de4ecca213
transparent layering and better fragmentation. - Normalize functions that allocate memory to use kmem_* - Those that allocate address space are named kva_* - Those that operate on maps are named kmap_* - Implement recursive allocation handling for kmem_arena in vmem. Reviewed by: alc Tested by: pho Sponsored by: EMC / Isilon Storage Division
1588 lines
38 KiB
C
1588 lines
38 KiB
C
/*-
|
|
* Copyright (c) 1996, by Steve Passe
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. The name of the developer may NOT be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_apic.h"
|
|
#include "opt_cpu.h"
|
|
#include "opt_kstack_pages.h"
|
|
#include "opt_pmap.h"
|
|
#include "opt_sched.h"
|
|
#include "opt_smp.h"
|
|
|
|
#if !defined(lint)
|
|
#if !defined(SMP)
|
|
#error How did you get here?
|
|
#endif
|
|
|
|
#ifndef DEV_APIC
|
|
#error The apic device is required for SMP, add "device apic" to your config file.
|
|
#endif
|
|
#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
|
|
#error SMP not supported with CPU_DISABLE_CMPXCHG
|
|
#endif
|
|
#endif /* not lint */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cons.h> /* cngetc() */
|
|
#include <sys/cpuset.h>
|
|
#ifdef GPROF
|
|
#include <sys/gmon.h>
|
|
#endif
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/memrange.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <x86/apicreg.h>
|
|
#include <machine/clock.h>
|
|
#include <machine/cputypes.h>
|
|
#include <x86/mca.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/smp.h>
|
|
#include <machine/specialreg.h>
|
|
|
|
#define WARMBOOT_TARGET 0
|
|
#define WARMBOOT_OFF (KERNBASE + 0x0467)
|
|
#define WARMBOOT_SEG (KERNBASE + 0x0469)
|
|
|
|
#define CMOS_REG (0x70)
|
|
#define CMOS_DATA (0x71)
|
|
#define BIOS_RESET (0x0f)
|
|
#define BIOS_WARM (0x0a)
|
|
|
|
/*
|
|
* this code MUST be enabled here and in mpboot.s.
|
|
* it follows the very early stages of AP boot by placing values in CMOS ram.
|
|
* it NORMALLY will never be needed and thus the primitive method for enabling.
|
|
*
|
|
#define CHECK_POINTS
|
|
*/
|
|
|
|
#if defined(CHECK_POINTS) && !defined(PC98)
|
|
#define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
|
|
#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
|
|
|
|
#define CHECK_INIT(D); \
|
|
CHECK_WRITE(0x34, (D)); \
|
|
CHECK_WRITE(0x35, (D)); \
|
|
CHECK_WRITE(0x36, (D)); \
|
|
CHECK_WRITE(0x37, (D)); \
|
|
CHECK_WRITE(0x38, (D)); \
|
|
CHECK_WRITE(0x39, (D));
|
|
|
|
#define CHECK_PRINT(S); \
|
|
printf("%s: %d, %d, %d, %d, %d, %d\n", \
|
|
(S), \
|
|
CHECK_READ(0x34), \
|
|
CHECK_READ(0x35), \
|
|
CHECK_READ(0x36), \
|
|
CHECK_READ(0x37), \
|
|
CHECK_READ(0x38), \
|
|
CHECK_READ(0x39));
|
|
|
|
#else /* CHECK_POINTS */
|
|
|
|
#define CHECK_INIT(D)
|
|
#define CHECK_PRINT(S)
|
|
#define CHECK_WRITE(A, D)
|
|
|
|
#endif /* CHECK_POINTS */
|
|
|
|
/* lock region used by kernel profiling */
|
|
int mcount_lock;
|
|
|
|
int mp_naps; /* # of Applications processors */
|
|
int boot_cpu_id = -1; /* designated BSP */
|
|
|
|
extern struct pcpu __pcpu[];
|
|
|
|
/* AP uses this during bootstrap. Do not staticize. */
|
|
char *bootSTK;
|
|
static int bootAP;
|
|
|
|
/* Free these after use */
|
|
void *bootstacks[MAXCPU];
|
|
static void *dpcpu;
|
|
|
|
struct pcb stoppcbs[MAXCPU];
|
|
struct pcb **susppcbs = NULL;
|
|
|
|
/* Variables needed for SMP tlb shootdown. */
|
|
vm_offset_t smp_tlb_addr1;
|
|
vm_offset_t smp_tlb_addr2;
|
|
volatile int smp_tlb_wait;
|
|
|
|
#ifdef COUNT_IPIS
|
|
/* Interrupt counts. */
|
|
static u_long *ipi_preempt_counts[MAXCPU];
|
|
static u_long *ipi_ast_counts[MAXCPU];
|
|
u_long *ipi_invltlb_counts[MAXCPU];
|
|
u_long *ipi_invlrng_counts[MAXCPU];
|
|
u_long *ipi_invlpg_counts[MAXCPU];
|
|
u_long *ipi_invlcache_counts[MAXCPU];
|
|
u_long *ipi_rendezvous_counts[MAXCPU];
|
|
u_long *ipi_lazypmap_counts[MAXCPU];
|
|
static u_long *ipi_hardclock_counts[MAXCPU];
|
|
#endif
|
|
|
|
/*
|
|
* Local data and functions.
|
|
*/
|
|
|
|
static volatile cpuset_t ipi_nmi_pending;
|
|
|
|
/* used to hold the AP's until we are ready to release them */
|
|
static struct mtx ap_boot_mtx;
|
|
|
|
/* Set to 1 once we're ready to let the APs out of the pen. */
|
|
static volatile int aps_ready = 0;
|
|
|
|
/*
|
|
* Store data from cpu_add() until later in the boot when we actually setup
|
|
* the APs.
