c35dbac21a
Reviewed by: jhb, kib (long ago)
755 lines
18 KiB
C
755 lines
18 KiB
C
/*-
|
|
* Copyright (c) 2008 Yahoo!, Inc.
|
|
* All rights reserved.
|
|
* Written by: John Baldwin <jhb@FreeBSD.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sglist.h>
|
|
#include <sys/uio.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
#include <sys/ktr.h>
|
|
|
|
static MALLOC_DEFINE(M_SGLIST, "sglist", "scatter/gather lists");
|
|
|
|
/*
|
|
* Convenience macros to save the state of an sglist so it can be restored
|
|
* if an append attempt fails. Since sglist's only grow we only need to
|
|
* save the current count of segments and the length of the ending segment.
|
|
* Earlier segments will not be changed by an append, and the only change
|
|
* that can occur to the ending segment is that it can be extended.
|
|
*/
|
|
struct sgsave {
|
|
u_short sg_nseg;
|
|
size_t ss_len;
|
|
};
|
|
|
|
#define SGLIST_SAVE(sg, sgsave) do { \
|
|
(sgsave).sg_nseg = (sg)->sg_nseg; \
|
|
if ((sgsave).sg_nseg > 0) \
|
|
(sgsave).ss_len = (sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len; \
|
|
else \
|
|
(sgsave).ss_len = 0; \
|
|
} while (0)
|
|
|
|
#define SGLIST_RESTORE(sg, sgsave) do { \
|
|
(sg)->sg_nseg = (sgsave).sg_nseg; \
|
|
if ((sgsave).sg_nseg > 0) \
|
|
(sg)->sg_segs[(sgsave).sg_nseg - 1].ss_len = (sgsave).ss_len; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Append a single (paddr, len) to a sglist. sg is the list and ss is
|
|
* the current segment in the list. If we run out of segments then
|
|
* EFBIG will be returned.
|
|
*/
|
|
static __inline int
|
|
_sglist_append_range(struct sglist *sg, struct sglist_seg **ssp,
|
|
vm_paddr_t paddr, size_t len)
|
|
{
|
|
struct sglist_seg *ss;
|
|
|
|
ss = *ssp;
|
|
if (ss->ss_paddr + ss->ss_len == paddr)
|
|
ss->ss_len += len;
|
|
else {
|
|
if (sg->sg_nseg == sg->sg_maxseg)
|
|
return (EFBIG);
|
|
ss++;
|
|
ss->ss_paddr = paddr;
|
|
ss->ss_len = len;
|
|
sg->sg_nseg++;
|
|
*ssp = ss;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Worker routine to append a virtual address range (either kernel or
|
|
* user) to a scatter/gather list.
|
|
*/
|
|
static __inline int
|
|
_sglist_append_buf(struct sglist *sg, void *buf, size_t len, pmap_t pmap,
|
|
size_t *donep)
|
|
{
|
|
struct sglist_seg *ss;
|
|
vm_offset_t vaddr, offset;
|
|
vm_paddr_t paddr;
|
|
size_t seglen;
|
|
int error;
|
|
|
|
if (donep)
|
|
*donep = 0;
|
|
if (len == 0)
|
|
return (0);
|
|
|
|
/* Do the first page. It may have an offset. */
|
|
vaddr = (vm_offset_t)buf;
|
|
offset = vaddr & PAGE_MASK;
|
|
if (pmap != NULL)
|
|
paddr = pmap_extract(pmap, vaddr);
|
|
else
|
|
paddr = pmap_kextract(vaddr);
|
|
seglen = MIN(len, PAGE_SIZE - offset);
|
|
if (sg->sg_nseg == 0) {
|
|
ss = sg->sg_segs;
|
|
ss->ss_paddr = paddr;
|
|
ss->ss_len = seglen;
|
|
sg->sg_nseg = 1;
|
|
} else {
|
|
ss = &sg->sg_segs[sg->sg_nseg - 1];
|
|
error = _sglist_append_range(sg, &ss, paddr, seglen);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
vaddr += seglen;
|
|
len -= seglen;
|
|
if (donep)
|
|
*donep += seglen;
|
|
|
|
while (len > 0) {
|
|
seglen = MIN(len, PAGE_SIZE);
|
|
if (pmap != NULL)
|
|
paddr = pmap_extract(pmap, vaddr);
|
|
else
|
|
paddr = pmap_kextract(vaddr);
|
|
error = _sglist_append_range(sg, &ss, paddr, seglen);
|
|
if (error)
|
|
return (error);
|
|
vaddr += seglen;
|
|
len -= seglen;
|
|
if (donep)
|
|
*donep += seglen;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine the number of scatter/gather list elements needed to
|
|
* describe a kernel virtual address range.
