_max_freq), HZ2MHZ(arm_min_freq),
HZ2MHZ(core_max_freq), HZ2MHZ(core_min_freq),
HZ2MHZ(sdram_max_freq), HZ2MHZ(sdram_min_freq));
device_printf(sc->dev,
"current Core %dmV, SDRAM_C %dmV, SDRAM_I %dmV, "
"SDRAM_P %dmV\n",
OFFSET2MVOLT(voltage_core), OFFSET2MVOLT(voltage_sdram_c),
OFFSET2MVOLT(voltage_sdram_i),
OFFSET2MVOLT(voltage_sdram_p));
device_printf(sc->dev,
"max/min Core %d/%dmV, SDRAM_C %d/%dmV, SDRAM_I %d/%dmV, "
"SDRAM_P %d/%dmV\n",
OFFSET2MVOLT(max_voltage_core),
OFFSET2MVOLT(min_voltage_core),
OFFSET2MVOLT(max_voltage_sdram_c),
OFFSET2MVOLT(min_voltage_sdram_c),
OFFSET2MVOLT(max_voltage_sdram_i),
OFFSET2MVOLT(min_voltage_sdram_i),
OFFSET2MVOLT(max_voltage_sdram_p),
OFFSET2MVOLT(min_voltage_sdram_p));
device_printf(sc->dev,
"Temperature %d.%dC\n", (temperature / 1000),
(temperature % 1000) / 100);
} else { /* !cpufreq_verbose && !bootverbose */
device_printf(sc->dev,
"ARM %dMHz, Core %dMHz, SDRAM %dMHz, Turbo %s\n",
HZ2MHZ(arm_freq), HZ2MHZ(core_freq), HZ2MHZ(sdram_freq),
(sc->turbo_mode == BCM2835_MBOX_TURBO_ON) ? "ON" : "OFF");
}
/* keep in softc (MHz/mV) */
sc->arm_max_freq = HZ2MHZ(arm_max_freq);
sc->arm_min_freq = HZ2MHZ(arm_min_freq);
sc->core_max_freq = HZ2MHZ(core_max_freq);
sc->core_min_freq = HZ2MHZ(core_min_freq);
sc->sdram_max_freq = HZ2MHZ(sdram_max_freq);
sc->sdram_min_freq = HZ2MHZ(sdram_min_freq);
sc->max_voltage_core = OFFSET2MVOLT(max_voltage_core);
sc->min_voltage_core = OFFSET2MVOLT(min_voltage_core);
/* if turbo is on, set to max values */
if (sc->turbo_mode == BCM2835_MBOX_TURBO_ON) {
bcm2835_cpufreq_set_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_ARM,
arm_max_freq);
DELAY(TRANSITION_LATENCY);
bcm2835_cpufreq_set_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_CORE,
core_max_freq);
DELAY(TRANSITION_LATENCY);
bcm2835_cpufreq_set_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_SDRAM, sdram_max_freq);
DELAY(TRANSITION_LATENCY);
} else {
bcm2835_cpufreq_set_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_ARM,
arm_min_freq);
DELAY(TRANSITION_LATENCY);
bcm2835_cpufreq_set_clock_rate(sc, BCM2835_MBOX_CLOCK_ID_CORE,
core_min_freq);
DELAY(TRANSITION_LATENCY);
bcm2835_cpufreq_set_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_SDRAM, sdram_min_freq);
DELAY(TRANSITION_LATENCY);
}
VC_UNLOCK(sc);
/* add human readable temperature to dev.cpu node */
cpu = device_get_parent(sc->dev);
if (cpu != NULL) {
ctx = device_get_sysctl_ctx(cpu);
SYSCTL_ADD_PROC(ctx,
SYSCTL_CHILDREN(device_get_sysctl_tree(cpu)), OID_AUTO,
"temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0,
sysctl_bcm2835_devcpu_temperature, "IK",
"Current SoC temperature");
}
/* release this hook (continue boot) */
config_intrhook_disestablish(&sc->init_hook);
}
static void
bcm2835_cpufreq_identify(driver_t *driver, device_t parent)
{
DPRINTF("driver=%p, parent=%p\n", driver, parent);
if (device_find_child(parent, "bcm2835_cpufreq", -1) != NULL)
return;
if (BUS_ADD_CHILD(parent, 0, "bcm2835_cpufreq", -1) == NULL)
device_printf(parent, "add child failed\n");
}
static int
bcm2835_cpufreq_probe(device_t dev)
{
device_set_desc(dev, "CPU Frequency Control");
return (0);
}
static void
bcm2835_cpufreq_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
bus_addr_t *addr;
if (err)
return;
addr = (bus_addr_t *)arg;
*addr = PHYS_TO_VCBUS(segs[0].ds_addr);
}
static int
bcm2835_cpufreq_attach(device_t dev)
