9645b4dc68
the last byte of the ethernet address was not read which in turn resulted in getting 5 out of the 6 bytes of ethernet address and always returned ENOENT. I did not notice the bug on FPGA version because of additional configuration data in EEPROM. Pointed out by: bouyer at NetBSD
3110 lines
85 KiB
C
3110 lines
85 KiB
C
/*-
|
|
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/module.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <machine/atomic.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/in_cksum.h>
|
|
|
|
#include <dev/jme/if_jmereg.h>
|
|
#include <dev/jme/if_jmevar.h>
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
/* Define the following to disable printing Rx errors. */
|
|
#undef JME_SHOW_ERRORS
|
|
|
|
#define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
MODULE_DEPEND(jme, pci, 1, 1, 1);
|
|
MODULE_DEPEND(jme, ether, 1, 1, 1);
|
|
MODULE_DEPEND(jme, miibus, 1, 1, 1);
|
|
|
|
/* Tunables. */
|
|
static int msi_disable = 0;
|
|
static int msix_disable = 0;
|
|
TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
|
|
TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
|
|
|
|
/*
|
|
* Devices supported by this driver.
|
|
*/
|
|
static struct jme_dev {
|
|
uint16_t jme_vendorid;
|
|
uint16_t jme_deviceid;
|
|
const char *jme_name;
|
|
} jme_devs[] = {
|
|
{ VENDORID_JMICRON, DEVICEID_JMC250,
|
|
"JMicron Inc, JMC250 Gigabit Ethernet" },
|
|
{ VENDORID_JMICRON, DEVICEID_JMC260,
|
|
"JMicron Inc, JMC260 Fast Ethernet" },
|
|
};
|
|
|
|
static int jme_miibus_readreg(device_t, int, int);
|
|
static int jme_miibus_writereg(device_t, int, int, int);
|
|
static void jme_miibus_statchg(device_t);
|
|
static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
static int jme_mediachange(struct ifnet *);
|
|
static int jme_probe(device_t);
|
|
static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
|
|
static int jme_eeprom_macaddr(struct jme_softc *);
|
|
static void jme_reg_macaddr(struct jme_softc *);
|
|
static void jme_map_intr_vector(struct jme_softc *);
|
|
static int jme_attach(device_t);
|
|
static int jme_detach(device_t);
|
|
static void jme_sysctl_node(struct jme_softc *);
|
|
static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
static int jme_dma_alloc(struct jme_softc *);
|
|
static void jme_dma_free(struct jme_softc *);
|
|
static int jme_shutdown(device_t);
|
|
static void jme_setlinkspeed(struct jme_softc *);
|
|
static void jme_setwol(struct jme_softc *);
|
|
static int jme_suspend(device_t);
|
|
static int jme_resume(device_t);
|
|
static int jme_encap(struct jme_softc *, struct mbuf **);
|
|
static void jme_tx_task(void *, int);
|
|
static void jme_start(struct ifnet *);
|
|
static void jme_watchdog(struct jme_softc *);
|
|
static int jme_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void jme_mac_config(struct jme_softc *);
|
|
static void jme_link_task(void *, int);
|
|
static int jme_intr(void *);
|
|
static void jme_int_task(void *, int);
|
|
static void jme_txeof(struct jme_softc *);
|
|
static __inline void jme_discard_rxbuf(struct jme_softc *, int);
|
|
static void jme_rxeof(struct jme_softc *);
|
|
static int jme_rxintr(struct jme_softc *, int);
|
|
static void jme_tick(void *);
|
|
static void jme_reset(struct jme_softc *);
|
|
static void jme_init(void *);
|
|
static void jme_init_locked(struct jme_softc *);
|
|
static void jme_stop(struct jme_softc *);
|
|
static void jme_stop_tx(struct jme_softc *);
|
|
static void jme_stop_rx(struct jme_softc *);
|
|
static int jme_init_rx_ring(struct jme_softc *);
|
|
static void jme_init_tx_ring(struct jme_softc *);
|
|
static void jme_init_ssb(struct jme_softc *);
|
|
static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
|
|
static void jme_set_vlan(struct jme_softc *);
|
|
static void jme_set_filter(struct jme_softc *);
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
|
|
static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
|
|
static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
|
|
static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
|
|
static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
|
|
static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
|
|
|
|
|
|
static device_method_t jme_methods[] = {
|
|
/* Device interface. */
|
|
DEVMETHOD(device_probe, jme_probe),
|
|
DEVMETHOD(device_attach, jme_attach),
|
|
DEVMETHOD(device_detach, jme_detach),
|
|
DEVMETHOD(device_shutdown, jme_shutdown),
|
|
DEVMETHOD(device_suspend, jme_suspend),
|
|
DEVMETHOD(device_resume, jme_resume),
|
|
|
|
/* MII interface. */
|
|
DEVMETHOD(miibus_readreg, jme_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, jme_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, jme_miibus_statchg),
|
|
|
|
{ NULL, NULL }
|
|
};
|
|
|
|
static driver_t jme_driver = {
|
|
"jme",
|
|
jme_methods,
|
|
sizeof(struct jme_softc)
|
|
};
|
|
|
|
static devclass_t jme_devclass;
|
|
|
|
DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static struct resource_spec jme_res_spec_mem[] = {
|
|
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
static struct resource_spec jme_irq_spec_legacy[] = {
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
static struct resource_spec jme_irq_spec_msi[] = {
|
|
{ SYS_RES_IRQ, 1, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 2, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 3, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 4, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 5, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 6, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 7, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 8, RF_ACTIVE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
/*
|
|
* Read a PHY register on the MII of the JMC250.
|
|
*/
|
|
static int
|
|
jme_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct jme_softc *sc;
|
|
uint32_t val;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* For FPGA version, PHY address 0 should be ignored. */
|
|
if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
|
|
if (phy == 0)
|
|
return (0);
|
|
} else {
|
|
if (sc->jme_phyaddr != phy)
|
|
return (0);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
|
|
SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
|
|
for (i = JME_PHY_TIMEOUT; i > 0; i--) {
|
|
DELAY(1);
|
|
if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 0) {
|
|
device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
|
|
return (0);
|
|
}
|
|
|
|
return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Write a PHY register on the MII of the JMC250.
|
|
*/
|
|
static int
|
|
jme_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct jme_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* For FPGA version, PHY address 0 should be ignored. */
|
|
if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
|
|
if (phy == 0)
|
|
return (0);
|
|
} else {
|
|
if (sc->jme_phyaddr != phy)
|
|
return (0);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
|
|
((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
|
|
SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
|
|
for (i = JME_PHY_TIMEOUT; i > 0; i--) {
|
|
DELAY(1);
|
|
if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 0)
|
|
device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Callback from MII layer when media changes.
|
|
*/
|
|
static void
|
|
jme_miibus_statchg(device_t dev)
|
|
{
|
|
struct jme_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
|
|
}
|
|
|
|
/*
|
|
* Get the current interface media status.
|
|
*/
|
|
static void
|
|
jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
JME_LOCK(sc);
|
|
mii = device_get_softc(sc->jme_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
JME_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Set hardware to newly-selected media.
