alc c4db706631 The physical address stored in the vm_page is page aligned. There is no
need to mask off the page offset bits.  (This operation made some sense
prior to i386/i386/pmap.c revision 1.254 when we passed a physical address
rather than a vm_page pointer to pmap_enter().)
2004-10-03 00:16:43 +00:00

2712 lines
62 KiB
C

/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
* Copyright (c) 1998 Doug Rabson
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
* from: i386 Id: pmap.c,v 1.193 1998/04/19 15:22:48 bde Exp
* with some ideas from NetBSD's alpha pmap
*/
/*
* Manages physical address maps.
*
* In addition to hardware address maps, this
* module is called upon to provide software-use-only
* maps which may or may not be stored in the same
* form as hardware maps. These pseudo-maps are
* used to store intermediate results from copy
* operations to and from address spaces.
*
* Since the information managed by this module is
* also stored by the logical address mapping module,
* this module may throw away valid virtual-to-physical
* mappings at almost any time. However, invalidations
* of virtual-to-physical mappings must be done as
* requested.
*
* In order to cope with hardware architectures which
* make virtual-to-physical map invalidates expensive,
* this module may delay invalidate or reduced protection
* operations until such time as they are actually
* necessary. This module is given full information as
* to which processors are currently using which maps,
* and to when physical maps must be made correct.
*/
/*
* Notes for alpha pmap.
*
* On alpha, pm_pdeobj will hold lev1, lev2 and lev3 page tables.
* Indices from 0 to NUSERLEV3MAPS-1 will map user lev3 page tables,
* indices from NUSERLEV3MAPS to NUSERLEV3MAPS+NUSERLEV2MAPS-1 will
* map user lev2 page tables and index NUSERLEV3MAPS+NUSERLEV2MAPS
* will map the lev1 page table. The lev1 table will self map at
* address VADDR(PTLEV1I,0,0).
*
* The vm_object kptobj holds the kernel page tables on i386 (62 or 63
* of them, depending on whether the system is SMP). On alpha, kptobj
* will hold the lev3 and lev2 page tables for K1SEG. Indices 0 to
* NKLEV3MAPS-1 will map kernel lev3 page tables and indices
* NKLEV3MAPS to NKLEV3MAPS+NKLEV2MAPS will map lev2 page tables. (XXX
* should the kernel Lev1map be inserted into this object?).
*
* pvtmmap is not needed for alpha since K0SEG maps all of physical
* memory.
*
*
* alpha virtual memory map:
*
*
* Address Lev1 index
*
* ---------------------------------
* 0000000000000000 | | 0
* | |
* | |
* | |
* | |
* --- ---
* User space (USEG)
* --- ---
* | |
* | |
* | |
* | |
* 000003ffffffffff | | 511=UMAXLEV1I
* ---------------------------------
* fffffc0000000000 | | 512=K0SEGLEV1I
* | Kernel code/data/bss |
* | |
* | |
* | |
* --- ---
* K0SEG
* --- ---
* | |
* | 1-1 physical/virtual |
* | |
* | |
* fffffdffffffffff | |
* ---------------------------------
* fffffe0000000000 | | 768=K1SEGLEV1I
* | Kernel dynamic data |
* | |
* | |
* | |
* --- ---
* K1SEG
* --- ---
* | |
* | mapped by ptes |
* | |
* | |
* fffffff7ffffffff | |
* ---------------------------------
* fffffffe00000000 | | 1023=PTLEV1I
* | PTmap (pte self map) |
* ffffffffffffffff | |
* ---------------------------------
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/vmmeter.h>
#include <sys/mman.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <sys/user.h>
#include <machine/md_var.h>
#include <machine/rpb.h>
#ifndef PMAP_SHPGPERPROC
#define PMAP_SHPGPERPROC 200
#endif
#if defined(DIAGNOSTIC)
#define PMAP_DIAGNOSTIC
#endif
#define MINPV 2048
#if 0
#define PMAP_DIAGNOSTIC
#define PMAP_DEBUG
#endif
#if !defined(PMAP_DIAGNOSTIC)
#define PMAP_INLINE __inline
#else
#define PMAP_INLINE
#endif
/*
* Some macros for manipulating virtual addresses
*/
#define ALPHA_L1SIZE (1L << ALPHA_L1SHIFT)
#define ALPHA_L2SIZE (1L << ALPHA_L2SHIFT)
#define alpha_l1trunc(va) ((va) & ~(ALPHA_L1SIZE-1))
#define alpha_l2trunc(va) ((va) & ~(ALPHA_L2SIZE-1))
/*
* Get PDEs and PTEs for user/kernel address space
*/
#define pmap_pte_w(pte) ((*(pte) & PG_W) != 0)
#define pmap_pte_managed(pte) ((*(pte) & PG_MANAGED) != 0)
#define pmap_pte_v(pte) ((*(pte) & PG_V) != 0)
#define pmap_pte_pa(pte) alpha_ptob(ALPHA_PTE_TO_PFN(*(pte)))
#define pmap_pte_prot(pte) (*(pte) & PG_PROT)
#define pmap_pte_set_w(pte, v) ((v)?(*pte |= PG_W):(*pte &= ~PG_W))
#define pmap_pte_set_prot(pte, v) ((*pte &= ~PG_PROT), (*pte |= (v)))
/*
* Given a map and a machine independent protection code,
* convert to an alpha protection code.
*/
#define pte_prot(m, p) (protection_codes[m == kernel_pmap ? 0 : 1][p])
int protection_codes[2][8];
/*
* Return non-zero if this pmap is currently active
*/
#define pmap_isactive(pmap) (pmap->pm_active)
/*
* Extract level 1, 2 and 3 page table indices from a va
*/
#define PTMASK ((1 << ALPHA_PTSHIFT) - 1)
#define pmap_lev1_index(va) (((va) >> ALPHA_L1SHIFT) & PTMASK)
#define pmap_lev2_index(va) (((va) >> ALPHA_L2SHIFT) & PTMASK)
#define pmap_lev3_index(va) (((va) >> ALPHA_L3SHIFT) & PTMASK)
/*
* Given a physical address, construct a pte
*/
#define pmap_phys_to_pte(pa) ALPHA_PTE_FROM_PFN(alpha_btop(pa))
/*
* Given a page frame number, construct a k0seg va
*/
#define pmap_k0seg_to_pfn(va) alpha_btop(ALPHA_K0SEG_TO_PHYS(va))
/*
* Given a pte, construct a k0seg va
*/
#define pmap_k0seg_to_pte(va) ALPHA_PTE_FROM_PFN(pmap_k0seg_to_pfn(va))
/*
* Lev1map:
*
* Kernel level 1 page table. This maps all kernel level 2
* page table pages, and is used as a template for all user
* pmap level 1 page tables. When a new user level 1 page
* table is allocated, all Lev1map PTEs for kernel addresses
* are copied to the new map.
*
* Lev2map:
*
* Initial set of kernel level 2 page table pages. These
* map the kernel level 3 page table pages. As kernel
* level 3 page table pages are added, more level 2 page
* table pages may be added to map them. These pages are
* never freed.
*
* Lev3map:
*
* Initial set of kernel level 3 page table pages. These
* map pages in K1SEG. More level 3 page table pages may
* be added at run-time if additional K1SEG address space
* is required. These pages are never freed.
*
* Lev2mapsize:
*
* Number of entries in the initial Lev2map.
*
* Lev3mapsize:
*
* Number of entries in the initial Lev3map.
*
* NOTE: When mappings are inserted into the kernel pmap, all
* level 2 and level 3 page table pages must already be allocated
* and mapped into the parent page table.