|
|
*/
|
|
struct cpu_info {
|
|
int cpu_present:1;
|
|
int cpu_bsp:1;
|
|
int cpu_disabled:1;
|
|
int cpu_hyperthread:1;
|
|
} static cpu_info[MAX_APIC_ID + 1];
|
|
int cpu_apic_ids[MAXCPU];
|
|
int apic_cpuids[MAX_APIC_ID + 1];
|
|
|
|
/* Holds pending bitmap based IPIs per CPU */
|
|
static volatile u_int cpu_ipi_pending[MAXCPU];
|
|
|
|
static u_int boot_address;
|
|
static int cpu_logical; /* logical cpus per core */
|
|
static int cpu_cores; /* cores per package */
|
|
|
|
static void assign_cpu_ids(void);
|
|
static void install_ap_tramp(void);
|
|
static void set_interrupt_apic_ids(void);
|
|
static int start_all_aps(void);
|
|
static int start_ap(int apic_id);
|
|
static void release_aps(void *dummy);
|
|
|
|
static u_int hyperthreading_cpus; /* logical cpus sharing L1 cache */
|
|
static int hyperthreading_allowed = 1;
|
|
|
|
static void
|
|
mem_range_AP_init(void)
|
|
{
|
|
if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
|
|
mem_range_softc.mr_op->initAP(&mem_range_softc);
|
|
}
|
|
|
|
static void
|
|
topo_probe_amd(void)
|
|
{
|
|
int core_id_bits;
|
|
int id;
|
|
|
|
/* AMD processors do not support HTT. */
|
|
cpu_logical = 1;
|
|
|
|
if ((amd_feature2 & AMDID2_CMP) == 0) {
|
|
cpu_cores = 1;
|
|
return;
|
|
}
|
|
|
|
core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
|
|
AMDID_COREID_SIZE_SHIFT;
|
|
if (core_id_bits == 0) {
|
|
cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
|
|
return;
|
|
}
|
|
|
|
/* Fam 10h and newer should get here. */
|
|
for (id = 0; id <= MAX_APIC_ID; id++) {
|
|
/* Check logical CPU availability. */
|
|
if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
|
|
continue;
|
|
/* Check if logical CPU has the same package ID. */
|
|
if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
|
|
continue;
|
|
cpu_cores++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Round up to the next power of two, if necessary, and then
|
|
* take log2.
|
|
* Returns -1 if argument is zero.
|
|
*/
|
|
static __inline int
|
|
mask_width(u_int x)
|
|
{
|
|
|
|
return (fls(x << (1 - powerof2(x))) - 1);
|
|
}
|
|
|
|
static void
|
|
topo_probe_0x4(void)
|
|
{
|
|
u_int p[4];
|
|
int pkg_id_bits;
|
|
int core_id_bits;
|
|
int max_cores;
|
|
int max_logical;
|
|
int id;
|
|
|
|
/* Both zero and one here mean one logical processor per package. */
|
|
max_logical = (cpu_feature & CPUID_HTT) != 0 ?
|
|
(cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
|
|
if (max_logical <= 1)
|
|
return;
|
|
|
|
/*
|
|
* Because of uniformity assumption we examine only
|
|
* those logical processors that belong to the same
|
|
* package as BSP. Further, we count number of
|
|
* logical processors that belong to the same core
|
|
* as BSP thus deducing number of threads per core.
|
|
*/
|
|
if (cpu_high >= 0x4) {
|
|
cpuid_count(0x04, 0, p);
|
|
max_cores = ((p[0] >> 26) & 0x3f) + 1;
|
|
} else
|
|
max_cores = 1;
|
|
core_id_bits = mask_width(max_logical/max_cores);
|
|
if (core_id_bits < 0)
|
|
return;
|
|
pkg_id_bits = core_id_bits + mask_width(max_cores);
|
|
|
|
for (id = 0; id <= MAX_APIC_ID; id++) {
|
|
/* Check logical CPU availability. */
|
|
if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
|
|
continue;
|
|
/* Check if logical CPU has the same package ID. */
|
|
if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
|
|
continue;
|
|
cpu_cores++;
|
|
/* Check if logical CPU has the same package and core IDs. */
|
|
if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
|
|
cpu_logical++;
|
|
}
|
|
|
|
KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
|
|
("topo_probe_0x4 couldn't find BSP"));
|
|
|
|
cpu_cores /= cpu_logical;
|
|
hyperthreading_cpus = cpu_logical;
|
|
}
|
|
|
|
static void
|
|
topo_probe_0xb(void)
|
|
{
|
|
u_int p[4];
|
|
int bits;
|
|
int cnt;
|
|
int i;
|
|
int logical;
|
|
int type;
|
|
int x;
|
|
|
|
/* We only support three levels for now. */
|
|
for (i = 0; i < 3; i++) {
|
|
cpuid_count(0x0b, i, p);
|
|
|
|
/* Fall back if CPU leaf 11 doesn't really exist. */
|
|
if (i == 0 && p[1] == 0) {
|
|
topo_probe_0x4();
|
|
return;
|
|
}
|
|
|
|
bits = p[0] & 0x1f;
|
|
logical = p[1] &= 0xffff;
|
|
type = (p[2] >> 8) & 0xff;
|
|
if (type == 0 || logical == 0)
|
|
break;
|
|
/*
|
|
* Because of uniformity assumption we examine only
|
|
* those logical processors that belong to the same
|
|
* package as BSP.
|
|
*/
|
|
for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
|
|
if (!cpu_info[x].cpu_present ||
|
|
cpu_info[x].cpu_disabled)
|
|
continue;
|
|
if (x >> bits == boot_cpu_id >> bits)
|
|
cnt++;
|
|
}
|
|
if (type == CPUID_TYPE_SMT)
|
|
cpu_logical = cnt;
|
|
else if (type == CPUID_TYPE_CORE)
|
|
cpu_cores = cnt;
|
|
}
|
|
if (cpu_logical == 0)
|
|
cpu_logical = 1;
|
|
cpu_cores /= cpu_logical;
|
|
}
|
|
|
|
/*
|
|
* Both topology discovery code and code that consumes topology
|
|
* information assume top-down uniformity of the topology.
|
|
* That is, all physical packages must be identical and each
|
|
* core in a package must have the same number of threads.
|
|
* Topology information is queried only on BSP, on which this
|
|
* code runs and for which it can query CPUID information.
|
|
* Then topology is extrapolated on all packages using the
|
|
* uniformity assumption.