|
|
*/
|
|
static int
|
|
jme_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct mii_data *mii;
|
|
struct mii_softc *miisc;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
JME_LOCK(sc);
|
|
mii = device_get_softc(sc->jme_miibus);
|
|
if (mii->mii_instance != 0) {
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
mii_phy_reset(miisc);
|
|
}
|
|
error = mii_mediachg(mii);
|
|
JME_UNLOCK(sc);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
jme_probe(device_t dev)
|
|
{
|
|
struct jme_dev *sp;
|
|
int i;
|
|
uint16_t vendor, devid;
|
|
|
|
vendor = pci_get_vendor(dev);
|
|
devid = pci_get_device(dev);
|
|
sp = jme_devs;
|
|
for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]);
|
|
i++, sp++) {
|
|
if (vendor == sp->jme_vendorid &&
|
|
devid == sp->jme_deviceid) {
|
|
device_set_desc(dev, sp->jme_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
|
|
{
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
*val = 0;
|
|
for (i = JME_TIMEOUT; i > 0; i--) {
|
|
reg = CSR_READ_4(sc, JME_SMBCSR);
|
|
if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
|
|
if (i == 0) {
|
|
device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
|
|
CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
|
|
for (i = JME_TIMEOUT; i > 0; i--) {
|
|
DELAY(1);
|
|
reg = CSR_READ_4(sc, JME_SMBINTF);
|
|
if ((reg & SMBINTF_CMD_TRIGGER) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 0) {
|
|
device_printf(sc->jme_dev, "EEPROM read timeout!\n");
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
reg = CSR_READ_4(sc, JME_SMBINTF);
|
|
*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
jme_eeprom_macaddr(struct jme_softc *sc)
|
|
{
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
uint8_t fup, reg, val;
|
|
uint32_t offset;
|
|
int match;
|
|
|
|
offset = 0;
|
|
if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
|
|
fup != JME_EEPROM_SIG0)
|
|
return (ENOENT);
|
|
if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
|
|
fup != JME_EEPROM_SIG1)
|
|
return (ENOENT);
|
|
match = 0;
|
|
do {
|
|
if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
|
|
break;
|
|
if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
|
|
(fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
|
|
if (jme_eeprom_read_byte(sc, offset + 1, ®) != 0)
|
|
break;
|
|
if (reg >= JME_PAR0 &&
|
|
reg < JME_PAR0 + ETHER_ADDR_LEN) {
|
|
if (jme_eeprom_read_byte(sc, offset + 2,
|
|
&val) != 0)
|
|
break;
|
|
eaddr[reg - JME_PAR0] = val;
|
|
match++;
|
|
}
|
|
}
|
|
/* Check for the end of EEPROM descriptor. */
|
|
if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
|
|
break;
|
|
/* Try next eeprom descriptor. */
|
|
offset += JME_EEPROM_DESC_BYTES;
|
|
} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
|
|
|
|
if (match == ETHER_ADDR_LEN) {
|
|
bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
|
|
return (0);
|
|
}
|
|
|
|
return (ENOENT);
|
|
}
|
|
|
|
static void
|
|
jme_reg_macaddr(struct jme_softc *sc)
|
|
{
|
|
uint32_t par0, par1;
|
|
|
|
/* Read station address. */
|
|
par0 = CSR_READ_4(sc, JME_PAR0);
|
|
par1 = CSR_READ_4(sc, JME_PAR1);
|
|
par1 &= 0xFFFF;
|
|
if ((par0 == 0 && par1 == 0) ||
|
|
(par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
|
|
device_printf(sc->jme_dev,
|
|
"generating fake ethernet address.\n");
|
|
par0 = arc4random();
|
|
/* Set OUI to JMicron. */
|
|
sc->jme_eaddr[0] = 0x00;
|
|
sc->jme_eaddr[1] = 0x1B;
|
|
sc->jme_eaddr[2] = 0x8C;
|
|
sc->jme_eaddr[3] = (par0 >> 16) & 0xff;
|
|
sc->jme_eaddr[4] = (par0 >> 8) & 0xff;
|
|
sc->jme_eaddr[5] = par0 & 0xff;
|
|
} else {
|
|
sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
|
|
sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
|
|
sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
|
|
sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
|
|
sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
|
|
sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
|
|
}
|
|
}
|
|
|
|
static void
|
|
jme_map_intr_vector(struct jme_softc *sc)
|
|
{
|
|
uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
|
|
|
|
bzero(map, sizeof(map));
|
|
|
|
/* Map Tx interrupts source to MSI/MSIX vector 2. */
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
|
|
map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
|
|
MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
|
|
|
|
/* Map Rx interrupts source to MSI/MSIX vector 1. */
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
|
|
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
|
|
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
|
|
|
|
/* Map all other interrupts source to MSI/MSIX vector 0. */
|
|
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
|
|
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
|
|
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
|
|
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
|
|
}
|
|
|
|
static int
|
|
jme_attach(device_t dev)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mii_softc *miisc;
|
|
struct mii_data *mii;
|
|
uint32_t reg;
|
|
uint16_t burst;
|
|
int error, i, msic, msixc, pmc;
|
|
|
|
error = 0;
|
|
sc = device_get_softc(dev);
|
|
sc->jme_dev = dev;
|
|
|
|
mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
|
|
TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
|
|
TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
|
|
|
|
/*
|
|
* Map the device. JMC250 supports both memory mapped and I/O
|
|
* register space access. Because I/O register access should
|
|
* use different BARs to access registers it's waste of time
|
|
* to use I/O register spce access. JMC250 uses 16K to map
|
|
* entire memory space.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
sc->jme_res_spec = jme_res_spec_mem;
|
|
sc->jme_irq_spec = jme_irq_spec_legacy;
|
|
error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot allocate memory resources.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate IRQ resources. */
|
|
msixc = pci_msix_count(dev);
|
|
msic = pci_msi_count(dev);
|
|
if (bootverbose) {
|
|
device_printf(dev, "MSIX count : %d\n", msixc);
|
|
device_printf(dev, "MSI count : %d\n", msic);
|
|
}
|
|
|
|
/* Prefer MSIX over MSI. */
|
|
if (msix_disable == 0 || msi_disable == 0) {
|
|
if (msix_disable == 0 && msixc == JME_MSIX_MESSAGES &&
|
|
pci_alloc_msix(dev, &msixc) == 0) {
|
|
if (msic == JME_MSIX_MESSAGES) {
|
|
device_printf(dev, "Using %d MSIX messages.\n",
|
|
msixc);
|
|
sc->jme_flags |= JME_FLAG_MSIX;
|
|
sc->jme_irq_spec = jme_irq_spec_msi;
|
|
} else
|
|
pci_release_msi(dev);
|
|
}
|
|
if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
|
|
msic == JME_MSI_MESSAGES &&
|
|
pci_alloc_msi(dev, &msic) == 0) {
|
|
if (msic == JME_MSI_MESSAGES) {
|
|
device_printf(dev, "Using %d MSI messages.\n",
|
|
msic);
|
|
sc->jme_flags |= JME_FLAG_MSI;
|
|
sc->jme_irq_spec = jme_irq_spec_msi;
|
|
} else
|
|
pci_release_msi(dev);
|
|
}
|
|
/* Map interrupt vector 0, 1 and 2. */
|
|
if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
|
|
(sc->jme_flags & JME_FLAG_MSIX) != 0)
|
|
jme_map_intr_vector(sc);
|
|
}
|
|
|
|
error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
|
|
if (error != 0) {
|
|
device_printf(dev, "cannot allocate IRQ resources.\n");
|
|
goto fail;
|
|
}
|
|
|
|
sc->jme_rev = pci_get_device(dev);
|
|
if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
|
|
sc->jme_flags |= JME_FLAG_FASTETH;
|
|
sc->jme_flags |= JME_FLAG_NOJUMBO;
|
|
}
|
|
reg = CSR_READ_4(sc, JME_CHIPMODE);
|
|
sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
|
|
if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
|
|
CHIPMODE_NOT_FPGA)
|
|
sc->jme_flags |= JME_FLAG_FPGA;
|
|
if (bootverbose) {
|
|
device_printf(dev, "PCI device revision : 0x%04x\n",
|
|
sc->jme_rev);
|
|
device_printf(dev, "Chip revision : 0x%02x\n",
|
|
sc->jme_chip_rev);
|
|
if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
|
|
device_printf(dev, "FPGA revision : 0x%04x\n",
|
|
(reg & CHIPMODE_FPGA_REV_MASK) >>
|
|
CHIPMODE_FPGA_REV_SHIFT);
|
|
}
|
|
if (sc->jme_chip_rev == 0xFF) {
|
|
device_printf(dev, "Unknown chip revision : 0x%02x\n",
|
|
sc->jme_rev);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Reset the ethernet controller. */
|
|
jme_reset(sc);
|
|
|
|
/* Get station address. */
|
|
reg = CSR_READ_4(sc, JME_SMBCSR);
|
|
if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
|
|
error = jme_eeprom_macaddr(sc);
|
|
if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
|
|
if (error != 0 && (bootverbose))
|
|
device_printf(sc->jme_dev,
|
|
"ethernet hardware address not found in EEPROM.\n");
|
|
jme_reg_macaddr(sc);
|
|
}
|
|
|
|
/*
|
|
* Save PHY address.
|
|
* Integrated JR0211 has fixed PHY address whereas FPGA version
|
|
* requires PHY probing to get correct PHY address.
|
|
*/
|
|
if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
|
|
sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
|
|
GPREG0_PHY_ADDR_MASK;
|
|
if (bootverbose)
|
|
device_printf(dev, "PHY is at address %d.\n",
|
|
sc->jme_phyaddr);
|
|
} else
|
|
sc->jme_phyaddr = 0;
|
|
|
|
/* Set max allowable DMA size. */
|
|
if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
|
|
sc->jme_flags |= JME_FLAG_PCIE;
|
|
burst = pci_read_config(dev, i + 0x08, 2);
|
|
if (bootverbose) {
|
|
device_printf(dev, "Read request size : %d bytes.\n",
|
|
128 << ((burst >> 12) & 0x07));
|
|
device_printf(dev, "TLP payload size : %d bytes.\n",
|
|
128 << ((burst >> 5) & 0x07));
|
|
}
|
|
switch ((burst >> 12) & 0x07) {
|
|
case 0:
|
|
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
|
|
break;
|
|
case 1:
|
|
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
|
|
break;
|
|
default:
|
|
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
|
|
break;
|
|
}
|
|
sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
|
|
} else {
|
|
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
|
|
sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
|
|
}
|
|
/* Create coalescing sysctl node. */
|
|
jme_sysctl_node(sc);
|
|
if ((error = jme_dma_alloc(sc) != 0))
|
|
goto fail;
|
|
|
|
ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "cannot allocate ifnet structure.\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = jme_ioctl;
|
|
ifp->if_start = jme_start;
|
|
ifp->if_init = jme_init;
|
|
ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
|
|
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
|
|
ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
|
|
if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
|
|
sc->jme_flags |= JME_FLAG_PMCAP;
|
|
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
|
|
}
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/* Set up MII bus. */
|
|
if ((error = mii_phy_probe(dev, &sc->jme_miibus, jme_mediachange,
|
|
jme_mediastatus)) != 0) {
|
|
device_printf(dev, "no PHY found!\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Force PHY to FPGA mode.