*/
pt_entry_t *Lev1map, *Lev2map, *Lev3map;
vm_size_t Lev2mapsize, Lev3mapsize;
/*
* Statically allocated kernel pmap
*/
struct pmap kernel_pmap_store;
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
static int nklev3, nklev2;
vm_offset_t kernel_vm_end;
/*
* Data for the ASN allocator
*/
static int pmap_maxasn;
static pmap_t pmap_active[MAXCPU];
static LIST_HEAD(,pmap) allpmaps;
static struct mtx allpmaps_lock;
/*
* Data for the pv entry allocation mechanism
*/
static uma_zone_t pvzone;
static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
int pmap_pagedaemon_waken;
static PMAP_INLINE void free_pv_entry(pv_entry_t pv);
static pv_entry_t get_pv_entry(void);
static void alpha_protection_init(void);
static void pmap_changebit(vm_page_t m, int bit, boolean_t setem);
static int pmap_remove_pte(pmap_t pmap, pt_entry_t* ptq, vm_offset_t sva);
static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
static int pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
vm_page_t mpte, vm_page_t m);
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m);
static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
#ifdef SMP
static void pmap_invalidate_page_action(void *arg);
static void pmap_invalidate_all_action(void *arg);
#endif
/*
* Routine: pmap_lev1pte
* Function:
* Extract the level 1 page table entry associated
* with the given map/virtual_address pair.
*/
static PMAP_INLINE pt_entry_t*
pmap_lev1pte(pmap_t pmap, vm_offset_t va)
{
if (!pmap)
return 0;
return &pmap->pm_lev1[pmap_lev1_index(va)];
}
/*
* Routine: pmap_lev2pte
* Function:
* Extract the level 2 page table entry associated
* with the given map/virtual_address pair.
*/
static PMAP_INLINE pt_entry_t*
pmap_lev2pte(pmap_t pmap, vm_offset_t va)
{
pt_entry_t* l1pte;
pt_entry_t* l2map;
l1pte = pmap_lev1pte(pmap, va);
if (!pmap_pte_v(l1pte))
return 0;
l2map = (pt_entry_t*) ALPHA_PHYS_TO_K0SEG(pmap_pte_pa(l1pte));
return &l2map[pmap_lev2_index(va)];
}
/*
* Routine: pmap_lev3pte
* Function:
* Extract the level 3 page table entry associated
* with the given map/virtual_address pair.
*/
static PMAP_INLINE pt_entry_t*
pmap_lev3pte(pmap_t pmap, vm_offset_t va)
{
pt_entry_t* l2pte;
pt_entry_t* l3map;
l2pte = pmap_lev2pte(pmap, va);
if (!l2pte || !pmap_pte_v(l2pte))
return 0;
l3map = (pt_entry_t*) ALPHA_PHYS_TO_K0SEG(pmap_pte_pa(l2pte));
return &l3map[pmap_lev3_index(va)];
}
vm_offset_t
pmap_steal_memory(vm_size_t size)
{
vm_size_t bank_size;
vm_offset_t pa, va;
size = round_page(size);
bank_size = phys_avail[1] - phys_avail[0];
while (size > bank_size) {
int i;
for (i = 0; phys_avail[i+2]; i+= 2) {
phys_avail[i] = phys_avail[i+2];
phys_avail[i+1] = phys_avail[i+3];
}
phys_avail[i] = 0;
phys_avail[i+1] = 0;
if (!phys_avail[0])
panic("pmap_steal_memory: out of memory");
bank_size = phys_avail[1] - phys_avail[0];
}
pa = phys_avail[0];
phys_avail[0] += size;
va = ALPHA_PHYS_TO_K0SEG(pa);
bzero((caddr_t) va, size);
return va;
}
extern pt_entry_t rom_pte; /* XXX */
extern int prom_mapped; /* XXX */
/*
* Bootstrap the system enough to run with virtual memory.
*/
void
pmap_bootstrap(vm_offset_t ptaddr, u_int maxasn)
{
pt_entry_t newpte;
int i;
/*
* Setup ASNs. PCPU_GET(next_asn) and PCPU_GET(current_asngen) are set
* up already.
*/
pmap_maxasn = maxasn;
/*
* Allocate a level 1 map for the kernel.
*/
Lev1map = (pt_entry_t*) pmap_steal_memory(PAGE_SIZE);
/*
* Allocate a level 2 map for the kernel
*/
Lev2map = (pt_entry_t*) pmap_steal_memory(PAGE_SIZE);
Lev2mapsize = PAGE_SIZE;
/*
* Allocate some level 3 maps for the kernel
*/
Lev3map = (pt_entry_t*) pmap_steal_memory(PAGE_SIZE*NKPT);
Lev3mapsize = NKPT * PAGE_SIZE;
/* Map all of the level 2 maps */
for (i = 0; i < howmany(Lev2mapsize, PAGE_SIZE); i++) {
unsigned long pfn =
pmap_k0seg_to_pfn((vm_offset_t) Lev2map) + i;
newpte = ALPHA_PTE_FROM_PFN(pfn);
newpte |= PG_V | PG_ASM | PG_KRE | PG_KWE | PG_W;
Lev1map[K1SEGLEV1I + i] = newpte;
}
/* Setup the mapping for the prom console */
{
if (pmap_uses_prom_console()) {
/* XXX save old pte so that we can remap prom if necessary */
rom_pte = *(pt_entry_t *)ptaddr & ~PG_ASM; /* XXX */
}
prom_mapped = 0;
/*
* Actually, this code lies. The prom is still mapped, and will
* remain so until the context switch after alpha_init() returns.
* Printfs using the firmware before then will end up frobbing
* Lev1map unnecessarily, but that's OK.
*/
}
/*
* Level 1 self mapping.
*
* Don't set PG_ASM since the self-mapping is different for each
* address space.
*/
newpte = pmap_k0seg_to_pte((vm_offset_t) Lev1map);
newpte |= PG_V | PG_KRE | PG_KWE;
Lev1map[PTLEV1I] = newpte;
/* Map all of the level 3 maps */
for (i = 0; i < howmany(Lev3mapsize, PAGE_SIZE); i++) {
unsigned long pfn =
pmap_k0seg_to_pfn((vm_offset_t) Lev3map) + i;
newpte = ALPHA_PTE_FROM_PFN(pfn);
newpte |= PG_V | PG_ASM | PG_KRE | PG_KWE | PG_W;
Lev2map[i] = newpte;
}
virtual_avail = VM_MIN_KERNEL_ADDRESS;
virtual_end = VPTBASE;
/*
* Initialize protection array.
*/
alpha_protection_init();
/*
* Initialize the kernel pmap (which is statically allocated).
*/
PMAP_LOCK_INIT(kernel_pmap);
kernel_pmap->pm_lev1 = Lev1map;
kernel_pmap->pm_active = ~0;
kernel_pmap->pm_asn[alpha_pal_whami()].asn = 0;
kernel_pmap->pm_asn[alpha_pal_whami()].gen = 1;
TAILQ_INIT(&kernel_pmap->pm_pvlist);
nklev3 = NKPT;
nklev2 = 1;
/*
* Initialize list of pmaps.
*/
LIST_INIT(&allpmaps);
LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
/*
* Set up proc0's PCB such that the ptbr points to the right place
* and has the kernel pmap's.
*/
thread0.td_pcb->pcb_hw.apcb_ptbr =
ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map) >> PAGE_SHIFT;
thread0.td_pcb->pcb_hw.apcb_asn = 0;
}
int
pmap_uses_prom_console()
{
int cputype;
cputype = hwrpb->rpb_type;
return (cputype == ST_DEC_21000 || ST_DEC_4100);
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
* pmap_init has been enhanced to support in a fairly consistant
* way, discontiguous physical memory.
*/
void
pmap_init(void)
{
int i;
/*
* Allocate memory for random pmap data structures. Includes the
* pv_head_table.
*/
for(i = 0; i < vm_page_array_size; i++) {
vm_page_t m;
m = &vm_page_array[i];
TAILQ_INIT(&m->md.pv_list);
m->md.pv_list_count = 0;
}
/*
* init the pv free list
*/
pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
uma_prealloc(pvzone, MINPV);
/*
* Now it is safe to enable pv_table recording.
*/
pmap_initialized = TRUE;
}
/*
* Initialize the address space (zone) for the pv_entries. Set a
* high water mark so that the system can recover from excessive
* numbers of pv entries.