|
|
*/
|
|
static void
|
|
topo_probe(void)
|
|
{
|
|
static int cpu_topo_probed = 0;
|
|
|
|
if (cpu_topo_probed)
|
|
return;
|
|
|
|
CPU_ZERO(&logical_cpus_mask);
|
|
if (mp_ncpus <= 1)
|
|
cpu_cores = cpu_logical = 1;
|
|
else if (cpu_vendor_id == CPU_VENDOR_AMD)
|
|
topo_probe_amd();
|
|
else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
|
|
/*
|
|
* See Intel(R) 64 Architecture Processor
|
|
* Topology Enumeration article for details.
|
|
*
|
|
* Note that 0x1 <= cpu_high < 4 case should be
|
|
* compatible with topo_probe_0x4() logic when
|
|
* CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
|
|
* or it should trigger the fallback otherwise.
|
|
*/
|
|
if (cpu_high >= 0xb)
|
|
topo_probe_0xb();
|
|
else if (cpu_high >= 0x1)
|
|
topo_probe_0x4();
|
|
}
|
|
|
|
/*
|
|
* Fallback: assume each logical CPU is in separate
|
|
* physical package. That is, no multi-core, no SMT.
|
|
*/
|
|
if (cpu_cores == 0 || cpu_logical == 0)
|
|
cpu_cores = cpu_logical = 1;
|
|
cpu_topo_probed = 1;
|
|
}
|
|
|
|
struct cpu_group *
|
|
cpu_topo(void)
|
|
{
|
|
int cg_flags;
|
|
|
|
/*
|
|
* Determine whether any threading flags are
|
|
* necessry.
|
|
*/
|
|
topo_probe();
|
|
if (cpu_logical > 1 && hyperthreading_cpus)
|
|
cg_flags = CG_FLAG_HTT;
|
|
else if (cpu_logical > 1)
|
|
cg_flags = CG_FLAG_SMT;
|
|
else
|
|
cg_flags = 0;
|
|
if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
|
|
printf("WARNING: Non-uniform processors.\n");
|
|
printf("WARNING: Using suboptimal topology.\n");
|
|
return (smp_topo_none());
|
|
}
|
|
/*
|
|
* No multi-core or hyper-threaded.
|
|
*/
|
|
if (cpu_logical * cpu_cores == 1)
|
|
return (smp_topo_none());
|
|
/*
|
|
* Only HTT no multi-core.
|
|
*/
|
|
if (cpu_logical > 1 && cpu_cores == 1)
|
|
return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
|
|
/*
|
|
* Only multi-core no HTT.
|
|
*/
|
|
if (cpu_cores > 1 && cpu_logical == 1)
|
|
return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
|
|
/*
|
|
* Both HTT and multi-core.
|
|
*/
|
|
return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
|
|
CG_SHARE_L1, cpu_logical, cg_flags));
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate usable address in base memory for AP trampoline code.
|
|
*/
|
|
u_int
|
|
mp_bootaddress(u_int basemem)
|
|
{
|
|
|
|
boot_address = trunc_page(basemem); /* round down to 4k boundary */
|
|
if ((basemem - boot_address) < bootMP_size)
|
|
boot_address -= PAGE_SIZE; /* not enough, lower by 4k */
|
|
|
|
return boot_address;
|
|
}
|
|
|
|
void
|
|
cpu_add(u_int apic_id, char boot_cpu)
|
|
{
|
|
|
|
if (apic_id > MAX_APIC_ID) {
|
|
panic("SMP: APIC ID %d too high", apic_id);
|
|
return;
|
|
}
|
|
KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
|
|
apic_id));
|
|
cpu_info[apic_id].cpu_present = 1;
|
|
if (boot_cpu) {
|
|
KASSERT(boot_cpu_id == -1,
|
|
("CPU %d claims to be BSP, but CPU %d already is", apic_id,
|
|
boot_cpu_id));
|
|
boot_cpu_id = apic_id;
|
|
cpu_info[apic_id].cpu_bsp = 1;
|
|
}
|
|
if (mp_ncpus < MAXCPU) {
|
|
mp_ncpus++;
|
|
mp_maxid = mp_ncpus - 1;
|
|
}
|
|
if (bootverbose)
|
|
printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
|
|
"AP");
|
|
}
|
|
|
|
void
|
|
cpu_mp_setmaxid(void)
|
|
{
|
|
|
|
/*
|
|
* mp_maxid should be already set by calls to cpu_add().
|
|
* Just sanity check its value here.
|
|
*/
|
|
if (mp_ncpus == 0)
|
|
KASSERT(mp_maxid == 0,
|
|
("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
|
|
else if (mp_ncpus == 1)
|
|
mp_maxid = 0;
|
|
else
|
|
KASSERT(mp_maxid >= mp_ncpus - 1,
|
|
("%s: counters out of sync: max %d, count %d", __func__,
|
|
mp_maxid, mp_ncpus));
|
|
}
|
|
|
|
int
|
|
cpu_mp_probe(void)
|
|
{
|
|
|
|
/*
|
|
* Always record BSP in CPU map so that the mbuf init code works
|
|
* correctly.
|
|
*/
|
|
CPU_SETOF(0, &all_cpus);
|
|
if (mp_ncpus == 0) {
|
|
/*
|
|
* No CPUs were found, so this must be a UP system. Setup
|
|
* the variables to represent a system with a single CPU
|
|
* with an id of 0.
|
|
*/
|
|
mp_ncpus = 1;
|
|
return (0);
|
|
}
|
|
|
|
/* At least one CPU was found. */
|
|
if (mp_ncpus == 1) {
|
|
/*
|
|
* One CPU was found, so this must be a UP system with
|
|
* an I/O APIC.
|
|
*/
|
|
mp_maxid = 0;
|
|
return (0);
|
|
}
|
|
|
|
/* At least two CPUs were found. */
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Initialize the IPI handlers and start up the AP's.