|
|
*/
|
|
if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
|
|
mii = device_get_softc(sc->jme_miibus);
|
|
if (mii->mii_instance != 0) {
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
|
|
if (miisc->mii_phy != 0) {
|
|
sc->jme_phyaddr = miisc->mii_phy;
|
|
break;
|
|
}
|
|
}
|
|
if (sc->jme_phyaddr != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"FPGA PHY is at %d\n", sc->jme_phyaddr);
|
|
/* vendor magic. */
|
|
jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
|
|
0x0004);
|
|
}
|
|
}
|
|
}
|
|
|
|
ether_ifattach(ifp, sc->jme_eaddr);
|
|
|
|
/* VLAN capability setup */
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
|
|
IFCAP_VLAN_HWCSUM;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/* Tell the upper layer(s) we support long frames. */
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/* Create local taskq. */
|
|
TASK_INIT(&sc->jme_tx_task, 1, jme_tx_task, ifp);
|
|
sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
|
|
taskqueue_thread_enqueue, &sc->jme_tq);
|
|
if (sc->jme_tq == NULL) {
|
|
device_printf(dev, "could not create taskqueue.\n");
|
|
ether_ifdetach(ifp);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
|
|
device_get_nameunit(sc->jme_dev));
|
|
|
|
if ((sc->jme_flags & JME_FLAG_MSIX) != 0)
|
|
msic = JME_MSIX_MESSAGES;
|
|
else if ((sc->jme_flags & JME_FLAG_MSI) != 0)
|
|
msic = JME_MSI_MESSAGES;
|
|
else
|
|
msic = 1;
|
|
for (i = 0; i < msic; i++) {
|
|
error = bus_setup_intr(dev, sc->jme_irq[i],
|
|
INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
|
|
&sc->jme_intrhand[i]);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
if (error != 0) {
|
|
device_printf(dev, "could not set up interrupt handler.\n");
|
|
taskqueue_free(sc->jme_tq);
|
|
sc->jme_tq = NULL;
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error != 0)
|
|
jme_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
jme_detach(device_t dev)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct ifnet *ifp;
|
|
int i, msic;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
ifp = sc->jme_ifp;
|
|
if (device_is_attached(dev)) {
|
|
JME_LOCK(sc);
|
|
sc->jme_flags |= JME_FLAG_DETACH;
|
|
jme_stop(sc);
|
|
JME_UNLOCK(sc);
|
|
callout_drain(&sc->jme_tick_ch);
|
|
taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
|
|
taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
|
|
taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
|
|
ether_ifdetach(ifp);
|
|
}
|
|
|
|
if (sc->jme_tq != NULL) {
|
|
taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
|
|
taskqueue_free(sc->jme_tq);
|
|
sc->jme_tq = NULL;
|
|
}
|
|
|
|
if (sc->jme_miibus != NULL) {
|
|
device_delete_child(dev, sc->jme_miibus);
|
|
sc->jme_miibus = NULL;
|
|
}
|
|
bus_generic_detach(dev);
|
|
jme_dma_free(sc);
|
|
|
|
if (ifp != NULL) {
|
|
if_free(ifp);
|
|
sc->jme_ifp = NULL;
|
|
}
|
|
|
|
msic = 1;
|
|
if ((sc->jme_flags & JME_FLAG_MSIX) != 0)
|
|
msic = JME_MSIX_MESSAGES;
|
|
else if ((sc->jme_flags & JME_FLAG_MSI) != 0)
|
|
msic = JME_MSI_MESSAGES;
|
|
else
|
|
msic = 1;
|
|
for (i = 0; i < msic; i++) {
|
|
if (sc->jme_intrhand[i] != NULL) {
|
|
bus_teardown_intr(dev, sc->jme_irq[i],
|
|
sc->jme_intrhand[i]);
|
|
sc->jme_intrhand[i] = NULL;
|
|
}
|
|
}
|
|
|
|
bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
|
|
if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
|
|
pci_release_msi(dev);
|
|
bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
|
|
mtx_destroy(&sc->jme_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
jme_sysctl_node(struct jme_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
|
|
"tx_coal_to", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to,
|
|
0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
|
|
"tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt,
|
|
0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
|
|
"rx_coal_to", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to,
|
|
0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
|
|
"rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt,
|
|
0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
|
|
"process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit,
|
|
0, sysctl_hw_jme_proc_limit, "I",
|
|
"max number of Rx events to process");
|
|
|
|
/* Pull in device tunables. */
|
|
sc->jme_process_limit = JME_PROC_DEFAULT;
|
|
error = resource_int_value(device_get_name(sc->jme_dev),
|
|
device_get_unit(sc->jme_dev), "process_limit",
|
|
&sc->jme_process_limit);
|
|
if (error == 0) {
|
|
if (sc->jme_process_limit < JME_PROC_MIN ||
|
|
sc->jme_process_limit > JME_PROC_MAX) {
|
|
device_printf(sc->jme_dev,
|
|
"process_limit value out of range; "
|
|
"using default: %d\n", JME_PROC_DEFAULT);
|
|
sc->jme_process_limit = JME_PROC_DEFAULT;
|
|
}
|
|
}
|
|
|
|
sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
|
|
error = resource_int_value(device_get_name(sc->jme_dev),
|
|
device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
|
|
if (error == 0) {
|
|
if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
|
|
sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
|
|
device_printf(sc->jme_dev,
|
|
"tx_coal_to value out of range; "
|
|
"using default: %d\n", PCCTX_COAL_TO_DEFAULT);
|
|
sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
|
|
}
|
|
}
|
|
|
|
sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
|
|
error = resource_int_value(device_get_name(sc->jme_dev),
|
|
device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
|
|
if (error == 0) {
|
|
if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
|
|
sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
|
|
device_printf(sc->jme_dev,
|
|
"tx_coal_pkt value out of range; "
|
|
"using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
|
|
sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
|
|
}
|
|
}
|
|
|
|
sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
|
|
error = resource_int_value(device_get_name(sc->jme_dev),
|
|
device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
|
|
if (error == 0) {
|
|
if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
|
|
sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
|
|
device_printf(sc->jme_dev,
|
|
"rx_coal_to value out of range; "
|
|
"using default: %d\n", PCCRX_COAL_TO_DEFAULT);
|
|
sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
|
|
}
|
|
}
|
|
|
|
sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
|
|
error = resource_int_value(device_get_name(sc->jme_dev),
|
|
device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
|
|
if (error == 0) {
|
|
if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
|
|
sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
|
|
device_printf(sc->jme_dev,
|
|
"tx_coal_pkt value out of range; "
|
|
"using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
|
|
sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct jme_dmamap_arg {
|
|
bus_addr_t jme_busaddr;
|
|
};
|
|
|
|
static void
|
|
jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct jme_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
ctx = (struct jme_dmamap_arg *)arg;
|
|
ctx->jme_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
jme_dma_alloc(struct jme_softc *sc)
|
|
{
|
|
struct jme_dmamap_arg ctx;
|
|
struct jme_txdesc *txd;
|
|
struct jme_rxdesc *rxd;
|
|
bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
|
|
int error, i;
|
|
|
|
lowaddr = BUS_SPACE_MAXADDR;
|
|
|
|
again:
|
|
/* Create parent ring tag. */
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
lowaddr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->jme_cdata.jme_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not create parent ring DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
/* Create tag for Tx ring. */
|
|
error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
|
|
JME_TX_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
JME_TX_RING_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
JME_TX_RING_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->jme_cdata.jme_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not allocate Tx ring DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx ring. */
|
|
error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
|
|
JME_RX_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
lowaddr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
JME_RX_RING_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
JME_RX_RING_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->jme_cdata.jme_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not allocate Rx ring DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
|
|
error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
|
|
(void **)&sc->jme_rdata.jme_tx_ring,
|
|
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
|
|
&sc->jme_cdata.jme_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not allocate DMA'able memory for Tx ring.\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.jme_busaddr = 0;
|
|
error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
|
|
sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
|
|
JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0 || ctx.jme_busaddr == 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not load DMA'able memory for Tx ring.\n");
|
|
goto fail;
|
|
}
|
|
sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
|
|
error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
|
|
(void **)&sc->jme_rdata.jme_rx_ring,
|
|
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
|
|
&sc->jme_cdata.jme_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not allocate DMA'able memory for Rx ring.\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.jme_busaddr = 0;
|
|
error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
|
|
sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
|
|
JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0 || ctx.jme_busaddr == 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not load DMA'able memory for Rx ring.\n");
|
|
goto fail;
|
|
}
|
|
sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
|
|
|
|
/* Tx/Rx descriptor queue should reside within 4GB boundary. */
|
|
tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + JME_TX_RING_SIZE;
|
|
rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + JME_RX_RING_SIZE;
|
|
if ((JME_ADDR_HI(tx_ring_end) !=
|
|
JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
|
|
(JME_ADDR_HI(rx_ring_end) !=
|
|
JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
|
|
device_printf(sc->jme_dev, "4GB boundary crossed, "
|
|
"switching to 32bit DMA address mode.\n");
|
|
jme_dma_free(sc);
|
|
/* Limit DMA address space to 32bit and try again. */
|
|
lowaddr = BUS_SPACE_MAXADDR_32BIT;
|
|
goto again;
|
|
}
|
|
|
|
/* Create parent buffer tag. */
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->jme_cdata.jme_buffer_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not create parent buffer DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create shadow status block tag. */
|
|
error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
|
|
JME_SSB_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
JME_SSB_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
JME_SSB_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->jme_cdata.jme_ssb_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not create shared status block DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Tx buffers. */
|
|
error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
JME_TSO_MAXSIZE, /* maxsize */
|
|
JME_MAXTXSEGS, /* nsegments */
|
|
JME_TSO_MAXSEGSIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->jme_cdata.jme_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx buffers. */
|
|
error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
|
|
JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->jme_cdata.jme_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA'able memory and load the DMA map for shared
|
|
* status block.