*/
void
pmap_init2()
{
int shpgperproc = PMAP_SHPGPERPROC;
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
pv_entry_high_water = 9 * (pv_entry_max / 10);
}
/***************************************************
* Manipulate TLBs for a pmap
***************************************************/
static void
pmap_invalidate_asn(pmap_t pmap)
{
pmap->pm_asn[PCPU_GET(cpuid)].gen = 0;
}
struct pmap_invalidate_page_arg {
pmap_t pmap;
vm_offset_t va;
};
static void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
#ifdef SMP
struct pmap_invalidate_page_arg arg;
arg.pmap = pmap;
arg.va = va;
smp_rendezvous(0, pmap_invalidate_page_action, 0, (void *) &arg);
}
static void
pmap_invalidate_page_action(void *arg)
{
pmap_t pmap = ((struct pmap_invalidate_page_arg *) arg)->pmap;
vm_offset_t va = ((struct pmap_invalidate_page_arg *) arg)->va;
#endif
if (pmap->pm_active & PCPU_GET(cpumask)) {
ALPHA_TBIS(va);
alpha_pal_imb(); /* XXX overkill? */
} else {
pmap_invalidate_asn(pmap);
}
}
static void
pmap_invalidate_all(pmap_t pmap)
{
#ifdef SMP
smp_rendezvous(0, pmap_invalidate_all_action, 0, (void *) pmap);
}
static void
pmap_invalidate_all_action(void *arg)
{
pmap_t pmap = (pmap_t) arg;
#endif
if (pmap->pm_active & PCPU_GET(cpumask)) {
ALPHA_TBIA();
alpha_pal_imb(); /* XXX overkill? */
} else
pmap_invalidate_asn(pmap);
}
static void
pmap_get_asn(pmap_t pmap)
{
if (PCPU_GET(next_asn) > pmap_maxasn) {
/*
* Start a new ASN generation.
*
* Invalidate all per-process mappings and I-cache
*/
PCPU_SET(next_asn, 0);
PCPU_SET(current_asngen, (PCPU_GET(current_asngen) + 1) &
ASNGEN_MASK);
if (PCPU_GET(current_asngen) == 0) {
/*
* Clear the pm_asn[].gen of all pmaps.
* This is safe since it is only called from
* pmap_activate after it has deactivated
* the old pmap and it only affects this cpu.
*/
pmap_t tpmap;
#ifdef PMAP_DIAGNOSTIC
printf("pmap_get_asn: generation rollover\n");
#endif
PCPU_SET(current_asngen, 1);
mtx_lock_spin(&allpmaps_lock);
LIST_FOREACH(tpmap, &allpmaps, pm_list) {
tpmap->pm_asn[PCPU_GET(cpuid)].gen = 0;
}
mtx_unlock_spin(&allpmaps_lock);
}
/*
* Since we are about to start re-using ASNs, we must
* clear out the TLB and the I-cache since they are tagged
* with the ASN.
*/
ALPHA_TBIAP();
alpha_pal_imb(); /* XXX overkill? */
}
pmap->pm_asn[PCPU_GET(cpuid)].asn = PCPU_GET(next_asn);
PCPU_SET(next_asn, PCPU_GET(next_asn) + 1);
pmap->pm_asn[PCPU_GET(cpuid)].gen = PCPU_GET(current_asngen);
}
/***************************************************
* Low level helper routines.....
***************************************************/
/*
* this routine defines the region(s) of memory that should
* not be tested for the modified bit.
*/
static PMAP_INLINE int
pmap_track_modified(vm_offset_t va)
{
if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
return 1;
else
return 0;
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
pt_entry_t *pte;
vm_paddr_t pa;
pa = 0;
PMAP_LOCK(pmap);
pte = pmap_lev3pte(pmap, va);
if (pte != NULL && pmap_pte_v(pte))
pa = pmap_pte_pa(pte);
PMAP_UNLOCK(pmap);
return (pa);
}
/*
* Routine: pmap_extract_and_hold
* Function:
* Atomically extract and hold the physical page
* with the given pmap and virtual address pair
* if that mapping permits the given protection.
*/
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
pt_entry_t *pte;
vm_page_t m;
m = NULL;
vm_page_lock_queues();
PMAP_LOCK(pmap);
pte = pmap_lev3pte(pmap, va);
if (pte != NULL && pmap_pte_v(pte) &&
(*pte & pte_prot(pmap, prot)) == pte_prot(pmap, prot)) {
m = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
vm_page_hold(m);
}
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
return (m);
}
/***************************************************
* Low level mapping routines.....
***************************************************/
/*
* Add a list of wired pages to the kva
* this routine is only used for temporary
* kernel mappings that do not need to have
* page modification or references recorded.
* Note that old mappings are simply written
* over. The page *must* be wired.
*/
void
pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
{
int i;
pt_entry_t *pte;
for (i = 0; i < count; i++) {
vm_offset_t tva = va + i * PAGE_SIZE;
pt_entry_t npte = pmap_phys_to_pte(VM_PAGE_TO_PHYS(m[i]))
| PG_ASM | PG_KRE | PG_KWE | PG_V;
pt_entry_t opte;
pte = vtopte(tva);
opte = *pte;
*pte = npte;
if (opte)
pmap_invalidate_page(kernel_pmap, tva);
}
}
/*
* this routine jerks page mappings from the
* kernel -- it is meant only for temporary mappings.
*/
void
pmap_qremove(va, count)
vm_offset_t va;
int count;
{
int i;
register pt_entry_t *pte;
for (i = 0; i < count; i++) {
pte = vtopte(va);
*pte = 0;
pmap_invalidate_page(kernel_pmap, va);
va += PAGE_SIZE;
}
}
/*
* add a wired page to the kva
* note that in order for the mapping to take effect -- you
* should do a invltlb after doing the pmap_kenter...
*/
PMAP_INLINE void
pmap_kenter(vm_offset_t va, vm_offset_t pa)
{
pt_entry_t *pte;
pt_entry_t npte, opte;
npte = pmap_phys_to_pte(pa) | PG_ASM | PG_KRE | PG_KWE | PG_V;
pte = vtopte(va);
opte = *pte;
*pte = npte;
if (opte)
pmap_invalidate_page(kernel_pmap, va);
}
/*
* remove a page from the kernel pagetables
*/
PMAP_INLINE void
pmap_kremove(vm_offset_t va)
{
register pt_entry_t *pte;
pte = vtopte(va);
*pte = 0;
pmap_invalidate_page(kernel_pmap, va);
}
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* The value passed in '*virt' is a suggested virtual address for
* the mapping. Architectures which can support a direct-mapped
* physical to virtual region can return the appropriate address
* within that region, leaving '*virt' unchanged. Other
* architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped
* region.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
{
return ALPHA_PHYS_TO_K0SEG(start);
}
/***************************************************
* Page table page management routines.....
***************************************************/
/*
* This routine unholds page table pages, and if the hold count
* drops to zero, then it decrements the wire count.
*/
static PMAP_INLINE int
pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
--m->wire_count;
if (m->wire_count == 0)
return _pmap_unwire_pte_hold(pmap, va, m);
else
return 0;
}
static int
_pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
vm_offset_t pteva;
pt_entry_t* pte;
/*
* unmap the page table page
*/
if (m->pindex >= NUSERLEV3MAPS) {
/* Level 2 page table */
pte = pmap_lev1pte(pmap, va);
pteva = (vm_offset_t) PTlev2 + alpha_ptob(m->pindex - NUSERLEV3MAPS);
} else {
/* Level 3 page table */
pte = pmap_lev2pte(pmap, va);
pteva = (vm_offset_t) PTmap + alpha_ptob(m->pindex);
}
*pte = 0;
if (m->pindex < NUSERLEV3MAPS) {
/* unhold the level 2 page table */
vm_page_t lev2pg;
lev2pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pmap_lev1pte(pmap, va)));
pmap_unwire_pte_hold(pmap, va, lev2pg);
}
--pmap->pm_stats.resident_count;
/*
* Do a invltlb to make the invalidated mapping
* take effect immediately.
*/
pmap_invalidate_page(pmap, pteva);
if (pmap->pm_ptphint == m)
pmap->pm_ptphint = NULL;
vm_page_free_zero(m);
atomic_subtract_int(&cnt.v_wire_count, 1);
return 1;
}
/*
* After removing a page table entry, this routine is used to
* conditionally free the page, and manage the hold/wire counts.