|
|
*/
|
|
int
|
|
sglist_count(void *buf, size_t len)
|
|
{
|
|
vm_offset_t vaddr, vendaddr;
|
|
vm_paddr_t lastaddr, paddr;
|
|
int nsegs;
|
|
|
|
if (len == 0)
|
|
return (0);
|
|
|
|
vaddr = trunc_page((vm_offset_t)buf);
|
|
vendaddr = (vm_offset_t)buf + len;
|
|
nsegs = 1;
|
|
lastaddr = pmap_kextract(vaddr);
|
|
vaddr += PAGE_SIZE;
|
|
while (vaddr < vendaddr) {
|
|
paddr = pmap_kextract(vaddr);
|
|
if (lastaddr + PAGE_SIZE != paddr)
|
|
nsegs++;
|
|
lastaddr = paddr;
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
return (nsegs);
|
|
}
|
|
|
|
/*
|
|
* Allocate a scatter/gather list along with 'nsegs' segments. The
|
|
* 'mflags' parameters are the same as passed to malloc(9). The caller
|
|
* should use sglist_free() to free this list.
|
|
*/
|
|
struct sglist *
|
|
sglist_alloc(int nsegs, int mflags)
|
|
{
|
|
struct sglist *sg;
|
|
|
|
sg = malloc(sizeof(struct sglist) + nsegs * sizeof(struct sglist_seg),
|
|
M_SGLIST, mflags);
|
|
if (sg == NULL)
|
|
return (NULL);
|
|
sglist_init(sg, nsegs, (struct sglist_seg *)(sg + 1));
|
|
return (sg);
|
|
}
|
|
|
|
/*
|
|
* Free a scatter/gather list allocated via sglist_allc().
|
|
*/
|
|
void
|
|
sglist_free(struct sglist *sg)
|
|
{
|
|
|
|
if (refcount_release(&sg->sg_refs))
|
|
free(sg, M_SGLIST);
|
|
}
|
|
|
|
/*
|
|
* Append the segments to describe a single kernel virtual address
|
|
* range to a scatter/gather list. If there are insufficient
|
|
* segments, then this fails with EFBIG.
|
|
*/
|
|
int
|
|
sglist_append(struct sglist *sg, void *buf, size_t len)
|
|
{
|
|
struct sgsave save;
|
|
int error;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
SGLIST_SAVE(sg, save);
|
|
error = _sglist_append_buf(sg, buf, len, NULL, NULL);
|
|
if (error)
|
|
SGLIST_RESTORE(sg, save);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Append the segments to describe a bio's data to a scatter/gather list.
|
|
* If there are insufficient segments, then this fails with EFBIG.
|
|
*
|
|
* NOTE: This function expects bio_bcount to be initialized.
|
|
*/
|
|
int
|
|
sglist_append_bio(struct sglist *sg, struct bio *bp)
|
|
{
|
|
struct sgsave save;
|
|
vm_paddr_t paddr;
|
|
size_t len, tlen;
|
|
int error, i, ma_offs;
|
|
|
|
if ((bp->bio_flags & BIO_UNMAPPED) == 0) {
|
|
error = sglist_append(sg, bp->bio_data, bp->bio_bcount);
|
|
return (error);
|
|
}
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
|
|
SGLIST_SAVE(sg, save);
|
|
tlen = bp->bio_bcount;
|
|
ma_offs = bp->bio_ma_offset;
|
|
for (i = 0; tlen > 0; i++, tlen -= len) {
|
|
len = min(PAGE_SIZE - ma_offs, tlen);
|
|
paddr = VM_PAGE_TO_PHYS(bp->bio_ma[i]) + ma_offs;
|
|
error = sglist_append_phys(sg, paddr, len);
|
|
if (error) {
|
|
SGLIST_RESTORE(sg, save);
|
|
return (error);
|
|
}
|
|
ma_offs = 0;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Append a single physical address range to a scatter/gather list.