|
|
*/
|
|
error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
|
|
(void **)&sc->jme_rdata.jme_ssb_block,
|
|
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
|
|
&sc->jme_cdata.jme_ssb_map);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev, "could not allocate DMA'able "
|
|
"memory for shared status block.\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.jme_busaddr = 0;
|
|
error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
|
|
sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
|
|
JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0 || ctx.jme_busaddr == 0) {
|
|
device_printf(sc->jme_dev, "could not load DMA'able memory "
|
|
"for shared status block.\n");
|
|
goto fail;
|
|
}
|
|
sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < JME_TX_RING_CNT; i++) {
|
|
txd = &sc->jme_cdata.jme_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not create Tx dmamap.\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create DMA maps for Rx buffers. */
|
|
if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
|
|
&sc->jme_cdata.jme_rx_sparemap)) != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not create spare Rx dmamap.\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < JME_RX_RING_CNT; i++) {
|
|
rxd = &sc->jme_cdata.jme_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"could not create Rx dmamap.\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
jme_dma_free(struct jme_softc *sc)
|
|
{
|
|
struct jme_txdesc *txd;
|
|
struct jme_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* Tx ring */
|
|
if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
|
|
if (sc->jme_cdata.jme_tx_ring_map)
|
|
bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
|
|
sc->jme_cdata.jme_tx_ring_map);
|
|
if (sc->jme_cdata.jme_tx_ring_map &&
|
|
sc->jme_rdata.jme_tx_ring)
|
|
bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
|
|
sc->jme_rdata.jme_tx_ring,
|
|
sc->jme_cdata.jme_tx_ring_map);
|
|
sc->jme_rdata.jme_tx_ring = NULL;
|
|
sc->jme_cdata.jme_tx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
|
|
sc->jme_cdata.jme_tx_ring_tag = NULL;
|
|
}
|
|
/* Rx ring */
|
|
if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
|
|
if (sc->jme_cdata.jme_rx_ring_map)
|
|
bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
|
|
sc->jme_cdata.jme_rx_ring_map);
|
|
if (sc->jme_cdata.jme_rx_ring_map &&
|
|
sc->jme_rdata.jme_rx_ring)
|
|
bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
|
|
sc->jme_rdata.jme_rx_ring,
|
|
sc->jme_cdata.jme_rx_ring_map);
|
|
sc->jme_rdata.jme_rx_ring = NULL;
|
|
sc->jme_cdata.jme_rx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
|
|
sc->jme_cdata.jme_rx_ring_tag = NULL;
|
|
}
|
|
/* Tx buffers */
|
|
if (sc->jme_cdata.jme_tx_tag != NULL) {
|
|
for (i = 0; i < JME_TX_RING_CNT; i++) {
|
|
txd = &sc->jme_cdata.jme_txdesc[i];
|
|
if (txd->tx_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
|
|
sc->jme_cdata.jme_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers */
|
|
if (sc->jme_cdata.jme_rx_tag != NULL) {
|
|
for (i = 0; i < JME_RX_RING_CNT; i++) {
|
|
rxd = &sc->jme_cdata.jme_rxdesc[i];
|
|
if (rxd->rx_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc->jme_cdata.jme_rx_sparemap != NULL) {
|
|
bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
|
|
sc->jme_cdata.jme_rx_sparemap);
|
|
sc->jme_cdata.jme_rx_sparemap = NULL;
|
|
}
|
|
bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
|
|
sc->jme_cdata.jme_rx_tag = NULL;
|
|
}
|
|
|
|
/* Shared status block. */
|
|
if (sc->jme_cdata.jme_ssb_tag != NULL) {
|
|
if (sc->jme_cdata.jme_ssb_map)
|
|
bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
|
|
sc->jme_cdata.jme_ssb_map);
|
|
if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block)
|
|
bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
|
|
sc->jme_rdata.jme_ssb_block,
|
|
sc->jme_cdata.jme_ssb_map);
|
|
sc->jme_rdata.jme_ssb_block = NULL;
|
|
sc->jme_cdata.jme_ssb_map = NULL;
|
|
bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
|
|
sc->jme_cdata.jme_ssb_tag = NULL;
|
|
}
|
|
|
|
if (sc->jme_cdata.jme_buffer_tag != NULL) {
|
|
bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
|
|
sc->jme_cdata.jme_buffer_tag = NULL;
|
|
}
|
|
if (sc->jme_cdata.jme_ring_tag != NULL) {
|
|
bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
|
|
sc->jme_cdata.jme_ring_tag = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure the interface is stopped at reboot time.
|
|
*/
|
|
static int
|
|
jme_shutdown(device_t dev)
|
|
{
|
|
|
|
return (jme_suspend(dev));
|
|
}
|
|
|
|
/*
|
|
* Unlike other ethernet controllers, JMC250 requires
|
|
* explicit resetting link speed to 10/100Mbps as gigabit
|
|
* link will cunsume more power than 375mA.
|
|
* Note, we reset the link speed to 10/100Mbps with
|
|
* auto-negotiation but we don't know whether that operation
|
|
* would succeed or not as we have no control after powering
|
|
* off. If the renegotiation fail WOL may not work. Running
|
|
* at 1Gbps draws more power than 375mA at 3.3V which is
|
|
* specified in PCI specification and that would result in
|
|
* complete shutdowning power to ethernet controller.
|
|
*
|
|
* TODO
|
|
* Save current negotiated media speed/duplex/flow-control
|
|
* to softc and restore the same link again after resuming.
|
|
* PHY handling such as power down/resetting to 100Mbps
|
|
* may be better handled in suspend method in phy driver.
|
|
*/
|
|
static void
|
|
jme_setlinkspeed(struct jme_softc *sc)
|
|
{
|
|
struct mii_data *mii;
|
|
int aneg, i;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->jme_miibus);
|
|
mii_pollstat(mii);
|
|
aneg = 0;
|
|
if ((mii->mii_media_status & IFM_AVALID) != 0) {
|
|
switch IFM_SUBTYPE(mii->mii_media_active) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
return;
|
|
case IFM_1000_T:
|
|
aneg++;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
|
|
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
|
|
ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
|
|
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
|
|
BMCR_AUTOEN | BMCR_STARTNEG);
|
|
DELAY(1000);
|
|
if (aneg != 0) {
|
|
/* Poll link state until jme(4) get a 10/100 link. */
|
|
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
|
|
mii_pollstat(mii);
|
|
if ((mii->mii_media_status & IFM_AVALID) != 0) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
jme_mac_config(sc);
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
JME_UNLOCK(sc);
|
|
pause("jmelnk", hz);
|
|
JME_LOCK(sc);
|
|
}
|
|
if (i == MII_ANEGTICKS_GIGE)
|
|
device_printf(sc->jme_dev, "establishing link failed, "
|
|
"WOL may not work!");
|
|
}
|
|
/*
|
|
* No link, force MAC to have 100Mbps, full-duplex link.
|
|
* This is the last resort and may/may not work.
|
|
*/
|
|
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
|
|
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
|
|
jme_mac_config(sc);
|
|
}
|
|
|
|
static void
|
|
jme_setwol(struct jme_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint32_t gpr, pmcs;
|
|
uint16_t pmstat;
|
|
int pmc;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
|
|
/* No PME capability, PHY power down. */
|
|
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
|
|
MII_BMCR, BMCR_PDOWN);
|
|
return;
|
|
}
|
|
|
|
ifp = sc->jme_ifp;
|
|
gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
|
|
pmcs = CSR_READ_4(sc, JME_PMCS);
|
|
pmcs &= ~PMCS_WOL_ENB_MASK;
|
|
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
|
|
pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
|
|
/* Enable PME message. */
|
|
gpr |= GPREG0_PME_ENB;
|
|
/* For gigabit controllers, reset link speed to 10/100. */
|
|
if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
|
|
jme_setlinkspeed(sc);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, JME_PMCS, pmcs);
|
|
CSR_WRITE_4(sc, JME_GPREG0, gpr);
|
|
|
|
/* Request PME. */
|
|
pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
|
|
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
|
|
if ((ifp->if_capenable & IFCAP_WOL) != 0)
|
|
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
|
|
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
|
|
/* No WOL, PHY power down. */
|
|
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
|
|
MII_BMCR, BMCR_PDOWN);
|
|
}
|
|
}
|
|
|
|
static int
|
|
jme_suspend(device_t dev)
|
|
{
|
|
struct jme_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
JME_LOCK(sc);
|
|
jme_stop(sc);
|
|
jme_setwol(sc);
|
|
JME_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
jme_resume(device_t dev)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint16_t pmstat;
|
|
int pmc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
JME_LOCK(sc);
|
|
if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
|
|
pmstat = pci_read_config(sc->jme_dev,
|
|
pmc + PCIR_POWER_STATUS, 2);
|
|
/* Disable PME clear PME status. */
|
|
pmstat &= ~PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(sc->jme_dev,
|
|
pmc + PCIR_POWER_STATUS, pmstat, 2);
|
|
}
|
|
ifp = sc->jme_ifp;
|
|
if ((ifp->if_flags & IFF_UP) != 0)
|
|
jme_init_locked(sc);
|
|
|
|
JME_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
jme_encap(struct jme_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct jme_txdesc *txd;
|
|
struct jme_desc *desc;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t txsegs[JME_MAXTXSEGS];
|
|
int error, i, nsegs, prod;
|
|
uint32_t cflags, tso_segsz;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
M_ASSERTPKTHDR((*m_head));
|
|
|
|
if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
/*
|
|
* Due to the adherence to NDIS specification JMC250
|
|
* assumes upper stack computed TCP pseudo checksum
|
|
* without including payload length. This breaks
|
|
* checksum offload for TSO case so recompute TCP
|
|
* pseudo checksum for JMC250. Hopefully this wouldn't
|
|
* be much burden on modern CPUs.
|
|
*/
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
struct tcphdr *tcp;
|
|
uint32_t ip_off, poff;
|
|
|
|
if (M_WRITABLE(*m_head) == 0) {
|
|
/* Get a writable copy. */
|
|
m = m_dup(*m_head, M_DONTWAIT);
|
|
m_freem(*m_head);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
ip_off = sizeof(struct ether_header);
|
|
m = m_pullup(*m_head, ip_off);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
eh = mtod(m, struct ether_header *);
|
|
/* Check the existence of VLAN tag. */
|
|
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
|
|
ip_off = sizeof(struct ether_vlan_header);
|
|
m = m_pullup(m, ip_off);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
m = m_pullup(m, ip_off + sizeof(struct ip));
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m, char *) + ip_off);
|
|
poff = ip_off + (ip->ip_hl << 2);
|
|
m = m_pullup(m, poff + sizeof(struct tcphdr));
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
|
|
/*
|
|
* Reset IP checksum and recompute TCP pseudo
|
|
* checksum that NDIS specification requires.
|
|
*/
|
|
ip->ip_sum = 0;
|
|
if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
|
|
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr,
|
|
htons((tcp->th_off << 2) + IPPROTO_TCP));
|
|
/* No need to TSO, force IP checksum offload. */
|
|
(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
|
|
(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
|
|
} else
|
|
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
*m_head = m;
|
|
}
|
|
|
|
prod = sc->jme_cdata.jme_tx_prod;
|
|
txd = &sc->jme_cdata.jme_txdesc[prod];
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Check descriptor overrun. Leave one free descriptor.