*/
static int
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
{
unsigned ptepindex;
if (va >= VM_MAXUSER_ADDRESS)
return 0;
if (mpte == NULL) {
ptepindex = (va >> ALPHA_L2SHIFT);
if (pmap->pm_ptphint &&
(pmap->pm_ptphint->pindex == ptepindex)) {
mpte = pmap->pm_ptphint;
} else {
mpte = PHYS_TO_VM_PAGE(pmap_pte_pa(pmap_lev2pte(pmap, va)));
pmap->pm_ptphint = mpte;
}
}
return pmap_unwire_pte_hold(pmap, va, mpte);
}
void
pmap_pinit0(pmap)
struct pmap *pmap;
{
int i;
PMAP_LOCK_INIT(pmap);
pmap->pm_lev1 = Lev1map;
pmap->pm_ptphint = NULL;
pmap->pm_active = 0;
for (i = 0; i < MAXCPU; i++) {
pmap->pm_asn[i].asn = 0;
pmap->pm_asn[i].gen = 0;
}
TAILQ_INIT(&pmap->pm_pvlist);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN | MTX_QUIET);
LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
void
pmap_pinit(pmap)
register struct pmap *pmap;
{
vm_page_t lev1pg;
int i;
PMAP_LOCK_INIT(pmap);
/*
* allocate the page directory page
*/
while ((lev1pg = vm_page_alloc(NULL, NUSERLEV3MAPS + NUSERLEV2MAPS, VM_ALLOC_NOOBJ |
VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
VM_WAIT;
pmap->pm_lev1 = (pt_entry_t*) ALPHA_PHYS_TO_K0SEG(VM_PAGE_TO_PHYS(lev1pg));
if ((lev1pg->flags & PG_ZERO) == 0)
bzero(pmap->pm_lev1, PAGE_SIZE);
/* install self-referential address mapping entry (not PG_ASM) */
pmap->pm_lev1[PTLEV1I] = pmap_phys_to_pte(VM_PAGE_TO_PHYS(lev1pg))
| PG_V | PG_KRE | PG_KWE;
pmap->pm_ptphint = NULL;
pmap->pm_active = 0;
for (i = 0; i < MAXCPU; i++) {
pmap->pm_asn[i].asn = 0;
pmap->pm_asn[i].gen = 0;
}
TAILQ_INIT(&pmap->pm_pvlist);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
mtx_lock_spin(&allpmaps_lock);
LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
mtx_unlock_spin(&allpmaps_lock);
bcopy(PTlev1 + K1SEGLEV1I, pmap->pm_lev1 + K1SEGLEV1I, nklev2 * PTESIZE);
}
/*
* this routine is called if the page table page is not
* mapped correctly.
*/
static vm_page_t
_pmap_allocpte(pmap, ptepindex)
pmap_t pmap;
unsigned ptepindex;
{
pt_entry_t* pte;
vm_offset_t ptepa;
vm_page_t m;
/*
* Find or fabricate a new pagetable page
*/
if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
PMAP_UNLOCK(pmap);
vm_page_unlock_queues();
VM_WAIT;
vm_page_lock_queues();
PMAP_LOCK(pmap);
/*
* Indicate the need to retry. While waiting, the page table
* page may have been allocated.
*/
return (NULL);
}
if ((m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
/*
* Map the pagetable page into the process address space, if
* it isn't already there.
*/
pmap->pm_stats.resident_count++;
ptepa = VM_PAGE_TO_PHYS(m);
if (ptepindex >= NUSERLEV3MAPS) {
pte = &pmap->pm_lev1[ptepindex - NUSERLEV3MAPS];
} else {
int l1index = ptepindex >> ALPHA_PTSHIFT;
pt_entry_t* l1pte = &pmap->pm_lev1[l1index];
pt_entry_t* l2map;
if (!pmap_pte_v(l1pte)) {
if (_pmap_allocpte(pmap, NUSERLEV3MAPS + l1index) == NULL) {
--m->wire_count;
vm_page_free(m);
return (NULL);
}
} else {
vm_page_t l2page;
l2page = PHYS_TO_VM_PAGE(pmap_pte_pa(l1pte));
l2page->wire_count++;
}
l2map = (pt_entry_t*) ALPHA_PHYS_TO_K0SEG(pmap_pte_pa(l1pte));
pte = &l2map[ptepindex & ((1 << ALPHA_PTSHIFT) - 1)];
}
*pte = pmap_phys_to_pte(ptepa) | PG_KRE | PG_KWE | PG_V;
/*
* Set the page table hint
*/
pmap->pm_ptphint = m;
return m;
}
static vm_page_t
pmap_allocpte(pmap_t pmap, vm_offset_t va)
{
unsigned ptepindex;
pt_entry_t* lev2pte;
vm_page_t m;
/*
* Calculate pagetable page index
*/
ptepindex = va >> (PAGE_SHIFT + ALPHA_PTSHIFT);
retry:
/*
* Get the level2 entry
*/
lev2pte = pmap_lev2pte(pmap, va);
/*
* If the page table page is mapped, we just increment the
* hold count, and activate it.
*/
if (lev2pte && pmap_pte_v(lev2pte)) {
/*
* In order to get the page table page, try the
* hint first.
*/
if (pmap->pm_ptphint &&
(pmap->pm_ptphint->pindex == ptepindex)) {
m = pmap->pm_ptphint;
} else {
m = PHYS_TO_VM_PAGE(pmap_pte_pa(lev2pte));
pmap->pm_ptphint = m;
}
m->wire_count++;
} else {
/*
* Here if the pte page isn't mapped, or if it has been
* deallocated.
*/
m = _pmap_allocpte(pmap, ptepindex);
if (m == NULL)
goto retry;
}
return (m);
}
/***************************************************
* Pmap allocation/deallocation routines.
***************************************************/
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pmap)
{
vm_page_t lev1pg;
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
lev1pg = PHYS_TO_VM_PAGE(pmap_pte_pa(&pmap->pm_lev1[PTLEV1I]));
KASSERT(lev1pg->pindex == NUSERLEV3MAPS + NUSERLEV2MAPS,
("pmap_release: PTLEV1I page has unexpected pindex %ld",
lev1pg->pindex));
mtx_lock_spin(&allpmaps_lock);
LIST_REMOVE(pmap, pm_list);
mtx_unlock_spin(&allpmaps_lock);
/*
* Level1 pages need to have the kernel
* stuff cleared, so they can go into the zero queue also.
*/
bzero(pmap->pm_lev1 + K1SEGLEV1I, nklev2 * PTESIZE);
pmap->pm_lev1[PTLEV1I] = 0;
PMAP_LOCK_DESTROY(pmap);
vm_page_lock_queues();
lev1pg->wire_count--;
atomic_subtract_int(&cnt.v_wire_count, 1);
vm_page_free_zero(lev1pg);
vm_page_unlock_queues();
}
/*
* grow the number of kernel page table entries, if needed
*/
void
pmap_growkernel(vm_offset_t addr)
{
/* XXX come back to this */
struct pmap *pmap;
pt_entry_t* pte;
pt_entry_t newlev1, newlev2;
vm_offset_t pa;
vm_page_t nkpg;
critical_enter();
if (kernel_vm_end == 0) {
kernel_vm_end = VM_MIN_KERNEL_ADDRESS;;
/* Count the level 2 page tables */
nklev2 = 0;
nklev3 = 0;
while (pmap_pte_v(pmap_lev1pte(kernel_pmap, kernel_vm_end))) {
nklev2++;
nklev3 += (1L << ALPHA_PTSHIFT);
kernel_vm_end += ALPHA_L1SIZE;
}
/* Count the level 3 page tables in the last level 2 page table */
kernel_vm_end -= ALPHA_L1SIZE;
nklev3 -= (1 << ALPHA_PTSHIFT);
while (pmap_pte_v(pmap_lev2pte(kernel_pmap, kernel_vm_end))) {
nklev3++;
kernel_vm_end += ALPHA_L2SIZE;
}
}
addr = (addr + ALPHA_L2SIZE) & ~(ALPHA_L2SIZE - 1);
while (kernel_vm_end < addr) {
/*
* If the level 1 pte is invalid, allocate a new level 2 page table
*/
pte = pmap_lev1pte(kernel_pmap, kernel_vm_end);
if (!pmap_pte_v(pte)) {
int pindex = NKLEV3MAPS + pmap_lev1_index(kernel_vm_end) - K1SEGLEV1I;
nkpg = vm_page_alloc(NULL, pindex,
VM_ALLOC_NOOBJ | VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
if (!nkpg)
panic("pmap_growkernel: no memory to grow kernel");
printf("pmap_growkernel: growing to %lx\n", addr);
printf("pmap_growkernel: adding new level2 page table\n");
nklev2++;
pmap_zero_page(nkpg);
pa = VM_PAGE_TO_PHYS(nkpg);
newlev1 = pmap_phys_to_pte(pa)
| PG_V | PG_ASM | PG_KRE | PG_KWE;
mtx_lock_spin(&allpmaps_lock);
LIST_FOREACH(pmap, &allpmaps, pm_list) {
*pmap_lev1pte(pmap, kernel_vm_end) = newlev1;
}
mtx_unlock_spin(&allpmaps_lock);
*pte = newlev1;
pmap_invalidate_all(kernel_pmap);
}
/*
* If the level 2 pte is invalid, allocate a new level 3 page table
*/
pte = pmap_lev2pte(kernel_pmap, kernel_vm_end);
if (pmap_pte_v(pte)) {
kernel_vm_end = (kernel_vm_end + ALPHA_L2SIZE) & ~(ALPHA_L2SIZE - 1);
continue;
}
/*
* This index is bogus, but out of the way
*/
nkpg = vm_page_alloc(NULL, nklev3,
VM_ALLOC_NOOBJ | VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
if (!nkpg)
panic("pmap_growkernel: no memory to grow kernel");
nklev3++;
pmap_zero_page(nkpg);
pa = VM_PAGE_TO_PHYS(nkpg);
newlev2 = pmap_phys_to_pte(pa) | PG_V | PG_ASM | PG_KRE | PG_KWE;
*pte = newlev2;
kernel_vm_end = (kernel_vm_end + ALPHA_L2SIZE) & ~(ALPHA_L2SIZE - 1);
}
critical_exit();
}
/***************************************************
* page management routines.