|
|
* If there are insufficient segments, then this fails with EFBIG.
|
|
*/
|
|
int
|
|
sglist_append_phys(struct sglist *sg, vm_paddr_t paddr, size_t len)
|
|
{
|
|
struct sglist_seg *ss;
|
|
struct sgsave save;
|
|
int error;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
if (len == 0)
|
|
return (0);
|
|
|
|
if (sg->sg_nseg == 0) {
|
|
sg->sg_segs[0].ss_paddr = paddr;
|
|
sg->sg_segs[0].ss_len = len;
|
|
sg->sg_nseg = 1;
|
|
return (0);
|
|
}
|
|
ss = &sg->sg_segs[sg->sg_nseg - 1];
|
|
SGLIST_SAVE(sg, save);
|
|
error = _sglist_append_range(sg, &ss, paddr, len);
|
|
if (error)
|
|
SGLIST_RESTORE(sg, save);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Append the segments that describe a single mbuf chain to a
|
|
* scatter/gather list. If there are insufficient segments, then this
|
|
* fails with EFBIG.
|
|
*/
|
|
int
|
|
sglist_append_mbuf(struct sglist *sg, struct mbuf *m0)
|
|
{
|
|
struct sgsave save;
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
|
|
error = 0;
|
|
SGLIST_SAVE(sg, save);
|
|
for (m = m0; m != NULL; m = m->m_next) {
|
|
if (m->m_len > 0) {
|
|
error = sglist_append(sg, m->m_data, m->m_len);
|
|
if (error) {
|
|
SGLIST_RESTORE(sg, save);
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Append the segments that describe a single user address range to a
|
|
* scatter/gather list. If there are insufficient segments, then this
|
|
* fails with EFBIG.
|
|
*/
|
|
int
|
|
sglist_append_user(struct sglist *sg, void *buf, size_t len, struct thread *td)
|
|
{
|
|
struct sgsave save;
|
|
int error;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
SGLIST_SAVE(sg, save);
|
|
error = _sglist_append_buf(sg, buf, len,
|
|
vmspace_pmap(td->td_proc->p_vmspace), NULL);
|
|
if (error)
|
|
SGLIST_RESTORE(sg, save);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Append the segments that describe a single uio to a scatter/gather
|
|
* list. If there are insufficient segments, then this fails with
|
|
* EFBIG.
|
|
*/
|
|
int
|
|
sglist_append_uio(struct sglist *sg, struct uio *uio)
|
|
{
|
|
struct iovec *iov;
|
|
struct sgsave save;
|
|
size_t resid, minlen;
|
|
pmap_t pmap;
|
|
int error, i;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
|
|
resid = uio->uio_resid;
|
|
iov = uio->uio_iov;
|
|
|
|
if (uio->uio_segflg == UIO_USERSPACE) {
|
|
KASSERT(uio->uio_td != NULL,
|
|
("sglist_append_uio: USERSPACE but no thread"));
|
|
pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
|
|
} else
|
|
pmap = NULL;
|
|
|
|
error = 0;
|
|
SGLIST_SAVE(sg, save);
|
|
for (i = 0; i < uio->uio_iovcnt && resid != 0; i++) {
|
|
/*
|
|
* Now at the first iovec to load. Load each iovec
|
|
* until we have exhausted the residual count.
|
|
*/
|
|
minlen = MIN(resid, iov[i].iov_len);
|
|
if (minlen > 0) {
|
|
error = _sglist_append_buf(sg, iov[i].iov_base, minlen,
|
|
pmap, NULL);
|
|
if (error) {
|
|
SGLIST_RESTORE(sg, save);
|
|
return (error);
|
|
}
|
|
resid -= minlen;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Append the segments that describe at most 'resid' bytes from a
|
|
* single uio to a scatter/gather list. If there are insufficient
|
|
* segments, then only the amount that fits is appended.