|
|
* Since we always use 64bit address mode for transmitting,
|
|
* each Tx request requires one more dummy descriptor.
|
|
*/
|
|
if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
|
|
bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
m = *m_head;
|
|
cflags = 0;
|
|
tso_segsz = 0;
|
|
/* Configure checksum offload and TSO. */
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
|
|
JME_TD_MSS_SHIFT;
|
|
cflags |= JME_TD_TSO;
|
|
} else {
|
|
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
|
|
cflags |= JME_TD_IPCSUM;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
|
|
cflags |= JME_TD_TCPCSUM;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
|
|
cflags |= JME_TD_UDPCSUM;
|
|
}
|
|
/* Configure VLAN. */
|
|
if ((m->m_flags & M_VLANTAG) != 0) {
|
|
cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
|
|
cflags |= JME_TD_VLAN_TAG;
|
|
}
|
|
|
|
desc = &sc->jme_rdata.jme_tx_ring[prod];
|
|
desc->flags = htole32(cflags);
|
|
desc->buflen = htole32(tso_segsz);
|
|
desc->addr_hi = htole32(m->m_pkthdr.len);
|
|
desc->addr_lo = 0;
|
|
sc->jme_cdata.jme_tx_cnt++;
|
|
JME_DESC_INC(prod, JME_TX_RING_CNT);
|
|
for (i = 0; i < nsegs; i++) {
|
|
desc = &sc->jme_rdata.jme_tx_ring[prod];
|
|
desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
|
|
desc->buflen = htole32(txsegs[i].ds_len);
|
|
desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
|
|
desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
|
|
sc->jme_cdata.jme_tx_cnt++;
|
|
JME_DESC_INC(prod, JME_TX_RING_CNT);
|
|
}
|
|
|
|
/* Update producer index. */
|
|
sc->jme_cdata.jme_tx_prod = prod;
|
|
/*
|
|
* Finally request interrupt and give the first descriptor
|
|
* owenership to hardware.
|
|
*/
|
|
desc = txd->tx_desc;
|
|
desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
|
|
|
|
txd->tx_m = m;
|
|
txd->tx_ndesc = nsegs + 1;
|
|
|
|
/* Sync descriptors. */
|
|
bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
|
|
sc->jme_cdata.jme_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
jme_tx_task(void *arg, int pending)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ifp = (struct ifnet *)arg;
|
|
jme_start(ifp);
|
|
}
|
|
|
|
static void
|
|
jme_start(struct ifnet *ifp)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
JME_LOCK(sc);
|
|
|
|
if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
|
|
jme_txeof(sc);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0) {
|
|
JME_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (jme_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
/*
|
|
* Reading TXCSR takes very long time under heavy load
|
|
* so cache TXCSR value and writes the ORed value with
|
|
* the kick command to the TXCSR. This saves one register
|
|
* access cycle.
|
|
*/
|
|
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
|
|
TXCSR_TXQ_N_START(TXCSR_TXQ0));
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
sc->jme_watchdog_timer = JME_TX_TIMEOUT;
|
|
}
|
|
|
|
JME_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
jme_watchdog(struct jme_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
|
|
return;
|
|
|
|
ifp = sc->jme_ifp;
|
|
if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
|
|
if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
|
|
ifp->if_oerrors++;
|
|
jme_init_locked(sc);
|
|
return;
|
|
}
|
|
jme_txeof(sc);
|
|
if (sc->jme_cdata.jme_tx_cnt == 0) {
|
|
if_printf(sc->jme_ifp,
|
|
"watchdog timeout (missed Tx interrupts) -- recovering\n");
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
|
|
return;
|
|
}
|
|
|
|
if_printf(sc->jme_ifp, "watchdog timeout\n");
|
|
ifp->if_oerrors++;
|
|
jme_init_locked(sc);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
|
|
}
|
|
|
|
static int
|
|
jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct ifreq *ifr;
|
|
struct mii_data *mii;
|
|
uint32_t reg;
|
|
int error, mask;
|
|
|
|
sc = ifp->if_softc;
|
|
ifr = (struct ifreq *)data;
|
|
error = 0;
|
|
switch (cmd) {
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
|
|
((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
|
|
ifr->ifr_mtu > JME_MAX_MTU)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (ifp->if_mtu != ifr->ifr_mtu) {
|
|
/*
|
|
* No special configuration is required when interface
|
|
* MTU is changed but availability of TSO/Tx checksum
|
|
* offload should be chcked against new MTU size as
|
|
* FIFO size is just 2K.
|
|
*/
|
|
JME_LOCK(sc);
|
|
if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
|
|
ifp->if_capenable &=
|
|
~(IFCAP_TXCSUM | IFCAP_TSO4);
|
|
ifp->if_hwassist &=
|
|
~(JME_CSUM_FEATURES | CSUM_TSO);
|
|
VLAN_CAPABILITIES(ifp);
|
|
}
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
jme_init_locked(sc);
|
|
JME_UNLOCK(sc);
|
|
}
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
JME_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
if (((ifp->if_flags ^ sc->jme_if_flags)
|
|
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
|
|
jme_set_filter(sc);
|
|
} else {
|
|
if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
|
|
jme_init_locked(sc);
|
|
}
|
|
} else {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
jme_stop(sc);
|
|
}
|
|
sc->jme_if_flags = ifp->if_flags;
|
|
JME_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
JME_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
jme_set_filter(sc);
|
|
JME_UNLOCK(sc);
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
mii = device_get_softc(sc->jme_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
JME_LOCK(sc);
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
ifp->if_mtu < JME_TX_FIFO_SIZE) {
|
|
if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
|
|
ifp->if_hwassist |= JME_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~JME_CSUM_FEATURES;
|
|
}
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
reg = CSR_READ_4(sc, JME_RXMAC);
|
|
reg &= ~RXMAC_CSUM_ENB;
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
reg |= RXMAC_CSUM_ENB;
|
|
CSR_WRITE_4(sc, JME_RXMAC, reg);
|
|
}
|
|
if ((mask & IFCAP_TSO4) != 0 &&
|
|
ifp->if_mtu < JME_TX_FIFO_SIZE) {
|
|
if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TSO4;
|
|
if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
|
|
ifp->if_hwassist |= CSUM_TSO;
|
|
else
|
|
ifp->if_hwassist &= ~CSUM_TSO;
|
|
}
|
|
}
|
|
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
|
|
(IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
|
|
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
|
|
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
|
|
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
jme_set_vlan(sc);
|
|
}
|
|
JME_UNLOCK(sc);
|
|
VLAN_CAPABILITIES(ifp);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
jme_mac_config(struct jme_softc *sc)
|
|
{
|
|
struct mii_data *mii;
|
|
uint32_t ghc, gpreg, rxmac, txmac, txpause;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->jme_miibus);
|
|
|
|
CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
|
|
DELAY(10);
|
|
CSR_WRITE_4(sc, JME_GHC, 0);
|
|
ghc = 0;
|
|
rxmac = CSR_READ_4(sc, JME_RXMAC);
|
|
rxmac &= ~RXMAC_FC_ENB;
|
|
txmac = CSR_READ_4(sc, JME_TXMAC);
|
|
txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
|
|
txpause = CSR_READ_4(sc, JME_TXPFC);
|
|
txpause &= ~TXPFC_PAUSE_ENB;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
|
|
ghc |= GHC_FULL_DUPLEX;
|
|
rxmac &= ~RXMAC_COLL_DET_ENB;
|
|
txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
|
|
TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
|
|
TXMAC_FRAME_BURST);
|
|
#ifdef notyet
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
|
|
txpause |= TXPFC_PAUSE_ENB;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
|
|
rxmac |= RXMAC_FC_ENB;
|
|
#endif
|
|
/* Disable retry transmit timer/retry limit. */
|
|
CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
|
|
~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
|
|
} else {
|
|
rxmac |= RXMAC_COLL_DET_ENB;
|
|
txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
|
|
/* Enable retry transmit timer/retry limit. */
|
|
CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
|
|
TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
|
|
}
|
|
/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
ghc |= GHC_SPEED_10;
|
|
break;
|
|
case IFM_100_TX:
|
|
ghc |= GHC_SPEED_100;
|
|
break;
|
|
case IFM_1000_T:
|
|
if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
|
|
break;
|
|
ghc |= GHC_SPEED_1000;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
|
|
txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (sc->jme_rev == DEVICEID_JMC250 &&
|
|
sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
|
|
/*
|
|
* Workaround occasional packet loss issue of JMC250 A2
|
|
* when it runs on half-duplex media.
|
|
*/
|
|
gpreg = CSR_READ_4(sc, JME_GPREG1);
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
|
|
gpreg &= ~GPREG1_HDPX_FIX;
|
|
else
|
|
gpreg |= GPREG1_HDPX_FIX;
|
|
CSR_WRITE_4(sc, JME_GPREG1, gpreg);
|
|
/* Workaround CRC errors at 100Mbps on JMC250 A2. */
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
|
|
/* Extend interface FIFO depth. */
|
|
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
|
|
0x1B, 0x0000);
|
|
} else {
|
|
/* Select default interface FIFO depth. */
|
|
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
|
|
0x1B, 0x0004);
|
|
}
|
|
}
|
|
CSR_WRITE_4(sc, JME_GHC, ghc);
|
|
CSR_WRITE_4(sc, JME_RXMAC, rxmac);
|
|
CSR_WRITE_4(sc, JME_TXMAC, txmac);
|
|
CSR_WRITE_4(sc, JME_TXPFC, txpause);
|
|
}
|
|
|
|
static void
|
|
jme_link_task(void *arg, int pending)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
struct jme_txdesc *txd;
|
|
bus_addr_t paddr;
|
|
int i;
|
|
|
|
sc = (struct jme_softc *)arg;
|
|
|
|
JME_LOCK(sc);
|
|
mii = device_get_softc(sc->jme_miibus);
|
|
ifp = sc->jme_ifp;
|
|
if (mii == NULL || ifp == NULL ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
JME_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
sc->jme_flags &= ~JME_FLAG_LINK;
|
|
if ((mii->mii_media_status & IFM_AVALID) != 0) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
sc->jme_flags |= JME_FLAG_LINK;
|
|
break;
|
|
case IFM_1000_T:
|
|
if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
|
|
break;
|
|
sc->jme_flags |= JME_FLAG_LINK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disabling Rx/Tx MACs have a side-effect of resetting
|
|
* JME_TXNDA/JME_RXNDA register to the first address of
|
|
* Tx/Rx descriptor address. So driver should reset its
|
|
* internal procucer/consumer pointer and reclaim any
|
|
* allocated resources. Note, just saving the value of
|
|
* JME_TXNDA and JME_RXNDA registers before stopping MAC
|
|
* and restoring JME_TXNDA/JME_RXNDA register is not
|
|
* sufficient to make sure correct MAC state because
|
|
* stopping MAC operation can take a while and hardware
|
|
* might have updated JME_TXNDA/JME_RXNDA registers
|
|
* during the stop operation.