|
|
*/
|
|
void
|
|
cpu_mp_start(void)
|
|
{
|
|
int i;
|
|
|
|
/* Initialize the logical ID to APIC ID table. */
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
cpu_apic_ids[i] = -1;
|
|
cpu_ipi_pending[i] = 0;
|
|
}
|
|
|
|
/* Install an inter-CPU IPI for TLB invalidation */
|
|
setidt(IPI_INVLTLB, IDTVEC(invltlb),
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IPI_INVLPG, IDTVEC(invlpg),
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
setidt(IPI_INVLRNG, IDTVEC(invlrng),
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* Install an inter-CPU IPI for cache invalidation. */
|
|
setidt(IPI_INVLCACHE, IDTVEC(invlcache),
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* Install an inter-CPU IPI for lazy pmap release */
|
|
setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* Install an inter-CPU IPI for all-CPU rendezvous */
|
|
setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* Install generic inter-CPU IPI handler */
|
|
setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* Install an inter-CPU IPI for CPU stop/restart */
|
|
setidt(IPI_STOP, IDTVEC(cpustop),
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* Install an inter-CPU IPI for CPU suspend/resume */
|
|
setidt(IPI_SUSPEND, IDTVEC(cpususpend),
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* Set boot_cpu_id if needed. */
|
|
if (boot_cpu_id == -1) {
|
|
boot_cpu_id = PCPU_GET(apic_id);
|
|
cpu_info[boot_cpu_id].cpu_bsp = 1;
|
|
} else
|
|
KASSERT(boot_cpu_id == PCPU_GET(apic_id),
|
|
("BSP's APIC ID doesn't match boot_cpu_id"));
|
|
|
|
/* Probe logical/physical core configuration. */
|
|
topo_probe();
|
|
|
|
assign_cpu_ids();
|
|
|
|
/* Start each Application Processor */
|
|
start_all_aps();
|
|
|
|
set_interrupt_apic_ids();
|
|
}
|
|
|
|
|
|
/*
|
|
* Print various information about the SMP system hardware and setup.
|
|
*/
|
|
void
|
|
cpu_mp_announce(void)
|
|
{
|
|
const char *hyperthread;
|
|
int i;
|
|
|
|
printf("FreeBSD/SMP: %d package(s) x %d core(s)",
|
|
mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
|
|
if (hyperthreading_cpus > 1)
|
|
printf(" x %d HTT threads", cpu_logical);
|
|
else if (cpu_logical > 1)
|
|
printf(" x %d SMT threads", cpu_logical);
|
|
printf("\n");
|
|
|
|
/* List active CPUs first. */
|
|
printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
|
|
for (i = 1; i < mp_ncpus; i++) {
|
|
if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
|
|
hyperthread = "/HT";
|
|
else
|
|
hyperthread = "";
|
|
printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
|
|
cpu_apic_ids[i]);
|
|
}
|
|
|
|
/* List disabled CPUs last. */
|
|
for (i = 0; i <= MAX_APIC_ID; i++) {
|
|
if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
|
|
continue;
|
|
if (cpu_info[i].cpu_hyperthread)
|
|
hyperthread = "/HT";
|
|
else
|
|
hyperthread = "";
|
|
printf(" cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
|
|
i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* AP CPU's call this to initialize themselves.
|
|
*/
|
|
void
|
|
init_secondary(void)
|
|
{
|
|
struct pcpu *pc;
|
|
vm_offset_t addr;
|
|
int gsel_tss;
|
|
int x, myid;
|
|
u_int cpuid, cr0;
|
|
|
|
/* bootAP is set in start_ap() to our ID. */
|
|
myid = bootAP;
|
|
|
|
/* Get per-cpu data */
|
|
pc = &__pcpu[myid];
|
|
|
|
/* prime data page for it to use */
|
|
pcpu_init(pc, myid, sizeof(struct pcpu));
|
|
dpcpu_init(dpcpu, myid);
|
|
pc->pc_apic_id = cpu_apic_ids[myid];
|
|
pc->pc_prvspace = pc;
|
|
pc->pc_curthread = 0;
|
|
|
|
gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
|
|
gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
|
|
|
|
for (x = 0; x < NGDT; x++) {
|
|
ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
|
|
}
|
|
|
|
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
|
|
r_gdt.rd_base = (int) &gdt[myid * NGDT];
|
|
lgdt(&r_gdt); /* does magic intra-segment return */
|
|
|
|
lidt(&r_idt);
|
|
|
|
lldt(_default_ldt);
|
|
PCPU_SET(currentldt, _default_ldt);
|
|
|
|
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
|
|
gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
|
|
PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
|
|
PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
|
|
PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
|
|
PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
|
|
PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
|
|
ltr(gsel_tss);
|
|
|
|
PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
|
|
|
|
/*
|
|
* Set to a known state:
|
|
* Set by mpboot.s: CR0_PG, CR0_PE
|
|
* Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
|
|
*/
|
|
cr0 = rcr0();
|
|
cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
|
|
load_cr0(cr0);
|
|
CHECK_WRITE(0x38, 5);
|
|
|
|
/* Disable local APIC just to be sure. */
|
|
lapic_disable();
|