{
struct bcm2835_cpufreq_softc *sc;
struct sysctl_oid *oid;
int err;
/* set self dev */
sc = device_get_softc(dev);
sc->dev = dev;
/* initial values */
sc->arm_max_freq = -1;
sc->arm_min_freq = -1;
sc->core_max_freq = -1;
sc->core_min_freq = -1;
sc->sdram_max_freq = -1;
sc->sdram_min_freq = -1;
sc->max_voltage_core = 0;
sc->min_voltage_core = 0;
/* create VC mbox buffer */
sc->dma_size = PAGE_SIZE;
err = bus_dma_tag_create(
bus_get_dma_tag(sc->dev),
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sc->dma_size, 1, /* maxsize, nsegments */
sc->dma_size, 0, /* maxsegsize, flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->dma_tag);
if (err) {
device_printf(dev, "can't create DMA tag\n");
return (ENXIO);
}
err = bus_dmamem_alloc(sc->dma_tag, (void **)&sc->dma_buf, 0,
&sc->dma_map);
if (err) {
bus_dma_tag_destroy(sc->dma_tag);
device_printf(dev, "can't allocate dmamem\n");
return (ENXIO);
}
err = bus_dmamap_load(sc->dma_tag, sc->dma_map, sc->dma_buf,
sc->dma_size, bcm2835_cpufreq_cb, &sc->dma_phys, 0);
if (err) {
bus_dmamem_free(sc->dma_tag, sc->dma_buf, sc->dma_map);
bus_dma_tag_destroy(sc->dma_tag);
device_printf(dev, "can't load DMA map\n");
return (ENXIO);
}
/* OK, ready to use VC buffer */
/* setup sysctl at first device */
if (device_get_unit(dev) == 0) {
sysctl_ctx_init(&bcm2835_sysctl_ctx);
/* create node for hw.cpufreq */
oid = SYSCTL_ADD_NODE(&bcm2835_sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, "cpufreq",
CTLFLAG_RD, NULL, "");
/* Frequency (Hz) */
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "arm_freq", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
sysctl_bcm2835_cpufreq_arm_freq, "IU",
"ARM frequency (Hz)");
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "core_freq", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
sysctl_bcm2835_cpufreq_core_freq, "IU",
"Core frequency (Hz)");
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "sdram_freq", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
sysctl_bcm2835_cpufreq_sdram_freq, "IU",
"SDRAM frequency (Hz)");
/* Turbo state */
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "turbo", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
sysctl_bcm2835_cpufreq_turbo, "IU",
"Disables dynamic clocking");
/* Voltage (offset from 1.2V in units of 0.025V) */
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "voltage_core", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
sysctl_bcm2835_cpufreq_voltage_core, "I",
"ARM/GPU core voltage"
"(offset from 1.2V in units of 0.025V)");
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "voltage_sdram", CTLTYPE_INT | CTLFLAG_WR, sc,
0, sysctl_bcm2835_cpufreq_voltage_sdram, "I",
"SDRAM voltage (offset from 1.2V in units of 0.025V)");
/* Voltage individual SDRAM */
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "voltage_sdram_c", CTLTYPE_INT | CTLFLAG_RW, sc,
0, sysctl_bcm2835_cpufreq_voltage_sdram_c, "I",
"SDRAM controller voltage"
"(offset from 1.2V in units of 0.025V)");
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "voltage_sdram_i", CTLTYPE_INT | CTLFLAG_RW, sc,
0, sysctl_bcm2835_cpufreq_voltage_sdram_i, "I",
"SDRAM I/O voltage (offset from 1.2V in units of 0.025V)");
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "voltage_sdram_p", CTLTYPE_INT | CTLFLAG_RW, sc,
0, sysctl_bcm2835_cpufreq_voltage_sdram_p, "I",