|
|
*/
|
|
/* Block execution of task. */
|
|
taskqueue_block(sc->jme_tq);
|
|
/* Disable interrupts and stop driver. */
|
|
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
callout_stop(&sc->jme_tick_ch);
|
|
sc->jme_watchdog_timer = 0;
|
|
|
|
/* Stop receiver/transmitter. */
|
|
jme_stop_rx(sc);
|
|
jme_stop_tx(sc);
|
|
|
|
/* XXX Drain all queued tasks. */
|
|
JME_UNLOCK(sc);
|
|
taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
|
|
taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
|
|
JME_LOCK(sc);
|
|
|
|
jme_rxintr(sc, JME_RX_RING_CNT);
|
|
if (sc->jme_cdata.jme_rxhead != NULL)
|
|
m_freem(sc->jme_cdata.jme_rxhead);
|
|
JME_RXCHAIN_RESET(sc);
|
|
jme_txeof(sc);
|
|
if (sc->jme_cdata.jme_tx_cnt != 0) {
|
|
/* Remove queued packets for transmit. */
|
|
for (i = 0; i < JME_TX_RING_CNT; i++) {
|
|
txd = &sc->jme_cdata.jme_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(
|
|
sc->jme_cdata.jme_tx_tag,
|
|
txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(
|
|
sc->jme_cdata.jme_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
txd->tx_ndesc = 0;
|
|
ifp->if_oerrors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reuse configured Rx descriptors and reset
|
|
* procuder/consumer index.
|
|
*/
|
|
sc->jme_cdata.jme_rx_cons = 0;
|
|
atomic_set_int(&sc->jme_morework, 0);
|
|
jme_init_tx_ring(sc);
|
|
/* Initialize shadow status block. */
|
|
jme_init_ssb(sc);
|
|
|
|
/* Program MAC with resolved speed/duplex/flow-control. */
|
|
if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
|
|
jme_mac_config(sc);
|
|
|
|
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
|
|
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
|
|
|
|
/* Set Tx ring address to the hardware. */
|
|
paddr = JME_TX_RING_ADDR(sc, 0);
|
|
CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
|
|
CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
|
|
|
|
/* Set Rx ring address to the hardware. */
|
|
paddr = JME_RX_RING_ADDR(sc, 0);
|
|
CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
|
|
CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
|
|
|
|
/* Restart receiver/transmitter. */
|
|
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
|
|
RXCSR_RXQ_START);
|
|
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
|
|
}
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
|
|
/* Unblock execution of task. */
|
|
taskqueue_unblock(sc->jme_tq);
|
|
/* Reenable interrupts. */
|
|
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
|
|
|
|
JME_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
jme_intr(void *arg)
|
|
{
|
|
struct jme_softc *sc;
|
|
uint32_t status;
|
|
|
|
sc = (struct jme_softc *)arg;
|
|
|
|
status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
|
|
if (status == 0 || status == 0xFFFFFFFF)
|
|
return (FILTER_STRAY);
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
|
|
taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
|
|
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static void
|
|
jme_int_task(void *arg, int pending)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint32_t status;
|
|
int more;
|
|
|
|
sc = (struct jme_softc *)arg;
|
|
ifp = sc->jme_ifp;
|
|
|
|
status = CSR_READ_4(sc, JME_INTR_STATUS);
|
|
more = atomic_readandclear_int(&sc->jme_morework);
|
|
if (more != 0) {
|
|
status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
|
|
more = 0;
|
|
}
|
|
if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
|
|
goto done;
|
|
/* Reset PCC counter/timer and Ack interrupts. */
|
|
status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
|
|
if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
|
|
status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
|
|
if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
|
|
status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
|
|
CSR_WRITE_4(sc, JME_INTR_STATUS, status);
|
|
more = 0;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
|
|
more = jme_rxintr(sc, sc->jme_process_limit);
|
|
if (more != 0)
|
|
atomic_set_int(&sc->jme_morework, 1);
|
|
}
|
|
if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
|
|
/*
|
|
* Notify hardware availability of new Rx
|
|
* buffers.
|
|
* Reading RXCSR takes very long time under
|
|
* heavy load so cache RXCSR value and writes
|
|
* the ORed value with the kick command to
|
|
* the RXCSR. This saves one register access
|
|
* cycle.
|
|
*/
|
|
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
|
|
RXCSR_RX_ENB | RXCSR_RXQ_START);
|
|
}
|
|
/*
|
|
* Reclaiming Tx buffers are deferred to make jme(4) run
|
|
* without locks held.
|
|
*/
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
|
|
}
|
|
|
|
if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
|
|
taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
|
|
return;
|
|
}
|
|
done:
|
|
/* Reenable interrupts. */
|
|
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
|
|
}
|
|
|
|
static void
|
|
jme_txeof(struct jme_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct jme_txdesc *txd;
|
|
uint32_t status;
|
|
int cons, nsegs;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->jme_ifp;
|
|
|
|
cons = sc->jme_cdata.jme_tx_cons;
|
|
if (cons == sc->jme_cdata.jme_tx_prod)
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
|
|
sc->jme_cdata.jme_tx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
for (; cons != sc->jme_cdata.jme_tx_prod;) {
|
|
txd = &sc->jme_cdata.jme_txdesc[cons];
|
|
status = le32toh(txd->tx_desc->flags);
|
|
if ((status & JME_TD_OWN) == JME_TD_OWN)
|
|
break;
|
|
|
|
if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
|
|
ifp->if_oerrors++;
|
|
else {
|
|
ifp->if_opackets++;
|
|
if ((status & JME_TD_COLLISION) != 0)
|
|
ifp->if_collisions +=
|
|
le32toh(txd->tx_desc->buflen) &
|
|
JME_TD_BUF_LEN_MASK;
|
|
}
|
|
/*
|
|
* Only the first descriptor of multi-descriptor
|
|
* transmission is updated so driver have to skip entire
|
|
* chained buffers for the transmiited frame. In other
|
|
* words, JME_TD_OWN bit is valid only at the first
|
|
* descriptor of a multi-descriptor transmission.
|
|
*/
|
|
for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
|
|
sc->jme_rdata.jme_tx_ring[cons].flags = 0;
|
|
JME_DESC_INC(cons, JME_TX_RING_CNT);
|
|
}
|
|
|
|
/* Reclaim transferred mbufs. */
|
|
bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
|
|
|
|
KASSERT(txd->tx_m != NULL,
|
|
("%s: freeing NULL mbuf!\n", __func__));
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
|
|
KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
|
|
("%s: Active Tx desc counter was garbled\n", __func__));
|
|
txd->tx_ndesc = 0;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
}
|
|
sc->jme_cdata.jme_tx_cons = cons;
|
|
/* Unarm watchog timer when there is no pending descriptors in queue. */
|
|
if (sc->jme_cdata.jme_tx_cnt == 0)
|
|
sc->jme_watchdog_timer = 0;
|
|
|
|
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
|
|
sc->jme_cdata.jme_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static __inline void
|
|
jme_discard_rxbuf(struct jme_softc *sc, int cons)
|
|
{
|
|
struct jme_desc *desc;
|
|
|
|
desc = &sc->jme_rdata.jme_rx_ring[cons];
|
|
desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
|
|
desc->buflen = htole32(MCLBYTES);
|
|
}
|
|
|
|
/* Receive a frame. */
|
|
static void
|
|
jme_rxeof(struct jme_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct jme_desc *desc;
|
|
struct jme_rxdesc *rxd;
|
|
struct mbuf *mp, *m;
|
|
uint32_t flags, status;
|
|
int cons, count, nsegs;
|
|
|
|
ifp = sc->jme_ifp;
|
|
|
|
cons = sc->jme_cdata.jme_rx_cons;
|
|
desc = &sc->jme_rdata.jme_rx_ring[cons];
|
|
flags = le32toh(desc->flags);
|
|
status = le32toh(desc->buflen);
|
|
nsegs = JME_RX_NSEGS(status);
|
|
sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
|
|
if ((status & JME_RX_ERR_STAT) != 0) {
|
|
ifp->if_ierrors++;
|
|
jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
|
|
#ifdef JME_SHOW_ERRORS
|
|
device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
|
|
__func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
|
|
#endif
|
|
sc->jme_cdata.jme_rx_cons += nsegs;
|
|
sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
|
|
return;
|
|
}
|
|
|
|
for (count = 0; count < nsegs; count++,
|
|
JME_DESC_INC(cons, JME_RX_RING_CNT)) {
|
|
rxd = &sc->jme_cdata.jme_rxdesc[cons];
|
|
mp = rxd->rx_m;
|
|
/* Add a new receive buffer to the ring. */
|
|
if (jme_newbuf(sc, rxd) != 0) {
|
|
ifp->if_iqdrops++;
|
|
/* Reuse buffer. */
|
|
for (; count < nsegs; count++) {
|
|
jme_discard_rxbuf(sc, cons);
|
|
JME_DESC_INC(cons, JME_RX_RING_CNT);
|
|
}
|
|
if (sc->jme_cdata.jme_rxhead != NULL) {
|
|
m_freem(sc->jme_cdata.jme_rxhead);
|
|
JME_RXCHAIN_RESET(sc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Assume we've received a full sized frame.