|
|
|
/* signal our startup to the BSP. */
|
|
mp_naps++;
|
|
CHECK_WRITE(0x39, 6);
|
|
|
|
/* Spin until the BSP releases the AP's. */
|
|
while (!aps_ready)
|
|
ia32_pause();
|
|
|
|
/* BSP may have changed PTD while we were waiting */
|
|
invltlb();
|
|
for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
|
|
invlpg(addr);
|
|
|
|
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
|
|
lidt(&r_idt);
|
|
#endif
|
|
|
|
/* Initialize the PAT MSR if present. */
|
|
pmap_init_pat();
|
|
|
|
/* set up CPU registers and state */
|
|
cpu_setregs();
|
|
|
|
/* set up FPU state on the AP */
|
|
npxinit();
|
|
|
|
/* set up SSE registers */
|
|
enable_sse();
|
|
|
|
#ifdef PAE
|
|
/* Enable the PTE no-execute bit. */
|
|
if ((amd_feature & AMDID_NX) != 0) {
|
|
uint64_t msr;
|
|
|
|
msr = rdmsr(MSR_EFER) | EFER_NXE;
|
|
wrmsr(MSR_EFER, msr);
|
|
}
|
|
#endif
|
|
|
|
/* A quick check from sanity claus */
|
|
cpuid = PCPU_GET(cpuid);
|
|
if (PCPU_GET(apic_id) != lapic_id()) {
|
|
printf("SMP: cpuid = %d\n", cpuid);
|
|
printf("SMP: actual apic_id = %d\n", lapic_id());
|
|
printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
|
|
panic("cpuid mismatch! boom!!");
|
|
}
|
|
|
|
/* Initialize curthread. */
|
|
KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
|
|
PCPU_SET(curthread, PCPU_GET(idlethread));
|
|
|
|
mca_init();
|
|
|
|
mtx_lock_spin(&ap_boot_mtx);
|
|
|
|
/* Init local apic for irq's */
|
|
lapic_setup(1);
|
|
|
|
/* Set memory range attributes for this CPU to match the BSP */
|
|
mem_range_AP_init();
|
|
|
|
smp_cpus++;
|
|
|
|
CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
|
|
printf("SMP: AP CPU #%d Launched!\n", cpuid);
|
|
|
|
/* Determine if we are a logical CPU. */
|
|
/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
|
|
if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
|
|
CPU_SET(cpuid, &logical_cpus_mask);
|
|
|
|
if (bootverbose)
|
|
lapic_dump("AP");
|
|
|
|
if (smp_cpus == mp_ncpus) {
|
|
/* enable IPI's, tlb shootdown, freezes etc */
|
|
atomic_store_rel_int(&smp_started, 1);
|
|
smp_active = 1; /* historic */
|
|
}
|
|
|
|
mtx_unlock_spin(&ap_boot_mtx);
|
|
|
|
/* Wait until all the AP's are up. */
|
|
while (smp_started == 0)
|
|
ia32_pause();
|
|
|
|
/* Start per-CPU event timers. */
|
|
cpu_initclocks_ap();
|
|
|
|
/* Enter the scheduler. */
|
|
sched_throw(NULL);
|
|
|
|
panic("scheduler returned us to %s", __func__);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*******************************************************************
|
|
* local functions and data
|
|
*/
|
|
|
|
/*
|
|
* We tell the I/O APIC code about all the CPUs we want to receive
|
|
* interrupts. If we don't want certain CPUs to receive IRQs we
|
|
* can simply not tell the I/O APIC code about them in this function.
|
|
* We also do not tell it about the BSP since it tells itself about
|
|
* the BSP internally to work with UP kernels and on UP machines.
|
|
*/
|
|
static void
|
|
set_interrupt_apic_ids(void)
|
|
{
|
|
u_int i, apic_id;
|
|
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
apic_id = cpu_apic_ids[i];
|
|
if (apic_id == -1)
|
|
continue;
|
|
if (cpu_info[apic_id].cpu_bsp)
|
|
continue;
|
|
if (cpu_info[apic_id].cpu_disabled)
|
|
continue;
|
|
|
|
/* Don't let hyperthreads service interrupts. */
|
|
if (hyperthreading_cpus > 1 &&
|
|
apic_id % hyperthreading_cpus != 0)
|
|
continue;
|
|
|
|
intr_add_cpu(i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assign logical CPU IDs to local APICs.
|
|
*/
|
|
static void
|
|
assign_cpu_ids(void)
|
|
{
|
|
u_int i;
|
|
|
|
TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
|
|
&hyperthreading_allowed);
|
|
|
|
/* Check for explicitly disabled CPUs. */
|
|
for (i = 0; i <= MAX_APIC_ID; i++) {
|
|
if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
|
|
continue;
|
|
|
|
if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
|
|
cpu_info[i].cpu_hyperthread = 1;
|
|
|
|
/*
|
|
* Don't use HT CPU if it has been disabled by a
|
|
* tunable.
|
|
*/
|
|
if (hyperthreading_allowed == 0) {
|
|
cpu_info[i].cpu_disabled = 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Don't use this CPU if it has been disabled by a tunable. */
|
|
if (resource_disabled("lapic", i)) {
|
|
cpu_info[i].cpu_disabled = 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
|
|
hyperthreading_cpus = 0;
|
|
cpu_logical = 1;
|
|
}
|
|
|
|
/*
|
|
* Assign CPU IDs to local APIC IDs and disable any CPUs
|
|
* beyond MAXCPU. CPU 0 is always assigned to the BSP.
|
|
*
|
|
* To minimize confusion for userland, we attempt to number
|
|
* CPUs such that all threads and cores in a package are
|
|
* grouped together. For now we assume that the BSP is always
|
|
* the first thread in a package and just start adding APs
|
|
* starting with the BSP's APIC ID.