|
|
*/
|
|
int
|
|
sglist_consume_uio(struct sglist *sg, struct uio *uio, size_t resid)
|
|
{
|
|
struct iovec *iov;
|
|
size_t done;
|
|
pmap_t pmap;
|
|
int error, len;
|
|
|
|
if (sg->sg_maxseg == 0)
|
|
return (EINVAL);
|
|
|
|
if (uio->uio_segflg == UIO_USERSPACE) {
|
|
KASSERT(uio->uio_td != NULL,
|
|
("sglist_consume_uio: USERSPACE but no thread"));
|
|
pmap = vmspace_pmap(uio->uio_td->td_proc->p_vmspace);
|
|
} else
|
|
pmap = NULL;
|
|
|
|
error = 0;
|
|
while (resid > 0 && uio->uio_resid) {
|
|
iov = uio->uio_iov;
|
|
len = iov->iov_len;
|
|
if (len == 0) {
|
|
uio->uio_iov++;
|
|
uio->uio_iovcnt--;
|
|
continue;
|
|
}
|
|
if (len > resid)
|
|
len = resid;
|
|
|
|
/*
|
|
* Try to append this iovec. If we run out of room,
|
|
* then break out of the loop.
|
|
*/
|
|
error = _sglist_append_buf(sg, iov->iov_base, len, pmap, &done);
|
|
iov->iov_base = (char *)iov->iov_base + done;
|
|
iov->iov_len -= done;
|
|
uio->uio_resid -= done;
|
|
uio->uio_offset += done;
|
|
resid -= done;
|
|
if (error)
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate and populate a scatter/gather list to describe a single
|
|
* kernel virtual address range.
|
|
*/
|
|
struct sglist *
|
|
sglist_build(void *buf, size_t len, int mflags)
|
|
{
|
|
struct sglist *sg;
|
|
int nsegs;
|
|
|
|
if (len == 0)
|
|
return (NULL);
|
|
|
|
nsegs = sglist_count(buf, len);
|
|
sg = sglist_alloc(nsegs, mflags);
|
|
if (sg == NULL)
|
|
return (NULL);
|
|
if (sglist_append(sg, buf, len) != 0) {
|
|
sglist_free(sg);
|
|
return (NULL);
|
|
}
|
|
return (sg);
|
|
}
|
|
|
|
/*
|
|
* Clone a new copy of a scatter/gather list.
|
|
*/
|
|
struct sglist *
|
|
sglist_clone(struct sglist *sg, int mflags)
|
|
{
|
|
struct sglist *new;
|
|
|
|
if (sg == NULL)
|
|
return (NULL);
|
|
new = sglist_alloc(sg->sg_maxseg, mflags);
|
|
if (new == NULL)
|
|
return (NULL);
|
|
new->sg_nseg = sg->sg_nseg;
|
|
bcopy(sg->sg_segs, new->sg_segs, sizeof(struct sglist_seg) *
|
|
sg->sg_nseg);
|
|
return (new);
|
|
}
|
|
|
|
/*
|
|
* Calculate the total length of the segments described in a
|
|
* scatter/gather list.
|
|
*/
|
|
size_t
|
|
sglist_length(struct sglist *sg)
|
|
{
|
|
size_t space;
|
|
int i;
|
|
|
|
space = 0;
|
|
for (i = 0; i < sg->sg_nseg; i++)
|
|
space += sg->sg_segs[i].ss_len;
|
|
return (space);
|
|
}
|
|
|
|
/*
|
|
* Split a scatter/gather list into two lists. The scatter/gather
|
|
* entries for the first 'length' bytes of the 'original' list are
|
|
* stored in the '*head' list and are removed from 'original'.
|
|
*
|
|
* If '*head' is NULL, then a new list will be allocated using
|
|
* 'mflags'. If M_NOWAIT is specified and the allocation fails,
|
|
* ENOMEM will be returned.
|
|
*
|
|
* If '*head' is not NULL, it should point to an empty sglist. If it
|
|
* does not have enough room for the remaining space, then EFBIG will
|
|
* be returned. If '*head' is not empty, then EINVAL will be
|
|
* returned.