***************************************************/
/*
* free the pv_entry back to the free list
*/
static PMAP_INLINE void
free_pv_entry(pv_entry_t pv)
{
pv_entry_count--;
uma_zfree(pvzone, pv);
}
/*
* get a new pv_entry, allocating a block from the system
* when needed.
* the memory allocation is performed bypassing the malloc code
* because of the possibility of allocations at interrupt time.
*/
static pv_entry_t
get_pv_entry(void)
{
pv_entry_count++;
if (pv_entry_high_water &&
(pv_entry_count > pv_entry_high_water) &&
(pmap_pagedaemon_waken == 0)) {
pmap_pagedaemon_waken = 1;
wakeup (&vm_pages_needed);
}
return uma_zalloc(pvzone, M_NOWAIT);
}
static int
pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
{
pv_entry_t pv;
int rtval;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
if (pmap == pv->pv_pmap && va == pv->pv_va)
break;
}
} else {
TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
if (va == pv->pv_va)
break;
}
}
rtval = 0;
if (pv) {
rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
m->md.pv_list_count--;
if (TAILQ_FIRST(&m->md.pv_list) == NULL)
vm_page_flag_clear(m, PG_WRITEABLE);
TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
free_pv_entry(pv);
}
return rtval;
}
/*
* Create a pv entry for page at pa for
* (pmap, va).
*/
static void
pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
{
pv_entry_t pv;
pv = get_pv_entry();
pv->pv_va = va;
pv->pv_pmap = pmap;
pv->pv_ptem = mpte;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
m->md.pv_list_count++;
}
/*
* pmap_remove_pte: do the things to unmap a page in a process
*/
static int
pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
{
pt_entry_t oldpte;
vm_page_t m;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldpte = *ptq;
*ptq = 0;
if (oldpte & PG_W)
pmap->pm_stats.wired_count -= 1;
pmap->pm_stats.resident_count -= 1;
if (oldpte & PG_MANAGED) {
m = PHYS_TO_VM_PAGE(pmap_pte_pa(&oldpte));
if ((oldpte & PG_FOW) == 0) {
if (pmap_track_modified(va))
vm_page_dirty(m);
}
if ((oldpte & PG_FOR) == 0)
vm_page_flag_set(m, PG_REFERENCED);
return pmap_remove_entry(pmap, m, va);
} else {
return pmap_unuse_pt(pmap, va, NULL);
}
}
/*
* Remove a single page from a process address space
*/
static void
pmap_remove_page(pmap_t pmap, vm_offset_t va)
{
register pt_entry_t *ptq;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
ptq = pmap_lev3pte(pmap, va);
/*
* if there is no pte for this address, just skip it!!!
*/
if (!ptq || !pmap_pte_v(ptq))
return;
/*
* get a local va for mappings for this pmap.
*/
(void) pmap_remove_pte(pmap, ptq, va);
pmap_invalidate_page(pmap, va);
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
void
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t va, nva;
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pmap->pm_stats.resident_count == 0)
return;
vm_page_lock_queues();
PMAP_LOCK(pmap);
/*
* special handling of removing one page. a very
* common operation and easy to short circuit some
* code.
*/
if (sva + PAGE_SIZE == eva) {
pmap_remove_page(pmap, sva);
goto out;
}
for (va = sva; va < eva; va = nva) {
if (!pmap_pte_v(pmap_lev1pte(pmap, va))) {
nva = alpha_l1trunc(va + ALPHA_L1SIZE);
continue;
}
if (!pmap_pte_v(pmap_lev2pte(pmap, va))) {
nva = alpha_l2trunc(va + ALPHA_L2SIZE);
continue;
}
pmap_remove_page(pmap, va);
nva = va + PAGE_SIZE;
}
out:
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*
* Notes:
* Original versions of this routine were very
* inefficient because they iteratively called
* pmap_remove (slow...)
*/
void
pmap_remove_all(vm_page_t m)
{
register pv_entry_t pv;
pt_entry_t *pte, tpte;
#if defined(PMAP_DIAGNOSTIC)
/*
* XXX this makes pmap_page_protect(NONE) illegal for non-managed
* pages!
*/
if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", VM_PAGE_TO_PHYS(m));
}
#endif
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
PMAP_LOCK(pv->pv_pmap);
pte = pmap_lev3pte(pv->pv_pmap, pv->pv_va);
pv->pv_pmap->pm_stats.resident_count--;
if (pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(m))
panic("pmap_remove_all: pv_table for %lx is inconsistent", VM_PAGE_TO_PHYS(m));
tpte = *pte;
*pte = 0;
if (tpte & PG_W)
pv->pv_pmap->pm_stats.wired_count--;
/*
* Update the vm_page_t clean and reference bits.
*/
if ((tpte & PG_FOW) == 0) {
if (pmap_track_modified(pv->pv_va))
vm_page_dirty(m);
}
if ((tpte & PG_FOR) == 0)
vm_page_flag_set(m, PG_REFERENCED);
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
m->md.pv_list_count--;
pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
PMAP_UNLOCK(pv->pv_pmap);
free_pv_entry(pv);
}
vm_page_flag_clear(m, PG_WRITEABLE);
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
pt_entry_t* pte;
int newprot;
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
pmap_remove(pmap, sva, eva);
return;
}
if (prot & VM_PROT_WRITE)
return;
newprot = pte_prot(pmap, prot);
if ((sva & PAGE_MASK) || (eva & PAGE_MASK))
panic("pmap_protect: unaligned addresses");
vm_page_lock_queues();
PMAP_LOCK(pmap);
while (sva < eva) {
/*
* If level 1 pte is invalid, skip this segment
*/
pte = pmap_lev1pte(pmap, sva);
if (!pmap_pte_v(pte)) {
sva = alpha_l1trunc(sva) + ALPHA_L1SIZE;
continue;
}
/*
* If level 2 pte is invalid, skip this segment
*/
pte = pmap_lev2pte(pmap, sva);
if (!pmap_pte_v(pte)) {
sva = alpha_l2trunc(sva) + ALPHA_L2SIZE;
continue;
}
/*
* If level 3 pte is invalid, skip this page
*/
pte = pmap_lev3pte(pmap, sva);
if (!pmap_pte_v(pte)) {
sva += PAGE_SIZE;
continue;
}
if (pmap_pte_prot(pte) != newprot) {
pt_entry_t oldpte = *pte;
vm_page_t m = NULL;
if ((oldpte & PG_FOR) == 0) {
m = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
vm_page_flag_set(m, PG_REFERENCED);
oldpte |= (PG_FOR | PG_FOE);
}
if ((oldpte & PG_FOW) == 0) {
if (m == NULL)
m = PHYS_TO_VM_PAGE(pmap_pte_pa(pte));
if (pmap_track_modified(sva))
vm_page_dirty(m);
oldpte |= PG_FOW;
}
oldpte = (oldpte & ~PG_PROT) | newprot;
*pte = oldpte;
pmap_invalidate_page(pmap, sva);
}
sva += PAGE_SIZE;
}
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
void
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
boolean_t wired)
{
vm_offset_t pa;
pt_entry_t *pte;
vm_offset_t opa;
pt_entry_t origpte, newpte;
vm_page_t mpte;
int managed;
va &= ~PAGE_MASK;
#ifdef PMAP_DIAGNOSTIC
if (va > VM_MAX_KERNEL_ADDRESS)
panic("pmap_enter: toobig");
#endif
mpte = NULL;
vm_page_lock_queues();
PMAP_LOCK(pmap);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
mpte = pmap_allocpte(pmap, va);
}
pte = pmap_lev3pte(pmap, va);
/*
* Page Directory table entry not valid, we need a new PT page
*/
if (pte == NULL) {
panic("pmap_enter: invalid kernel page tables pmap=%p, va=0x%lx\n", pmap, va);
}
origpte = *pte;
pa = VM_PAGE_TO_PHYS(m);
managed = 0;
opa = pmap_pte_pa(pte);
/*
* Mapping has not changed, must be protection or wiring change.