|
|
*/
|
|
mp_ncpus = 1;
|
|
cpu_apic_ids[0] = boot_cpu_id;
|
|
apic_cpuids[boot_cpu_id] = 0;
|
|
for (i = boot_cpu_id + 1; i != boot_cpu_id;
|
|
i == MAX_APIC_ID ? i = 0 : i++) {
|
|
if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
|
|
cpu_info[i].cpu_disabled)
|
|
continue;
|
|
|
|
if (mp_ncpus < MAXCPU) {
|
|
cpu_apic_ids[mp_ncpus] = i;
|
|
apic_cpuids[i] = mp_ncpus;
|
|
mp_ncpus++;
|
|
} else
|
|
cpu_info[i].cpu_disabled = 1;
|
|
}
|
|
KASSERT(mp_maxid >= mp_ncpus - 1,
|
|
("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
|
|
mp_ncpus));
|
|
}
|
|
|
|
/*
|
|
* start each AP in our list
|
|
*/
|
|
/* Lowest 1MB is already mapped: don't touch*/
|
|
#define TMPMAP_START 1
|
|
static int
|
|
start_all_aps(void)
|
|
{
|
|
#ifndef PC98
|
|
u_char mpbiosreason;
|
|
#endif
|
|
u_int32_t mpbioswarmvec;
|
|
int apic_id, cpu, i;
|
|
|
|
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
|
|
|
|
/* install the AP 1st level boot code */
|
|
install_ap_tramp();
|
|
|
|
/* save the current value of the warm-start vector */
|
|
mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
|
|
#ifndef PC98
|
|
outb(CMOS_REG, BIOS_RESET);
|
|
mpbiosreason = inb(CMOS_DATA);
|
|
#endif
|
|
|
|
/* set up temporary P==V mapping for AP boot */
|
|
/* XXX this is a hack, we should boot the AP on its own stack/PTD */
|
|
for (i = TMPMAP_START; i < NKPT; i++)
|
|
PTD[i] = PTD[KPTDI + i];
|
|
invltlb();
|
|
|
|
/* start each AP */
|
|
for (cpu = 1; cpu < mp_ncpus; cpu++) {
|
|
apic_id = cpu_apic_ids[cpu];
|
|
|
|
/* allocate and set up a boot stack data page */
|
|
bootstacks[cpu] =
|
|
(char *)kmem_malloc(kernel_arena, KSTACK_PAGES * PAGE_SIZE,
|
|
M_WAITOK | M_ZERO);
|
|
dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
|
|
M_WAITOK | M_ZERO);
|
|
/* setup a vector to our boot code */
|
|
*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
|
|
*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
|
|
#ifndef PC98
|
|
outb(CMOS_REG, BIOS_RESET);
|
|
outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
|
|
#endif
|
|
|
|
bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
|
|
bootAP = cpu;
|
|
|
|
/* attempt to start the Application Processor */
|
|
CHECK_INIT(99); /* setup checkpoints */
|
|
if (!start_ap(apic_id)) {
|
|
printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
|
|
CHECK_PRINT("trace"); /* show checkpoints */
|
|
/* better panic as the AP may be running loose */
|
|
printf("panic y/n? [y] ");
|
|
if (cngetc() != 'n')
|
|
panic("bye-bye");
|
|
}
|
|
CHECK_PRINT("trace"); /* show checkpoints */
|
|
|
|
CPU_SET(cpu, &all_cpus); /* record AP in CPU map */
|
|
}
|
|
|
|
/* restore the warmstart vector */
|
|
*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
|
|
|
|
#ifndef PC98
|
|
outb(CMOS_REG, BIOS_RESET);
|
|
outb(CMOS_DATA, mpbiosreason);
|
|
#endif
|
|
|
|
/* Undo V==P hack from above */
|
|
for (i = TMPMAP_START; i < NKPT; i++)
|
|
PTD[i] = 0;
|
|
pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
|
|
|
|
/* number of APs actually started */
|
|
return mp_naps;
|
|
}
|
|
|
|
/*
|
|
* load the 1st level AP boot code into base memory.
|
|
*/
|
|
|
|
/* targets for relocation */
|
|
extern void bigJump(void);
|
|
extern void bootCodeSeg(void);
|
|
extern void bootDataSeg(void);
|
|
extern void MPentry(void);
|
|
extern u_int MP_GDT;
|
|
extern u_int mp_gdtbase;
|
|
|
|
static void
|
|
install_ap_tramp(void)
|
|
{
|
|
int x;
|
|
int size = *(int *) ((u_long) & bootMP_size);
|
|
vm_offset_t va = boot_address + KERNBASE;
|
|
u_char *src = (u_char *) ((u_long) bootMP);
|
|
u_char *dst = (u_char *) va;
|
|
u_int boot_base = (u_int) bootMP;
|
|
u_int8_t *dst8;
|
|
u_int16_t *dst16;
|
|
u_int32_t *dst32;
|
|
|
|
KASSERT (size <= PAGE_SIZE,
|
|
("'size' do not fit into PAGE_SIZE, as expected."));
|
|
pmap_kenter(va, boot_address);
|
|
pmap_invalidate_page (kernel_pmap, va);
|
|
for (x = 0; x < size; ++x)
|
|
*dst++ = *src++;
|
|
|
|
/*
|
|
* modify addresses in code we just moved to basemem. unfortunately we
|
|
* need fairly detailed info about mpboot.s for this to work. changes
|
|
* to mpboot.s might require changes here.
|
|
*/
|
|
|
|
/* boot code is located in KERNEL space */
|
|
dst = (u_char *) va;
|
|
|
|
/* modify the lgdt arg */
|
|
dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
|
|
*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
|
|
|
|
/* modify the ljmp target for MPentry() */
|
|
dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
|
|
*dst32 = ((u_int) MPentry - KERNBASE);
|
|
|
|
/* modify the target for boot code segment */
|
|
dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
|
|
dst8 = (u_int8_t *) (dst16 + 1);
|
|
*dst16 = (u_int) boot_address & 0xffff;
|
|
*dst8 = ((u_int) boot_address >> 16) & 0xff;
|
|
|
|
/* modify the target for boot data segment */
|
|
dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
|
|
dst8 = (u_int8_t *) (dst16 + 1);
|
|
*dst16 = (u_int) boot_address & 0xffff;
|
|
*dst8 = ((u_int) boot_address >> 16) & 0xff;
|
|
}
|
|
|
|
/*
|
|
* This function starts the AP (application processor) identified
|
|
* by the APIC ID 'physicalCpu'. It does quite a "song and dance"
|
|
* to accomplish this. This is necessary because of the nuances
|
|
* of the different hardware we might encounter. It isn't pretty,
|
|
* but it seems to work.
|
|
*/
|
|
static int
|
|
start_ap(int apic_id)
|
|
{
|
|
int vector, ms;
|
|
int cpus;
|
|
|
|
/* calculate the vector */
|
|
vector = (boot_address >> 12) & 0xff;
|
|
|
|
/* used as a watchpoint to signal AP startup */
|
|
cpus = mp_naps;
|
|
|
|
ipi_startup(apic_id, vector);
|
|
|
|
/* Wait up to 5 seconds for it to start. */
|
|
for (ms = 0; ms < 5000; ms++) {
|
|
if (mp_naps > cpus)
|
|
return 1; /* return SUCCESS */
|
|
DELAY(1000);
|
|
}
|
|
return 0; /* return FAILURE */
|
|
}
|
|
|
|
#ifdef COUNT_XINVLTLB_HITS
|
|
u_int xhits_gbl[MAXCPU];
|
|
u_int xhits_pg[MAXCPU];
|
|
u_int xhits_rng[MAXCPU];
|
|
static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
|
|
SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
|
|
sizeof(xhits_gbl), "IU", "");
|
|
SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
|
|
sizeof(xhits_pg), "IU", "");
|
|
SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
|
|
sizeof(xhits_rng), "IU", "");
|
|
|
|
u_int ipi_global;
|
|
u_int ipi_page;
|
|
u_int ipi_range;
|
|
u_int ipi_range_size;
|
|
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
|
|
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
|
|
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
|
|
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
|
|
0, "");
|
|
|
|
u_int ipi_masked_global;
|
|
u_int ipi_masked_page;
|
|
u_int ipi_masked_range;
|
|
u_int ipi_masked_range_size;
|
|
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
|
|
&ipi_masked_global, 0, "");
|
|
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
|
|
&ipi_masked_page, 0, "");
|
|
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
|
|
&ipi_masked_range, 0, "");
|
|
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
|
|
&ipi_masked_range_size, 0, "");
|
|
#endif /* COUNT_XINVLTLB_HITS */
|
|
|
|
/*
|
|
* Init and startup IPI.