|
|
*
|
|
* If 'original' is shared (refcount > 1), then EDOOFUS will be
|
|
* returned.
|
|
*/
|
|
int
|
|
sglist_split(struct sglist *original, struct sglist **head, size_t length,
|
|
int mflags)
|
|
{
|
|
struct sglist *sg;
|
|
size_t space, split;
|
|
int count, i;
|
|
|
|
if (original->sg_refs > 1)
|
|
return (EDOOFUS);
|
|
|
|
/* Figure out how big of a sglist '*head' has to hold. */
|
|
count = 0;
|
|
space = 0;
|
|
split = 0;
|
|
for (i = 0; i < original->sg_nseg; i++) {
|
|
space += original->sg_segs[i].ss_len;
|
|
count++;
|
|
if (space >= length) {
|
|
/*
|
|
* If 'length' falls in the middle of a
|
|
* scatter/gather list entry, then 'split'
|
|
* holds how much of that entry will remain in
|
|
* 'original'.
|
|
*/
|
|
split = space - length;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Nothing to do, so leave head empty. */
|
|
if (count == 0)
|
|
return (0);
|
|
|
|
if (*head == NULL) {
|
|
sg = sglist_alloc(count, mflags);
|
|
if (sg == NULL)
|
|
return (ENOMEM);
|
|
*head = sg;
|
|
} else {
|
|
sg = *head;
|
|
if (sg->sg_maxseg < count)
|
|
return (EFBIG);
|
|
if (sg->sg_nseg != 0)
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Copy 'count' entries to 'sg' from 'original'. */
|
|
bcopy(original->sg_segs, sg->sg_segs, count *
|
|
sizeof(struct sglist_seg));
|
|
sg->sg_nseg = count;
|
|
|
|
/*
|
|
* If we had to split a list entry, fixup the last entry in
|
|
* 'sg' and the new first entry in 'original'. We also
|
|
* decrement 'count' by 1 since we will only be removing
|
|
* 'count - 1' segments from 'original' now.
|
|
*/
|
|
if (split != 0) {
|
|
count--;
|
|
sg->sg_segs[count].ss_len -= split;
|
|
original->sg_segs[count].ss_paddr =
|
|
sg->sg_segs[count].ss_paddr + split;
|
|
original->sg_segs[count].ss_len = split;
|
|
}
|
|
|
|
/* Trim 'count' entries from the front of 'original'. */
|
|
original->sg_nseg -= count;
|
|
bcopy(original->sg_segs + count, original->sg_segs, count *
|
|
sizeof(struct sglist_seg));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Append the scatter/gather list elements in 'second' to the
|
|
* scatter/gather list 'first'. If there is not enough space in
|
|
* 'first', EFBIG is returned.
|
|
*/
|
|
int
|
|
sglist_join(struct sglist *first, struct sglist *second)
|
|
{
|
|
struct sglist_seg *flast, *sfirst;
|
|
int append;
|
|
|
|
/* If 'second' is empty, there is nothing to do. */
|
|
if (second->sg_nseg == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* If the first entry in 'second' can be appended to the last entry
|
|
* in 'first' then set append to '1'.
|
|
*/
|
|
append = 0;
|
|
flast = &first->sg_segs[first->sg_nseg - 1];
|
|
sfirst = &second->sg_segs[0];
|
|
if (first->sg_nseg != 0 &&
|
|
flast->ss_paddr + flast->ss_len == sfirst->ss_paddr)
|
|
append = 1;
|
|
|
|
/* Make sure 'first' has enough room. */
|
|
if (first->sg_nseg + second->sg_nseg - append > first->sg_maxseg)
|
|
return (EFBIG);
|
|
|
|
/* Merge last in 'first' and first in 'second' if needed. */
|
|
if (append)
|
|
flast->ss_len += sfirst->ss_len;
|
|
|
|
/* Append new segments from 'second' to 'first'. */
|
|
bcopy(first->sg_segs + first->sg_nseg, second->sg_segs + append,
|
|
(second->sg_nseg - append) * sizeof(struct sglist_seg));
|
|
first->sg_nseg += second->sg_nseg - append;
|
|
sglist_reset(second);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Generate a new scatter/gather list from a range of an existing
|
|
* scatter/gather list. The 'offset' and 'length' parameters specify
|
|
* the logical range of the 'original' list to extract. If that range
|
|
* is not a subset of the length of 'original', then EINVAL is
|
|
* returned. The new scatter/gather list is stored in '*slice'.