*/
if (origpte && (opa == pa)) {
/*
* Wiring change, just update stats. We don't worry about
* wiring PT pages as they remain resident as long as there
* are valid mappings in them. Hence, if a user page is wired,
* the PT page will be also.
*/
if (wired && ((origpte & PG_W) == 0))
pmap->pm_stats.wired_count++;
else if (!wired && (origpte & PG_W))
pmap->pm_stats.wired_count--;
/*
* Remove extra pte reference
*/
if (mpte)
mpte->wire_count--;
/*
* We might be turning off write access to the page,
* so we go ahead and sense modify status.
*/
if (origpte & PG_MANAGED) {
if ((origpte & PG_FOW) != PG_FOW
&& pmap_track_modified(va))
vm_page_dirty(m);
}
managed = origpte & PG_MANAGED;
goto validate;
}
/*
* Mapping has changed, invalidate old range and fall through to
* handle validating new mapping.
*/
if (opa) {
int err;
err = pmap_remove_pte(pmap, pte, va);
if (err)
panic("pmap_enter: pte vanished, va: 0x%lx", va);
}
/*
* Enter on the PV list if part of our managed memory. Note that we
* raise IPL while manipulating pv_table since pmap_enter can be
* called at interrupt time.
*/
if (pmap_initialized &&
(m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
pmap_insert_entry(pmap, va, mpte, m);
managed |= PG_MANAGED;
}
/*
* Increment counters
*/
pmap->pm_stats.resident_count++;
if (wired)
pmap->pm_stats.wired_count++;
validate:
/*
* Now validate mapping with desired protection/wiring.
*/
newpte = pmap_phys_to_pte(pa) | pte_prot(pmap, prot) | PG_V | managed;
if (managed) {
/*
* Set up referenced/modified emulation for the new
* mapping. Any old referenced/modified emulation
* results for the old mapping will have been recorded
* either in pmap_remove_pte() or above in the code
* which handles protection and/or wiring changes.
*/
newpte |= (PG_FOR | PG_FOW | PG_FOE);
}
if (wired)
newpte |= PG_W;
/*
* if the mapping or permission bits are different, we need
* to update the pte.
*/
if (origpte != newpte) {
*pte = newpte;
if (origpte)
pmap_invalidate_page(pmap, va);
if (prot & VM_PROT_EXECUTE)
alpha_pal_imb();
}
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
}
/*
* this code makes some *MAJOR* assumptions:
* 1. Current pmap & pmap exists.
* 2. Not wired.
* 3. Read access.
* 4. No page table pages.
* 5. Tlbflush is deferred to calling procedure.
* 6. Page IS managed.
* but is *MUCH* faster than pmap_enter...
*/
vm_page_t
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
{
register pt_entry_t *pte;
int managed;
vm_page_lock_queues();
PMAP_LOCK(pmap);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
unsigned ptepindex;
pt_entry_t* l2pte;
/*
* Calculate lev2 page index
*/
ptepindex = va >> ALPHA_L2SHIFT;
if (mpte && (mpte->pindex == ptepindex)) {
mpte->wire_count++;
} else {
retry:
/*
* Get the level 2 entry
*/
l2pte = pmap_lev2pte(pmap, va);
/*
* If the level 2 page table is mapped, we just increment
* the hold count, and activate it.
*/
if (l2pte && pmap_pte_v(l2pte)) {
if (pmap->pm_ptphint &&
(pmap->pm_ptphint->pindex == ptepindex)) {
mpte = pmap->pm_ptphint;
} else {
mpte = PHYS_TO_VM_PAGE(pmap_pte_pa(l2pte));
pmap->pm_ptphint = mpte;
}
mpte->wire_count++;
} else {
mpte = _pmap_allocpte(pmap, ptepindex);
if (mpte == NULL)
goto retry;
}
}
} else {
mpte = NULL;
}
/*
* This call to vtopte makes the assumption that we are
* entering the page into the current pmap. In order to support
* quick entry into any pmap, one would likely use pmap_pte_quick.
* But that isn't as quick as vtopte.
*/
pte = vtopte(va);
if (*pte) {
if (mpte != NULL) {
pmap_unwire_pte_hold(pmap, va, mpte);
mpte = NULL;
}
goto out;
}
/*
* Enter on the PV list if part of our managed memory. Note that we
* raise IPL while manipulating pv_table since pmap_enter can be
* called at interrupt time.
*/
managed = 0;
if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
pmap_insert_entry(pmap, va, mpte, m);
managed = PG_MANAGED | PG_FOR | PG_FOW | PG_FOE;
}
/*
* Increment counters
*/
pmap->pm_stats.resident_count++;
/*
* Now validate mapping with RO protection
*/
*pte = pmap_phys_to_pte(VM_PAGE_TO_PHYS(m)) | PG_V | PG_KRE | PG_URE | managed;
out:
alpha_pal_imb(); /* XXX overkill? */
vm_page_unlock_queues();
PMAP_UNLOCK(pmap);
return mpte;
}
/*
* Make temporary mapping for a physical address. This is called
* during dump.
*/
void *
pmap_kenter_temporary(vm_offset_t pa, int i)
{
return (void *) ALPHA_PHYS_TO_K0SEG(pa - (i * PAGE_SIZE));
}
/*
* pmap_object_init_pt preloads the ptes for a given object
* into the specified pmap. This eliminates the blast of soft
* faults on process startup and immediately after an mmap.
*/
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
vm_object_t object, vm_pindex_t pindex,
vm_size_t size)
{
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
KASSERT(object->type == OBJT_DEVICE,
("pmap_object_init_pt: non-device object"));
}
/*
* Routine: pmap_change_wiring
* Function: Change the wiring attribute for a map/virtual-address
* pair.
* In/out conditions:
* The mapping must already exist in the pmap.
*/
void
pmap_change_wiring(pmap, va, wired)
register pmap_t pmap;
vm_offset_t va;
boolean_t wired;
{
pt_entry_t *pte;
PMAP_LOCK(pmap);
pte = pmap_lev3pte(pmap, va);
if (wired && !pmap_pte_w(pte))
pmap->pm_stats.wired_count++;
else if (!wired && pmap_pte_w(pte))
pmap->pm_stats.wired_count--;
/*
* Wiring is not a hardware characteristic so there is no need to
* invalidate TLB.
*/
pmap_pte_set_w(pte, wired);
PMAP_UNLOCK(pmap);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
vm_offset_t src_addr)
{
}
/*
* pmap_zero_page zeros the specified hardware page by
* mapping it into virtual memory and using bzero to clear
* its contents.