|
|
*/
|
|
void
|
|
ipi_startup(int apic_id, int vector)
|
|
{
|
|
|
|
/*
|
|
* first we do an INIT IPI: this INIT IPI might be run, resetting
|
|
* and running the target CPU. OR this INIT IPI might be latched (P5
|
|
* bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
|
|
* ignored.
|
|
*/
|
|
lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
|
|
APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
|
|
lapic_ipi_wait(-1);
|
|
DELAY(10000); /* wait ~10mS */
|
|
|
|
/*
|
|
* next we do a STARTUP IPI: the previous INIT IPI might still be
|
|
* latched, (P5 bug) this 1st STARTUP would then terminate
|
|
* immediately, and the previously started INIT IPI would continue. OR
|
|
* the previous INIT IPI has already run. and this STARTUP IPI will
|
|
* run. OR the previous INIT IPI was ignored. and this STARTUP IPI
|
|
* will run.
|
|
*/
|
|
lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
|
|
APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
|
|
vector, apic_id);
|
|
lapic_ipi_wait(-1);
|
|
DELAY(200); /* wait ~200uS */
|
|
|
|
/*
|
|
* finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
|
|
* the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
|
|
* this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
|
|
* recognized after hardware RESET or INIT IPI.
|
|
*/
|
|
lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
|
|
APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
|
|
vector, apic_id);
|
|
lapic_ipi_wait(-1);
|
|
DELAY(200); /* wait ~200uS */
|
|
}
|
|
|
|
/*
|
|
* Send an IPI to specified CPU handling the bitmap logic.
|
|
*/
|
|
static void
|
|
ipi_send_cpu(int cpu, u_int ipi)
|
|
{
|
|
u_int bitmap, old_pending, new_pending;
|
|
|
|
KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
|
|
|
|
if (IPI_IS_BITMAPED(ipi)) {
|
|
bitmap = 1 << ipi;
|
|
ipi = IPI_BITMAP_VECTOR;
|
|
do {
|
|
old_pending = cpu_ipi_pending[cpu];
|
|
new_pending = old_pending | bitmap;
|
|
} while (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
|
|
old_pending, new_pending));
|
|
if (old_pending)
|
|
return;
|
|
}
|
|
lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
|
|
}
|
|
|
|
/*
|
|
* Flush the TLB on all other CPU's
|
|
*/
|
|
static void
|
|
smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
|
|
{
|
|
u_int ncpu;
|
|
|
|
ncpu = mp_ncpus - 1; /* does not shootdown self */
|
|
if (ncpu < 1)
|
|
return; /* no other cpus */
|
|
if (!(read_eflags() & PSL_I))
|
|
panic("%s: interrupts disabled", __func__);
|
|
mtx_lock_spin(&smp_ipi_mtx);
|
|
smp_tlb_addr1 = addr1;
|
|
smp_tlb_addr2 = addr2;
|
|
atomic_store_rel_int(&smp_tlb_wait, 0);
|
|
ipi_all_but_self(vector);
|
|
while (smp_tlb_wait < ncpu)
|
|
ia32_pause();
|
|
mtx_unlock_spin(&smp_ipi_mtx);
|
|
}
|
|
|
|
static void
|
|
smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
|
|
{
|
|
int cpu, ncpu, othercpus;
|
|
|
|
othercpus = mp_ncpus - 1;
|
|
if (CPU_ISFULLSET(&mask)) {
|
|
if (othercpus < 1)
|
|
return;
|
|
} else {
|
|
CPU_CLR(PCPU_GET(cpuid), &mask);
|
|
if (CPU_EMPTY(&mask))
|
|
return;
|
|
}
|
|
if (!(read_eflags() & PSL_I))
|
|
panic("%s: interrupts disabled", __func__);
|
|
mtx_lock_spin(&smp_ipi_mtx);
|
|
smp_tlb_addr1 = addr1;
|
|
smp_tlb_addr2 = addr2;
|
|
atomic_store_rel_int(&smp_tlb_wait, 0);
|
|
if (CPU_ISFULLSET(&mask)) {
|
|
ncpu = othercpus;
|
|
ipi_all_but_self(vector);
|
|
} else {
|
|
ncpu = 0;
|
|
while ((cpu = CPU_FFS(&mask)) != 0) {
|
|
cpu--;
|
|
CPU_CLR(cpu, &mask);
|
|
CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu,
|
|
vector);
|
|
ipi_send_cpu(cpu, vector);
|
|
ncpu++;
|
|
}
|
|
}
|
|
while (smp_tlb_wait < ncpu)
|
|
ia32_pause();
|
|
mtx_unlock_spin(&smp_ipi_mtx);
|
|
}
|
|
|
|
void
|
|
smp_cache_flush(void)
|
|
{
|
|
|
|
if (smp_started)
|
|
smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
|
|
}
|
|
|
|
void
|
|
smp_invltlb(void)
|
|
{
|
|
|
|
if (smp_started) {
|
|
smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
|
|
#ifdef COUNT_XINVLTLB_HITS
|
|
ipi_global++;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
smp_invlpg(vm_offset_t addr)
|
|
{
|
|
|
|
if (smp_started) {
|
|
smp_tlb_shootdown(IPI_INVLPG, addr, 0);
|
|
#ifdef COUNT_XINVLTLB_HITS
|
|
ipi_page++;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
|
|
{
|
|
|
|
if (smp_started) {
|
|
smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
|
|
#ifdef COUNT_XINVLTLB_HITS
|
|
ipi_range++;
|
|
ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
smp_masked_invltlb(cpuset_t mask)
|
|
{
|
|
|
|
if (smp_started) {
|
|
smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
|
|
#ifdef COUNT_XINVLTLB_HITS
|
|