|
|
* Actual size is fixed when we encounter the end of
|
|
* multi-segmented frame.
|
|
*/
|
|
mp->m_len = MCLBYTES;
|
|
|
|
/* Chain received mbufs. */
|
|
if (sc->jme_cdata.jme_rxhead == NULL) {
|
|
sc->jme_cdata.jme_rxhead = mp;
|
|
sc->jme_cdata.jme_rxtail = mp;
|
|
} else {
|
|
/*
|
|
* Receive processor can receive a maximum frame
|
|
* size of 65535 bytes.
|
|
*/
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
sc->jme_cdata.jme_rxtail->m_next = mp;
|
|
sc->jme_cdata.jme_rxtail = mp;
|
|
}
|
|
|
|
if (count == nsegs - 1) {
|
|
/* Last desc. for this frame. */
|
|
m = sc->jme_cdata.jme_rxhead;
|
|
m->m_flags |= M_PKTHDR;
|
|
m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
|
|
if (nsegs > 1) {
|
|
/* Set first mbuf size. */
|
|
m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
|
|
/* Set last mbuf size. */
|
|
mp->m_len = sc->jme_cdata.jme_rxlen -
|
|
((MCLBYTES - JME_RX_PAD_BYTES) +
|
|
(MCLBYTES * (nsegs - 2)));
|
|
} else
|
|
m->m_len = sc->jme_cdata.jme_rxlen;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
/*
|
|
* Account for 10bytes auto padding which is used
|
|
* to align IP header on 32bit boundary. Also note,
|
|
* CRC bytes is automatically removed by the
|
|
* hardware.
|
|
*/
|
|
m->m_data += JME_RX_PAD_BYTES;
|
|
|
|
/* Set checksum information. */
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
|
|
(flags & JME_RD_IPV4) != 0) {
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
if ((flags & JME_RD_IPCSUM) != 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
if (((flags & JME_RD_MORE_FRAG) == 0) &&
|
|
((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
|
|
(JME_RD_TCP | JME_RD_TCPCSUM) ||
|
|
(flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
|
|
(JME_RD_UDP | JME_RD_UDPCSUM))) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
|
|
/* Check for VLAN tagged packets. */
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(flags & JME_RD_VLAN_TAG) != 0) {
|
|
m->m_pkthdr.ether_vtag =
|
|
flags & JME_RD_VLAN_MASK;
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
|
|
/* Reset mbuf chains. */
|
|
JME_RXCHAIN_RESET(sc);
|
|
}
|
|
}
|
|
|
|
sc->jme_cdata.jme_rx_cons += nsegs;
|
|
sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
|
|
}
|
|
|
|
static int
|
|
jme_rxintr(struct jme_softc *sc, int count)
|
|
{
|
|
struct jme_desc *desc;
|
|
int nsegs, prog, pktlen;
|
|
|
|
bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
|
|
sc->jme_cdata.jme_rx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
for (prog = 0; count > 0; prog++) {
|
|
desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
|
|
if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
|
|
break;
|
|
if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
|
|
break;
|
|
nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
|
|
/*
|
|
* Check number of segments against received bytes.
|
|
* Non-matching value would indicate that hardware
|
|
* is still trying to update Rx descriptors. I'm not
|
|
* sure whether this check is needed.
|
|
*/
|
|
pktlen = JME_RX_BYTES(le32toh(desc->buflen));
|
|
if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES))
|
|
break;
|
|
prog++;
|
|
/* Received a frame. */
|
|
jme_rxeof(sc);
|
|
count -= nsegs;
|
|
}
|
|
|
|
if (prog > 0)
|
|
bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
|
|
sc->jme_cdata.jme_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (count > 0 ? 0 : EAGAIN);
|
|
}
|
|
|
|
static void
|
|
jme_tick(void *arg)
|
|
{
|
|
struct jme_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = (struct jme_softc *)arg;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->jme_miibus);
|
|
mii_tick(mii);
|
|
/*
|
|
* Reclaim Tx buffers that have been completed. It's not
|
|
* needed here but it would release allocated mbuf chains
|
|
* faster and limit the maximum delay to a hz.
|
|
*/
|
|
jme_txeof(sc);
|
|
jme_watchdog(sc);
|
|
callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
|
|
}
|
|
|
|
static void
|
|
jme_reset(struct jme_softc *sc)
|
|
{
|
|
|
|
/* Stop receiver, transmitter. */
|
|
jme_stop_rx(sc);
|
|
jme_stop_tx(sc);
|
|
CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
|
|
DELAY(10);
|
|
CSR_WRITE_4(sc, JME_GHC, 0);
|
|
}
|
|
|
|
static void
|
|
jme_init(void *xsc)
|
|
{
|
|
struct jme_softc *sc;
|
|
|
|
sc = (struct jme_softc *)xsc;
|
|
JME_LOCK(sc);
|
|
jme_init_locked(sc);
|
|
JME_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
jme_init_locked(struct jme_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
bus_addr_t paddr;
|
|
uint32_t reg;
|
|
int error;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->jme_ifp;
|
|
mii = device_get_softc(sc->jme_miibus);
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
jme_stop(sc);
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
jme_reset(sc);
|
|
|
|
/* Init descriptors. */
|
|
error = jme_init_rx_ring(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->jme_dev,
|
|
"%s: initialization failed: no memory for Rx buffers.\n",
|
|
__func__);
|
|
jme_stop(sc);
|
|
return;
|
|
}
|
|
jme_init_tx_ring(sc);
|
|
/* Initialize shadow status block. */
|
|
jme_init_ssb(sc);
|
|
|
|
/* Reprogram the station address. */
|
|
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
|
|
CSR_WRITE_4(sc, JME_PAR0,
|
|
eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
|
|
CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
|
|
|
|
/*
|
|
* Configure Tx queue.
|
|
* Tx priority queue weight value : 0
|
|
* Tx FIFO threshold for processing next packet : 16QW
|
|
* Maximum Tx DMA length : 512
|
|
* Allow Tx DMA burst.
|
|
*/
|
|
sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
|
|
sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
|
|
sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
|
|
sc->jme_txcsr |= sc->jme_tx_dma_size;
|
|
sc->jme_txcsr |= TXCSR_DMA_BURST;
|
|
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
|
|
|
|
/* Set Tx descriptor counter. */
|
|
CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
|
|
|
|
/* Set Tx ring address to the hardware. */
|
|
paddr = JME_TX_RING_ADDR(sc, 0);
|
|
CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
|
|
CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
|
|
|
|
/* Configure TxMAC parameters. */
|
|
reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
|
|
reg |= TXMAC_THRESH_1_PKT;
|
|
reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
|
|
CSR_WRITE_4(sc, JME_TXMAC, reg);
|
|
|
|
/*
|
|
* Configure Rx queue.
|
|
* FIFO full threshold for transmitting Tx pause packet : 128T
|
|
* FIFO threshold for processing next packet : 128QW
|
|
* Rx queue 0 select
|
|
* Max Rx DMA length : 128
|
|
* Rx descriptor retry : 32
|
|
* Rx descriptor retry time gap : 256ns
|
|
* Don't receive runt/bad frame.
|
|
*/
|
|
sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
|
|
/*
|
|
* Since Rx FIFO size is 4K bytes, receiving frames larger
|
|
* than 4K bytes will suffer from Rx FIFO overruns. So
|
|
* decrease FIFO threshold to reduce the FIFO overruns for
|
|
* frames larger than 4000 bytes.
|
|
* For best performance of standard MTU sized frames use
|
|
* maximum allowable FIFO threshold, 128QW.
|
|
*/
|
|
if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
|
|
ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
|
|
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
|
|
else
|
|
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
|
|
sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
|
|
sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
|
|
sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
|
|
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
|
|
|
|
/* Set Rx descriptor counter. */
|
|
CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
|
|
|
|
/* Set Rx ring address to the hardware. */
|
|
paddr = JME_RX_RING_ADDR(sc, 0);
|
|
CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
|
|
CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
|
|
|
|
/* Clear receive filter. */
|
|
CSR_WRITE_4(sc, JME_RXMAC, 0);
|
|
/* Set up the receive filter. */
|
|
jme_set_filter(sc);
|
|
jme_set_vlan(sc);
|
|
|
|
/*
|
|
* Disable all WOL bits as WOL can interfere normal Rx
|
|
* operation. Also clear WOL detection status bits.
|
|
*/
|
|
reg = CSR_READ_4(sc, JME_PMCS);
|
|
reg &= ~PMCS_WOL_ENB_MASK;
|
|
CSR_WRITE_4(sc, JME_PMCS, reg);
|
|
|
|
reg = CSR_READ_4(sc, JME_RXMAC);
|
|
/*
|
|
* Pad 10bytes right before received frame. This will greatly
|
|
* help Rx performance on strict-alignment architectures as
|
|
* it does not need to copy the frame to align the payload.
|
|
*/
|
|
reg |= RXMAC_PAD_10BYTES;
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
reg |= RXMAC_CSUM_ENB;
|
|
CSR_WRITE_4(sc, JME_RXMAC, reg);
|
|
|
|
/* Configure general purpose reg0 */
|
|
reg = CSR_READ_4(sc, JME_GPREG0);
|
|
reg &= ~GPREG0_PCC_UNIT_MASK;
|
|
/* Set PCC timer resolution to micro-seconds unit. */
|
|
reg |= GPREG0_PCC_UNIT_US;
|
|
/*
|
|
* Disable all shadow register posting as we have to read
|
|
* JME_INTR_STATUS register in jme_int_task. Also it seems
|
|
* that it's hard to synchronize interrupt status between
|
|
* hardware and software with shadow posting due to
|
|
* requirements of bus_dmamap_sync(9).