|
|
*
|
|
* If '*slice' is NULL, then a new list will be allocated using
|
|
* 'mflags'. If M_NOWAIT is specified and the allocation fails,
|
|
* ENOMEM will be returned.
|
|
*
|
|
* If '*slice' is not NULL, it should point to an empty sglist. If it
|
|
* does not have enough room for the remaining space, then EFBIG will
|
|
* be returned. If '*slice' is not empty, then EINVAL will be
|
|
* returned.
|
|
*/
|
|
int
|
|
sglist_slice(struct sglist *original, struct sglist **slice, size_t offset,
|
|
size_t length, int mflags)
|
|
{
|
|
struct sglist *sg;
|
|
size_t space, end, foffs, loffs;
|
|
int count, i, fseg;
|
|
|
|
/* Nothing to do. */
|
|
if (length == 0)
|
|
return (0);
|
|
|
|
/* Figure out how many segments '*slice' needs to have. */
|
|
end = offset + length;
|
|
space = 0;
|
|
count = 0;
|
|
fseg = 0;
|
|
foffs = loffs = 0;
|
|
for (i = 0; i < original->sg_nseg; i++) {
|
|
space += original->sg_segs[i].ss_len;
|
|
if (space > offset) {
|
|
/*
|
|
* When we hit the first segment, store its index
|
|
* in 'fseg' and the offset into the first segment
|
|
* of 'offset' in 'foffs'.
|
|
*/
|
|
if (count == 0) {
|
|
fseg = i;
|
|
foffs = offset - (space -
|
|
original->sg_segs[i].ss_len);
|
|
CTR1(KTR_DEV, "sglist_slice: foffs = %08lx",
|
|
foffs);
|
|
}
|
|
count++;
|
|
|
|
/*
|
|
* When we hit the last segment, break out of
|
|
* the loop. Store the amount of extra space
|
|
* at the end of this segment in 'loffs'.
|
|
*/
|
|
if (space >= end) {
|
|
loffs = space - end;
|
|
CTR1(KTR_DEV, "sglist_slice: loffs = %08lx",
|
|
loffs);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we never hit 'end', then 'length' ran off the end, so fail. */
|
|
if (space < end)
|
|
return (EINVAL);
|
|
|
|
if (*slice == NULL) {
|
|
sg = sglist_alloc(count, mflags);
|
|
if (sg == NULL)
|
|
return (ENOMEM);
|
|
*slice = sg;
|
|
} else {
|
|
sg = *slice;
|
|
if (sg->sg_maxseg < count)
|
|
return (EFBIG);
|
|
if (sg->sg_nseg != 0)
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Copy over 'count' segments from 'original' starting at
|
|
* 'fseg' to 'sg'.
|
|
*/
|
|
bcopy(original->sg_segs + fseg, sg->sg_segs,
|
|
count * sizeof(struct sglist_seg));
|
|
sg->sg_nseg = count;
|
|
|
|
/* Fixup first and last segments if needed. */
|
|
if (foffs != 0) {
|
|
sg->sg_segs[0].ss_paddr += foffs;
|
|
sg->sg_segs[0].ss_len -= foffs;
|
|
CTR2(KTR_DEV, "sglist_slice seg[0]: %08lx:%08lx",
|
|
(long)sg->sg_segs[0].ss_paddr, sg->sg_segs[0].ss_len);
|
|
}
|
|
if (loffs != 0) {
|
|
sg->sg_segs[count - 1].ss_len -= loffs;
|
|
CTR2(KTR_DEV, "sglist_slice seg[%d]: len %08x", count - 1,
|
|
sg->sg_segs[count - 1].ss_len);
|
|
}
|
|
return (0);
|
|
}
|