"SDRAM phy voltage (offset from 1.2V in units of 0.025V)");
/* Temperature */
SYSCTL_ADD_PROC(&bcm2835_sysctl_ctx, SYSCTL_CHILDREN(oid),
OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0,
sysctl_bcm2835_cpufreq_temperature, "I",
"SoC temperature (thousandths of a degree C)");
}
/* ARM->VC lock */
sema_init(&vc_sema, 1, "vcsema");
/* register callback for using mbox when interrupts are enabled */
sc->init_hook.ich_func = bcm2835_cpufreq_init;
sc->init_hook.ich_arg = sc;
if (config_intrhook_establish(&sc->init_hook) != 0) {
bus_dmamap_unload(sc->dma_tag, sc->dma_map);
bus_dmamem_free(sc->dma_tag, sc->dma_buf, sc->dma_map);
bus_dma_tag_destroy(sc->dma_tag);
device_printf(dev, "config_intrhook_establish failed\n");
return (ENOMEM);
}
/* this device is controlled by cpufreq(4) */
cpufreq_register(dev);
return (0);
}
static int
bcm2835_cpufreq_detach(device_t dev)
{
struct bcm2835_cpufreq_softc *sc;
sc = device_get_softc(dev);
sema_destroy(&vc_sema);
if (sc->dma_phys != 0)
bus_dmamap_unload(sc->dma_tag, sc->dma_map);
if (sc->dma_buf != NULL)
bus_dmamem_free(sc->dma_tag, sc->dma_buf, sc->dma_map);
if (sc->dma_tag != NULL)
bus_dma_tag_destroy(sc->dma_tag);
return (cpufreq_unregister(dev));
}
static int
bcm2835_cpufreq_set(device_t dev, const struct cf_setting *cf)
{
struct bcm2835_cpufreq_softc *sc;
uint32_t rate_hz, rem;
int cur_freq, resp_freq, arm_freq, min_freq, core_freq;
if (cf == NULL || cf->freq < 0)
return (EINVAL);
sc = device_get_softc(dev);
/* setting clock (Hz) */
rate_hz = (uint32_t)MHZ2HZ(cf->freq);
rem = rate_hz % HZSTEP;
rate_hz -= rem;
if (rate_hz == 0)
return (EINVAL);
/* adjust min freq */
min_freq = sc->arm_min_freq;
if (sc->turbo_mode != BCM2835_MBOX_TURBO_ON)
if (min_freq > cpufreq_lowest_freq)
min_freq = cpufreq_lowest_freq;
if (rate_hz < MHZ2HZ(min_freq) || rate_hz > MHZ2HZ(sc->arm_max_freq))
return (EINVAL);
/* set new value and verify it */
VC_LOCK(sc);
cur_freq = bcm2835_cpufreq_get_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_ARM);
resp_freq = bcm2835_cpufreq_set_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_ARM, rate_hz);
DELAY(TRANSITION_LATENCY);
arm_freq = bcm2835_cpufreq_get_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_ARM);
/*
* if non-turbo and lower than or equal min_freq,
* clock down core and sdram to default first.
*/
if (sc->turbo_mode != BCM2835_MBOX_TURBO_ON) {
core_freq = bcm2835_cpufreq_get_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_CORE);
if (rate_hz > MHZ2HZ(sc->arm_min_freq)) {
bcm2835_cpufreq_set_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_CORE,
MHZ2HZ(sc->core_max_freq));
DELAY(TRANSITION_LATENCY);
bcm2835_cpufreq_set_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_SDRAM,
MHZ2HZ(sc->sdram_max_freq));
DELAY(TRANSITION_LATENCY);
} else {
if (sc->core_min_freq < DEFAULT_CORE_FREQUENCY &&
core_freq > DEFAULT_CORE_FREQUENCY) {
/* first, down to 250, then down to min */
DELAY(TRANSITION_LATENCY);
bcm2835_cpufreq_set_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_CORE,
MHZ2HZ(DEFAULT_CORE_FREQUENCY));
DELAY(TRANSITION_LATENCY);
/* reset core voltage */
bcm2835_cpufreq_set_voltage(sc,
BCM2835_MBOX_VOLTAGE_ID_CORE, 0);
DELAY(TRANSITION_LATENCY);
}
bcm2835_cpufreq_set_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_CORE,
MHZ2HZ(sc->core_min_freq));
DELAY(TRANSITION_LATENCY);
