When I initially did this 11n TX work in days of yonder, my 802.11 standards clue was ... not as finely tuned. One of the things in 802.11-2012 (which I guess technically was after I did this work, but I'm sure it was like this in the previous rev?) is that among other traffic classes, three things are important: * group addressed frames should be default non-QoS, even if they're QoS frames, and * group addressed frames should have a seqno out of a different space than the per-TID QoS one; and because of this * group addressed frames, being non-QoS, should never be in the Block-ACK window for TX. Now, net80211 and now this code cheats by using the non-QOS TID, but ideally we'd introduce a separate seqno space just for multicast/group traffic for TX and RX comparison. Later extensions (eg reliable multicast / multimedia) express what one should do when doing multicast traffic in a TID. Now, technically we /could/ do group traffic as QoS traffic and throw it into a per-TID seqno space, but this definitely introduces ordering issues when you take into account things like CABQ behaviour. (Ie, if some traffic in the TID goes into the CABQ and some doesn't, because it's doing a split of multicast and non-multicast traffic, then you have seqno ordering issues.) So, until someone implements 802.11vv reliable multicast / multimedia extensions, group traffic is non-QoS. Next, software/hardware queue TID mapping. In the past I believed the WME tagging of frames because well, net80211 had a habit of tagging things like management traffic with it. But, then we also map QoS traffic categories to TIDs as well. So, we should obey the TID! But! then it put some management traffic into higher WME categories too, as those frames don't have QoS TIDs. But! It'd do things like put things like QoS action frames into higher WME categories, when they should be kept in-order with the rest of the traffic for that TID. So! Given all of this, the ath(4) driver does overrides to not trust the WME category. I .. am undoing some of this. Now, the TID has a 1:1 mapping to the hardware queue. The TID is the primary source of truth now for all QoS traffic. The WME is only used for non-QoS traffic. This now means that any TID traffic queued should be consistently queued regardless of WME, so things like the "TX finished, do more TX" that is occuring right now for transmit handling should be "better". The consistent {TID, WME} -> hardware queue mapping is important for transmit completion. It's used to schedule more traffic for that particular TID, because that {many TID}:{1 TXQ} mapping in ath_tx_tid_sched() is used for driving completion. Ie, when the hardware queue completes, it'll walk that list of scheduled TIDs attached to that TXQ. The eventual aim is to get ready for some other features around putting some data into other hardware queues (eg for better PS-POLL support, uAPSD, support, correct-er TDMA support, etc) which requires that I tidy all of this up in preparation for then introducing further TID scheduling that isn't linked to a hardware TXQ (likely a per-WME, per-TID driver queue, and a per-node driver queue) to enable that. Tested: * AR9380, STA mode * AR9380, AR9580, AP mode
FreeBSD Source:
This is the top level of the FreeBSD source directory. This file
was last revised on:
FreeBSD
For copyright information, please see the file COPYRIGHT in this directory (additional copyright information also exists for some sources in this tree - please see the specific source directories for more information).
The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree. See build(7) and http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html for more information, including setting make(1) variables.
The buildkernel
and installkernel
targets build and install
the kernel and the modules (see below). Please see the top of
the Makefile in this directory for more information on the
standard build targets and compile-time flags.
Building a kernel is a somewhat more involved process. See build(7), config(8), and http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html for more information.
Note: If you want to build and install the kernel with the
buildkernel
and installkernel
targets, you might need to build
world before. More information is available in the handbook.
The kernel configuration files reside in the sys/<arch>/conf
sub-directory. GENERIC is the default configuration used in release builds.
NOTES contains entries and documentation for all possible
devices, not just those commonly used.
Source Roadmap:
bin System/user commands.
cddl Various commands and libraries under the Common Development
and Distribution License.
contrib Packages contributed by 3rd parties.
crypto Cryptography stuff (see crypto/README).
etc Template files for /etc.
gnu Various commands and libraries under the GNU Public License.
Please see gnu/COPYING* for more information.
include System include files.
kerberos5 Kerberos5 (Heimdal) package.
lib System libraries.
libexec System daemons.
release Release building Makefile & associated tools.
rescue Build system for statically linked /rescue utilities.
sbin System commands.
secure Cryptographic libraries and commands.
share Shared resources.
sys Kernel sources.
tests Regression tests which can be run by Kyua. See tests/README
for additional information.
tools Utilities for regression testing and miscellaneous tasks.
usr.bin User commands.
usr.sbin System administration commands.
For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see:
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html