|
|
*/
|
|
reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
|
|
GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
|
|
GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
|
|
GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
|
|
/* Disable posting of DW0. */
|
|
reg &= ~GPREG0_POST_DW0_ENB;
|
|
/* Clear PME message. */
|
|
reg &= ~GPREG0_PME_ENB;
|
|
/* Set PHY address. */
|
|
reg &= ~GPREG0_PHY_ADDR_MASK;
|
|
reg |= sc->jme_phyaddr;
|
|
CSR_WRITE_4(sc, JME_GPREG0, reg);
|
|
|
|
/* Configure Tx queue 0 packet completion coalescing. */
|
|
reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
|
|
PCCTX_COAL_TO_MASK;
|
|
reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
|
|
PCCTX_COAL_PKT_MASK;
|
|
reg |= PCCTX_COAL_TXQ0;
|
|
CSR_WRITE_4(sc, JME_PCCTX, reg);
|
|
|
|
/* Configure Rx queue 0 packet completion coalescing. */
|
|
reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
|
|
PCCRX_COAL_TO_MASK;
|
|
reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
|
|
PCCRX_COAL_PKT_MASK;
|
|
CSR_WRITE_4(sc, JME_PCCRX0, reg);
|
|
|
|
/* Configure shadow status block but don't enable posting. */
|
|
paddr = sc->jme_rdata.jme_ssb_block_paddr;
|
|
CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
|
|
CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
|
|
|
|
/* Disable Timer 1 and Timer 2. */
|
|
CSR_WRITE_4(sc, JME_TIMER1, 0);
|
|
CSR_WRITE_4(sc, JME_TIMER2, 0);
|
|
|
|
/* Configure retry transmit period, retry limit value. */
|
|
CSR_WRITE_4(sc, JME_TXTRHD,
|
|
((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
|
|
TXTRHD_RT_PERIOD_MASK) |
|
|
((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
|
|
TXTRHD_RT_LIMIT_SHIFT));
|
|
|
|
/* Disable RSS. */
|
|
CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
|
|
|
|
/* Initialize the interrupt mask. */
|
|
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
|
|
CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* Enabling Tx/Rx DMA engines and Rx queue processing is
|
|
* done after detection of valid link in jme_link_task.
|
|
*/
|
|
|
|
sc->jme_flags &= ~JME_FLAG_LINK;
|
|
/* Set the current media. */
|
|
mii_mediachg(mii);
|
|
|
|
callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
}
|
|
|
|
static void
|
|
jme_stop(struct jme_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct jme_txdesc *txd;
|
|
struct jme_rxdesc *rxd;
|
|
int i;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp = sc->jme_ifp;
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
sc->jme_flags &= ~JME_FLAG_LINK;
|
|
callout_stop(&sc->jme_tick_ch);
|
|
sc->jme_watchdog_timer = 0;
|
|
|
|
/*
|
|
* Disable interrupts.
|
|
*/
|
|
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
|
|
CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
|
|
|
|
/* Disable updating shadow status block. */
|
|
CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
|
|
CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
|
|
|
|
/* Stop receiver, transmitter. */
|
|
jme_stop_rx(sc);
|
|
jme_stop_tx(sc);
|
|
|
|
/* Reclaim Rx/Tx buffers that have been completed. */
|
|
jme_rxintr(sc, JME_RX_RING_CNT);
|
|
if (sc->jme_cdata.jme_rxhead != NULL)
|
|
m_freem(sc->jme_cdata.jme_rxhead);
|
|
JME_RXCHAIN_RESET(sc);
|
|
jme_txeof(sc);
|
|
/*
|
|
* Free RX and TX mbufs still in the queues.
|
|
*/
|
|
for (i = 0; i < JME_RX_RING_CNT; i++) {
|
|
rxd = &sc->jme_cdata.jme_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < JME_TX_RING_CNT; i++) {
|
|
txd = &sc->jme_cdata.jme_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
txd->tx_ndesc = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
jme_stop_tx(struct jme_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
reg = CSR_READ_4(sc, JME_TXCSR);
|
|
if ((reg & TXCSR_TX_ENB) == 0)
|
|
return;
|
|
reg &= ~TXCSR_TX_ENB;
|
|
CSR_WRITE_4(sc, JME_TXCSR, reg);
|
|
for (i = JME_TIMEOUT; i > 0; i--) {
|
|
DELAY(1);
|
|
if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
|
|
}
|
|
|
|
static void
|
|
jme_stop_rx(struct jme_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
reg = CSR_READ_4(sc, JME_RXCSR);
|
|
if ((reg & RXCSR_RX_ENB) == 0)
|
|
return;
|
|
reg &= ~RXCSR_RX_ENB;
|
|
CSR_WRITE_4(sc, JME_RXCSR, reg);
|
|
for (i = JME_TIMEOUT; i > 0; i--) {
|
|
DELAY(1);
|
|
if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->jme_dev, "stopping recevier timeout!\n");
|
|
}
|
|
|
|
static void
|
|
jme_init_tx_ring(struct jme_softc *sc)
|
|
{
|
|
struct jme_ring_data *rd;
|
|
struct jme_txdesc *txd;
|
|
int i;
|
|
|
|
sc->jme_cdata.jme_tx_prod = 0;
|
|
sc->jme_cdata.jme_tx_cons = 0;
|
|
sc->jme_cdata.jme_tx_cnt = 0;
|
|
|
|
rd = &sc->jme_rdata;
|
|
bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
|
|
for (i = 0; i < JME_TX_RING_CNT; i++) {
|
|
txd = &sc->jme_cdata.jme_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_desc = &rd->jme_tx_ring[i];
|
|
txd->tx_ndesc = 0;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
|
|
sc->jme_cdata.jme_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static void
|
|
jme_init_ssb(struct jme_softc *sc)
|
|
{
|
|
struct jme_ring_data *rd;
|
|
|
|
rd = &sc->jme_rdata;
|
|
bzero(rd->jme_ssb_block, JME_SSB_SIZE);
|
|
bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static int
|
|
jme_init_rx_ring(struct jme_softc *sc)
|
|
{
|
|
struct jme_ring_data *rd;
|
|
struct jme_rxdesc *rxd;
|
|
int i;
|
|
|
|
sc->jme_cdata.jme_rx_cons = 0;
|
|
JME_RXCHAIN_RESET(sc);
|
|
atomic_set_int(&sc->jme_morework, 0);
|
|
|
|
rd = &sc->jme_rdata;
|
|
bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
|
|
for (i = 0; i < JME_RX_RING_CNT; i++) {
|
|
rxd = &sc->jme_cdata.jme_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_desc = &rd->jme_rx_ring[i];
|
|
if (jme_newbuf(sc, rxd) != 0)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
|
|
sc->jme_cdata.jme_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
|
|
{
|
|
struct jme_desc *desc;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
/*
|
|
* JMC250 has 64bit boundary alignment limitation so jme(4)
|
|
* takes advantage of 10 bytes padding feature of hardware
|
|
* in order not to copy entire frame to align IP header on
|
|
* 32bit boundary.
|
|
*/
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
|
|
sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
|
|
sc->jme_cdata.jme_rx_sparemap = map;
|
|
bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
|
|
desc = rxd->rx_desc;
|
|
desc->buflen = htole32(segs[0].ds_len);
|
|
desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
|
|
desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
|
|
desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
jme_set_vlan(struct jme_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint32_t reg;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->jme_ifp;
|
|
reg = CSR_READ_4(sc, JME_RXMAC);
|
|
reg &= ~RXMAC_VLAN_ENB;
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
|
|
reg |= RXMAC_VLAN_ENB;
|
|
CSR_WRITE_4(sc, JME_RXMAC, reg);
|
|
}
|
|
|
|
static void
|
|
jme_set_filter(struct jme_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
uint32_t crc;
|
|
uint32_t mchash[2];
|
|
uint32_t rxcfg;
|
|
|
|
JME_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->jme_ifp;
|
|
|
|
rxcfg = CSR_READ_4(sc, JME_RXMAC);
|
|
rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
|
|
RXMAC_ALLMULTI);
|
|
/* Always accept frames destined to our station address. */
|
|
rxcfg |= RXMAC_UNICAST;
|
|
if ((ifp->if_flags & IFF_BROADCAST) != 0)
|
|
rxcfg |= RXMAC_BROADCAST;
|
|
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
rxcfg |= RXMAC_PROMISC;
|
|
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
|
|
rxcfg |= RXMAC_ALLMULTI;
|
|
CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set up the multicast address filter by passing all multicast
|
|
* addresses through a CRC generator, and then using the low-order
|
|
* 6 bits as an index into the 64 bit multicast hash table. The
|
|
* high order bits select the register, while the rest of the bits
|
|
* select the bit within the register.
|
|
*/
|
|
rxcfg |= RXMAC_MULTICAST;
|
|
bzero(mchash, sizeof(mchash));
|
|
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 6 least significant bits. */
|
|
crc &= 0x3f;
|
|
|
|
/* Set the corresponding bit in the hash table. */
|
|
mchash[crc >> 5] |= 1 << (crc & 0x1f);
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
|
|
CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
|
|
CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
|
|
CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
|
|
}
|
|
|
|
static int
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
{
|
|
int error, value;
|
|
|
|
if (arg1 == NULL)
|
|
return (EINVAL);
|
|
value = *(int *)arg1;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error || req->newptr == NULL)
|
|
return (error);
|
|
if (value < low || value > high)
|
|
return (EINVAL);
|
|
*(int *)arg1 = value;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
return (sysctl_int_range(oidp, arg1, arg2, req,
|
|
PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
return (sysctl_int_range(oidp, arg1, arg2, req,
|
|
PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
return (sysctl_int_range(oidp, arg1, arg2, req,
|
|
PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
return (sysctl_int_range(oidp, arg1, arg2, req,
|
|
PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
return (sysctl_int_range(oidp, arg1, arg2, req,
|
|
JME_PROC_MIN, JME_PROC_MAX));
|
|
}
|