bcm2835_cpufreq_set_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_SDRAM,
MHZ2HZ(sc->sdram_min_freq));
DELAY(TRANSITION_LATENCY);
}
}
VC_UNLOCK(sc);
if (resp_freq < 0 || arm_freq < 0 || resp_freq != arm_freq) {
device_printf(dev, "wrong freq\n");
return (EIO);
}
DPRINTF("cpufreq: %d -> %d\n", cur_freq, arm_freq);
return (0);
}
static int
bcm2835_cpufreq_get(device_t dev, struct cf_setting *cf)
{
struct bcm2835_cpufreq_softc *sc;
int arm_freq;
if (cf == NULL)
return (EINVAL);
sc = device_get_softc(dev);
memset(cf, CPUFREQ_VAL_UNKNOWN, sizeof(*cf));
cf->dev = NULL;
/* get cuurent value */
VC_LOCK(sc);
arm_freq = bcm2835_cpufreq_get_clock_rate(sc,
BCM2835_MBOX_CLOCK_ID_ARM);
VC_UNLOCK(sc);
if (arm_freq < 0) {
device_printf(dev, "can't get clock\n");
return (EINVAL);
}
/* CPU clock in MHz or 100ths of a percent. */
cf->freq = HZ2MHZ(arm_freq);
/* Voltage in mV. */
cf->volts = CPUFREQ_VAL_UNKNOWN;
/* Power consumed in mW. */
cf->power = CPUFREQ_VAL_UNKNOWN;
/* Transition latency in us. */
cf->lat = TRANSITION_LATENCY;
/* Driver providing this setting. */
cf->dev = dev;
return (0);
}
static int
bcm2835_cpufreq_make_freq_list(device_t dev, struct cf_setting *sets,
int *count)
{
struct bcm2835_cpufreq_softc *sc;
int freq, min_freq, volts, rem;
int idx;
sc = device_get_softc(dev);
freq = sc->arm_max_freq;
min_freq = sc->arm_min_freq;
/* adjust head freq to STEP */
rem = freq % MHZSTEP;
freq -= rem;
if (freq < min_freq)
freq = min_freq;
/* if non-turbo, add extra low freq */
if (sc->turbo_mode != BCM2835_MBOX_TURBO_ON)
if (min_freq > cpufreq_lowest_freq)
min_freq = cpufreq_lowest_freq;
/* from freq to min_freq */
for (idx = 0; idx < *count && freq >= min_freq; idx++) {
if (freq > sc->arm_min_freq)
volts = sc->max_voltage_core;
else
volts = sc->min_voltage_core;
sets[idx].freq = freq;
sets[idx].volts = volts;
sets[idx].lat = TRANSITION_LATENCY;
sets[idx].dev = dev;
freq -= MHZSTEP;
}
*count = ++idx;
return (0);
}
static int
bcm2835_cpufreq_settings(device_t dev, struct cf_setting *sets, int *count)
{
struct bcm2835_cpufreq_softc *sc;
if (sets == NULL || count == NULL)
return (EINVAL);
sc = device_get_softc(dev);
if (sc->arm_min_freq < 0 || sc->arm_max_freq < 0) {
printf("device is not configured\n");
return (EINVAL);
}
/* fill data with unknown value */
memset(sets, CPUFREQ_VAL_UNKNOWN, sizeof(*sets) * (*count));
/* create new array up to count */
bcm2835_cpufreq_make_freq_list(dev, sets, count);
return (0);
}
static int
bcm2835_cpufreq_type(device_t dev, int *type)
{
if (type == NULL)
return (EINVAL);
*type = CPUFREQ_TYPE_ABSOLUTE;
return (0);
}
static device_method_t bcm2835_cpufreq_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, bcm2835_cpufreq_identify),
DEVMETHOD(device_probe, bcm2835_cpufreq_probe),
DEVMETHOD(device_attach, bcm2835_cpufreq_attach),
DEVMETHOD(device_detach, bcm2835_cpufreq_detach),
/* cpufreq interface */
DEVMETHOD(cpufreq_drv_set, bcm2835_cpufreq_set),
DEVMETHOD(cpufreq_drv_get, bcm2835_cpufreq_get),
DEVMETHOD(cpufreq_drv_settings, bcm2835_cpufreq_settings),
DEVMETHOD(cpufreq_drv_type, bcm2835_cpufreq_type),
DEVMETHOD_END
};
static devclass_t bcm2835_cpufreq_devclass;
static driver_t bcm2835_cpufreq_driver = {
"bcm2835_cpufreq",
bcm2835_cpufreq_methods,
sizeof(struct bcm2835_cpufreq_softc),
};
DRIVER_MODULE(bcm2835_cpufreq, cpu, bcm2835_cpufreq_driver,
bcm2835_cpufreq_devclass, 0, 0);