*/
void
pmap_zero_page(vm_page_t m)
{
vm_offset_t va = ALPHA_PHYS_TO_K0SEG(VM_PAGE_TO_PHYS(m));
bzero((caddr_t) va, PAGE_SIZE);
}
/*
* pmap_zero_page_area zeros the specified hardware page by
* mapping it into virtual memory and using bzero to clear
* its contents.
*
* off and size must reside within a single page.
*/
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
vm_offset_t va = ALPHA_PHYS_TO_K0SEG(VM_PAGE_TO_PHYS(m));
bzero((char *)(caddr_t)va + off, size);
}
/*
* pmap_zero_page_idle zeros the specified hardware page by
* mapping it into virtual memory and using bzero to clear
* its contents. This is for the vm_pagezero idle process.
*/
void
pmap_zero_page_idle(vm_page_t m)
{
vm_offset_t va = ALPHA_PHYS_TO_K0SEG(VM_PAGE_TO_PHYS(m));
bzero((caddr_t) va, PAGE_SIZE);
}
/*
* pmap_copy_page copies the specified (machine independent)
* page by mapping the page into virtual memory and using
* bcopy to copy the page, one machine dependent page at a
* time.
*/
void
pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t src = ALPHA_PHYS_TO_K0SEG(VM_PAGE_TO_PHYS(msrc));
vm_offset_t dst = ALPHA_PHYS_TO_K0SEG(VM_PAGE_TO_PHYS(mdst));
bcopy((caddr_t) src, (caddr_t) dst, PAGE_SIZE);
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
pmap_page_exists_quick(pmap, m)
pmap_t pmap;
vm_page_t m;
{
pv_entry_t pv;
int loops = 0;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
return FALSE;
/*
* Not found, check current mappings returning immediately if found.
*/
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
if (pv->pv_pmap == pmap) {
return TRUE;
}
loops++;
if (loops >= 16)
break;
}
return (FALSE);
}
#define PMAP_REMOVE_PAGES_CURPROC_ONLY
/*
* Remove all pages from specified address space
* this aids process exit speeds. Also, this code
* is special cased for current process only, but
* can have the more generic (and slightly slower)
* mode enabled. This is much faster than pmap_remove
* in the case of running down an entire address space.
*/
void
pmap_remove_pages(pmap, sva, eva)
pmap_t pmap;
vm_offset_t sva, eva;
{
pt_entry_t *pte, tpte;
vm_page_t m;
pv_entry_t pv, npv;
#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
printf("warning: pmap_remove_pages called with non-current pmap\n");
return;
}
#endif
vm_page_lock_queues();
PMAP_LOCK(pmap);
for(pv = TAILQ_FIRST(&pmap->pm_pvlist);
pv;
pv = npv) {
if (pv->pv_va >= eva || pv->pv_va < sva) {
npv = TAILQ_NEXT(pv, pv_plist);
continue;
}
#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
pte = vtopte(pv->pv_va);
#else
pte = pmap_pte_quick(pmap, pv->pv_va);
#endif
if (!pmap_pte_v(pte))
panic("pmap_remove_pages: page on pm_pvlist has no pte\n");
tpte = *pte;
/*
* We cannot remove wired pages from a process' mapping at this time
*/
if (tpte & PG_W) {
npv = TAILQ_NEXT(pv, pv_plist);
continue;
}
*pte = 0;
m = PHYS_TO_VM_PAGE(pmap_pte_pa(&tpte));
pmap->pm_stats.resident_count--;
if ((tpte & PG_FOW) == 0)
if (pmap_track_modified(pv->pv_va))
vm_page_dirty(m);
npv = TAILQ_NEXT(pv, pv_plist);
TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
m->md.pv_list_count--;
TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_flag_clear(m, PG_WRITEABLE);
pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
free_pv_entry(pv);
}
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
vm_page_unlock_queues();
}
/*
* this routine is used to modify bits in ptes
*/
static __inline void
pmap_changebit(vm_page_t m, int bit, boolean_t setem)
{
pv_entry_t pv;
pt_entry_t *pte;
int changed;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
(!setem && bit == (PG_UWE|PG_KWE) &&
(m->flags & PG_WRITEABLE) == 0))
return;
changed = 0;
/*
* Loop over all current mappings setting/clearing as appropos If
* setting RO do we need to clear the VAC?
*/
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
/*
* don't write protect pager mappings
*/
if (!setem && bit == (PG_UWE|PG_KWE)) {
if (!pmap_track_modified(pv->pv_va))
continue;
}
#if defined(PMAP_DIAGNOSTIC)
if (!pv->pv_pmap) {
printf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
continue;
}
#endif
PMAP_LOCK(pv->pv_pmap);
pte = pmap_lev3pte(pv->pv_pmap, pv->pv_va);
changed = 0;
if (setem) {
*pte |= bit;
changed = 1;
} else {
pt_entry_t pbits = *pte;
if (pbits & bit) {
changed = 1;
*pte = pbits & ~bit;
}
}
if (changed)
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
PMAP_UNLOCK(pv->pv_pmap);
}
if (!setem && bit == (PG_UWE|PG_KWE))
vm_page_flag_clear(m, PG_WRITEABLE);
}
/*
* pmap_page_protect:
*
* Lower the permission for all mappings to a given page.
*/
void
pmap_page_protect(vm_page_t m, vm_prot_t prot)
{
if ((prot & VM_PROT_WRITE) == 0) {
if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
pmap_changebit(m, PG_KWE|PG_UWE, FALSE);
} else {
pmap_remove_all(m);
}
}
}
/*
* pmap_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
int
pmap_ts_referenced(vm_page_t m)
{
pv_entry_t pv;
pt_entry_t *pte;
int count;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
return 0;
/*
* Loop over current mappings looking for any which have don't
* have PG_FOR set (i.e. ones where we have taken an emulate
* reference trap recently).
*/
count = 0;
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
PMAP_LOCK(pv->pv_pmap);
pte = pmap_lev3pte(pv->pv_pmap, pv->pv_va);
if (!(*pte & PG_FOR)) {
count++;
*pte |= PG_FOR | PG_FOE;
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
}
PMAP_UNLOCK(pv->pv_pmap);
}
return count;
}
/*
* pmap_is_modified:
*
* Return whether or not the specified physical page was modified
* in any physical maps.
*/
boolean_t
pmap_is_modified(vm_page_t m)
{
pv_entry_t pv;
pt_entry_t *pte;
boolean_t rv;
rv = FALSE;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
return (rv);
/*
* A page is modified if any mapping has had its PG_FOW flag
* cleared.
*/
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
PMAP_LOCK(pv->pv_pmap);
pte = pmap_lev3pte(pv->pv_pmap, pv->pv_va);
rv = !(*pte & PG_FOW);
PMAP_UNLOCK(pv->pv_pmap);
if (rv)
break;
}
return (rv);
}
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is elgible
* for prefault.
*/
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
pt_entry_t *pte;
boolean_t rv;
rv = FALSE;
PMAP_LOCK(pmap);
if (pmap_pte_v(pmap_lev1pte(pmap, addr)) &&
pmap_pte_v(pmap_lev2pte(pmap, addr))) {
pte = vtopte(addr);
rv = *pte == 0;
}
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Clear the modify bits on the specified physical page.
*/
void
pmap_clear_modify(vm_page_t m)
{
pv_entry_t pv;
pt_entry_t *pte;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
return;
/*
* Loop over current mappings setting PG_FOW where needed.
*/
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
PMAP_LOCK(pv->pv_pmap);
pte = pmap_lev3pte(pv->pv_pmap, pv->pv_va);
if (!(*pte & PG_FOW)) {
*pte |= PG_FOW;
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
}
PMAP_UNLOCK(pv->pv_pmap);
}
}
/*
* pmap_clear_reference:
*
* Clear the reference bit on the specified physical page.
*/
void
pmap_clear_reference(vm_page_t m)
{
pv_entry_t pv;
pt_entry_t *pte;
if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
return;
/*
* Loop over current mappings setting PG_FOR and PG_FOE where needed.
*/
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
PMAP_LOCK(pv->pv_pmap);
pte = pmap_lev3pte(pv->pv_pmap, pv->pv_va);
if (!(*pte & (PG_FOR | PG_FOE))) {
*pte |= (PG_FOR | PG_FOE);
pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
}
PMAP_UNLOCK(pv->pv_pmap);
}
}
/*
* pmap_emulate_reference:
*
* Emulate reference and/or modified bit hits.
* From NetBSD
*/
void
pmap_emulate_reference(struct vmspace *vm, vm_offset_t v, int user, int write)
{
pmap_t pmap;
pt_entry_t *pte;
/*
* Convert process and virtual address to physical address.
*/
if (v >= VM_MIN_KERNEL_ADDRESS) {
if (user)
panic("pmap_emulate_reference: user ref to kernel");
pmap = kernel_pmap;
PMAP_LOCK(pmap);
pte = vtopte(v);
} else {
KASSERT(vm != NULL, ("pmap_emulate_reference: bad vmspace"));
pmap = &vm->vm_pmap;
PMAP_LOCK(pmap);
pte = pmap_lev3pte(pmap, v);
}
/*
* Another CPU can modify the pmap between the emulation trap and this
* CPU locking the pmap. As a result, the pte may be inconsistent
* with the access that caused the emulation trap. In such cases,
* invalidate this CPU's TLB entry and return.
*/
if (!pmap_pte_v(pte))
goto tbis;
/*
* Twiddle the appropriate bits to reflect the reference
* and/or modification..
*
* The rules:
* (1) always mark page as used, and
* (2) if it was a write fault, mark page as modified.
*/
if (write) {
if (!(*pte & (user ? PG_UWE : PG_UWE | PG_KWE)))
goto tbis;
if (!(*pte & PG_FOW))
goto tbis;
*pte &= ~(PG_FOR | PG_FOE | PG_FOW);
} else {
if (!(*pte & (user ? PG_URE : PG_URE | PG_KRE)))
goto tbis;
if (!(*pte & (PG_FOR | PG_FOE)))
goto tbis;
*pte &= ~(PG_FOR | PG_FOE);
}
tbis:
ALPHA_TBIS(v);
PMAP_UNLOCK(pmap);
}
/*
* Miscellaneous support routines follow
*/
static void
alpha_protection_init()
{
int prot, *kp, *up;
kp = protection_codes[0];
up = protection_codes[1];
for (prot = 0; prot < 8; prot++) {
switch (prot) {
case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
*kp++ = PG_ASM;
*up++ = 0;
break;
case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
*kp++ = PG_ASM | PG_KRE;
*up++ = PG_URE | PG_KRE;
break;
case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
*kp++ = PG_ASM | PG_KWE;
*up++ = PG_UWE | PG_KWE;
break;
case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
*kp++ = PG_ASM | PG_KWE | PG_KRE;
*up++ = PG_UWE | PG_URE | PG_KWE | PG_KRE;
break;
}
}
}
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
pmap_mapdev(pa, size)
vm_offset_t pa;
vm_size_t size;
{
return (void*) ALPHA_PHYS_TO_K0SEG(pa);
}
void
pmap_unmapdev(va, size)
vm_offset_t va;
vm_size_t size;
{
}
/*
* perform the pmap work for mincore
*/
int
pmap_mincore(pmap, addr)
pmap_t pmap;
vm_offset_t addr;
{
pt_entry_t *ptep, pte;
int val = 0;
PMAP_LOCK(pmap);
ptep = pmap_lev3pte(pmap, addr);
pte = (ptep != NULL) ? *ptep : 0;
PMAP_UNLOCK(pmap);
if (pte & PG_V) {
vm_page_t m;
vm_offset_t pa;
val = MINCORE_INCORE;
if ((pte & PG_MANAGED) == 0)
return val;
pa = alpha_ptob(ALPHA_PTE_TO_PFN(pte));
m = PHYS_TO_VM_PAGE(pa);
/*
* Modified by us
*/
if ((pte & PG_FOW) == 0)
val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
else {
/*
* Modified by someone
*/
vm_page_lock_queues();
if (m->dirty || pmap_is_modified(m))
val |= MINCORE_MODIFIED_OTHER;
vm_page_unlock_queues();
}
/*
* Referenced by us
*/
if ((pte & (PG_FOR | PG_FOE)) == 0)
val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
else {
/*
* Referenced by someone
*/
vm_page_lock_queues();
if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
val |= MINCORE_REFERENCED_OTHER;
vm_page_flag_set(m, PG_REFERENCED);
}
vm_page_unlock_queues();
}
}
return val;
}
void
pmap_activate(struct thread *td)
{
pmap_t pmap;
pmap = vmspace_pmap(td->td_proc->p_vmspace);
critical_enter();
if (pmap_active[PCPU_GET(cpuid)] && pmap != pmap_active[PCPU_GET(cpuid)]) {
atomic_clear_32(&pmap_active[PCPU_GET(cpuid)]->pm_active,
PCPU_GET(cpumask));
pmap_active[PCPU_GET(cpuid)] = 0;
}
td->td_pcb->pcb_hw.apcb_ptbr =
ALPHA_K0SEG_TO_PHYS((vm_offset_t) pmap->pm_lev1) >> PAGE_SHIFT;
if (pmap->pm_asn[PCPU_GET(cpuid)].gen != PCPU_GET(current_asngen))
pmap_get_asn(pmap);
pmap_active[PCPU_GET(cpuid)] = pmap;
atomic_set_32(&pmap->pm_active, PCPU_GET(cpumask));
td->td_pcb->pcb_hw.apcb_asn = pmap->pm_asn[PCPU_GET(cpuid)].asn;
critical_exit();
if (td == curthread) {
alpha_pal_swpctx((u_long)td->td_md.md_pcbpaddr);
}
}
void
pmap_deactivate(struct thread *td)
{
pmap_t pmap;
pmap = vmspace_pmap(td->td_proc->p_vmspace);
atomic_clear_32(&pmap->pm_active, PCPU_GET(cpumask));
pmap_active[PCPU_GET(cpuid)] = 0;
}
vm_offset_t
pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
{
return addr;
}
#if 0
#if defined(PMAP_DEBUG)
pmap_pid_dump(int pid)
{
pmap_t pmap;
struct proc *p;
int npte = 0;
int index;
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
if (p->p_pid != pid)
continue;
if (p->p_vmspace) {
int i,j;
index = 0;
pmap = vmspace_pmap(p->p_vmspace);
for (i = 0; i < NPDEPG; i++) {
pd_entry_t *pde;
pt_entry_t *pte;
vm_offset_t base = i << PDRSHIFT;
pde = &pmap->pm_pdir[i];
if (pde && pmap_pde_v(pde)) {
for (j = 0; j < NPTEPG; j++) {
vm_offset_t va = base + (j << PAGE_SHIFT);
if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
if (index) {
index = 0;
printf("\n");
}
sx_sunlock(&allproc_lock);
return npte;
}
pte = pmap_pte_quick(pmap, va);
if (pte && pmap_pte_v(pte)) {
vm_offset_t pa;
vm_page_t m;
pa = *(int *)pte;
m = PHYS_TO_VM_PAGE(pa);
printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
va, pa, m->hold_count, m->wire_count, m->flags);
npte++;
index++;
if (index >= 2) {
index = 0;
printf("\n");
} else {
printf(" ");
}
}
}
}
}
}
}
sx_sunlock(&allproc_lock);
return npte;
}
#endif
#if defined(DEBUG)
static void pads(pmap_t pm);
void pmap_pvdump(vm_offset_t pa);
/* print address space of pmap*/
static void
pads(pm)
pmap_t pm;
{
int i, j;
vm_offset_t va;
pt_entry_t *ptep;
if (pm == kernel_pmap)
return;
for (i = 0; i < NPDEPG; i++)
if (pm->pm_pdir[i])
for (j = 0; j < NPTEPG; j++) {
va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
if (pm == kernel_pmap && va < KERNBASE)
continue;
if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
continue;
ptep = pmap_pte_quick(pm, va);
if (pmap_pte_v(ptep))
printf("%x:%x ", va, *(int *) ptep);
};
}
void
pmap_pvdump(pa)
vm_offset_t pa;
{
pv_entry_t pv;
vm_page_t m;
printf("pa %x", pa);
m = PHYS_TO_VM_PAGE(pa);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
pads(pv->pv_pmap);
}
printf(" ");
}
#endif
#endif