ipi_masked_global++;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
|
|
{
|
|
|
|
if (smp_started) {
|
|
smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
|
|
#ifdef COUNT_XINVLTLB_HITS
|
|
ipi_masked_page++;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
|
|
{
|
|
|
|
if (smp_started) {
|
|
smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
|
|
#ifdef COUNT_XINVLTLB_HITS
|
|
ipi_masked_range++;
|
|
ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
ipi_bitmap_handler(struct trapframe frame)
|
|
{
|
|
struct trapframe *oldframe;
|
|
struct thread *td;
|
|
int cpu = PCPU_GET(cpuid);
|
|
u_int ipi_bitmap;
|
|
|
|
critical_enter();
|
|
td = curthread;
|
|
td->td_intr_nesting_level++;
|
|
oldframe = td->td_intr_frame;
|
|
td->td_intr_frame = &frame;
|
|
ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
|
|
if (ipi_bitmap & (1 << IPI_PREEMPT)) {
|
|
#ifdef COUNT_IPIS
|
|
(*ipi_preempt_counts[cpu])++;
|
|
#endif
|
|
sched_preempt(td);
|
|
}
|
|
if (ipi_bitmap & (1 << IPI_AST)) {
|
|
#ifdef COUNT_IPIS
|
|
(*ipi_ast_counts[cpu])++;
|
|
#endif
|
|
/* Nothing to do for AST */
|
|
}
|
|
if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
|
|
#ifdef COUNT_IPIS
|
|
(*ipi_hardclock_counts[cpu])++;
|
|
#endif
|
|
hardclockintr();
|
|
}
|
|
td->td_intr_frame = oldframe;
|
|
td->td_intr_nesting_level--;
|
|
critical_exit();
|
|
}
|
|
|
|
/*
|
|
* send an IPI to a set of cpus.
|
|
*/
|
|
void
|
|
ipi_selected(cpuset_t cpus, u_int ipi)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
|
|
* of help in order to understand what is the source.
|
|
* Set the mask of receiving CPUs for this purpose.
|
|
*/
|
|
if (ipi == IPI_STOP_HARD)
|
|
CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
|
|
|
|
while ((cpu = CPU_FFS(&cpus)) != 0) {
|
|
cpu--;
|
|
CPU_CLR(cpu, &cpus);
|
|
CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
|
|
ipi_send_cpu(cpu, ipi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* send an IPI to a specific CPU.
|
|
*/
|
|
void
|
|
ipi_cpu(int cpu, u_int ipi)
|
|
{
|
|
|
|
/*
|
|
* IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
|
|
* of help in order to understand what is the source.
|
|
* Set the mask of receiving CPUs for this purpose.
|
|
*/
|
|
if (ipi == IPI_STOP_HARD)
|
|
CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
|
|
|
|
CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
|
|
ipi_send_cpu(cpu, ipi);
|
|
}
|
|
|
|
/*
|
|
* send an IPI to all CPUs EXCEPT myself
|
|
*/
|
|
void
|
|
ipi_all_but_self(u_int ipi)
|
|
{
|
|
cpuset_t other_cpus;
|
|
|
|
other_cpus = all_cpus;
|
|
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
|
|
if (IPI_IS_BITMAPED(ipi)) {
|
|
ipi_selected(other_cpus, ipi);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
|
|
* of help in order to understand what is the source.
|
|
* Set the mask of receiving CPUs for this purpose.
|
|
*/
|
|
if (ipi == IPI_STOP_HARD)
|
|
CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
|
|
|
|
CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
|
|
lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
|
|
}
|
|
|
|
int
|
|
ipi_nmi_handler()
|
|
{
|
|
u_int cpuid;
|
|
|
|
/*
|
|
* As long as there is not a simple way to know about a NMI's
|
|
* source, if the bitmask for the current CPU is present in
|
|
* the global pending bitword an IPI_STOP_HARD has been issued
|
|
* and should be handled.
|
|
*/
|
|
cpuid = PCPU_GET(cpuid);
|
|
if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
|
|
return (1);
|
|
|
|
CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
|
|
cpustop_handler();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle an IPI_STOP by saving our current context and spinning until we
|
|
* are resumed.
|
|
*/
|
|
void
|
|
cpustop_handler(void)
|
|
{
|
|
u_int cpu;
|
|
|
|
cpu = PCPU_GET(cpuid);
|
|
|
|
savectx(&stoppcbs[cpu]);
|
|
|
|
/* Indicate that we are stopped */
|
|
CPU_SET_ATOMIC(cpu, &stopped_cpus);
|
|
|
|
/* Wait for restart */
|
|
while (!CPU_ISSET(cpu, &started_cpus))
|
|
ia32_pause();
|
|
|
|
CPU_CLR_ATOMIC(cpu, &started_cpus);
|
|
CPU_CLR_ATOMIC(cpu, &stopped_cpus);
|
|
|
|
if (cpu == 0 && cpustop_restartfunc != NULL) {
|
|
cpustop_restartfunc();
|
|
cpustop_restartfunc = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle an IPI_SUSPEND by saving our current context and spinning until we
|
|
* are resumed.
|
|
*/
|
|
void
|
|
cpususpend_handler(void)
|
|
{
|
|
u_int cpu;
|
|
|
|
cpu = PCPU_GET(cpuid);
|
|
|
|
if (savectx(susppcbs[cpu])) {
|
|
wbinvd();
|
|
CPU_SET_ATOMIC(cpu, &suspended_cpus);
|
|
} else {
|
|
pmap_init_pat();
|
|
PCPU_SET(switchtime, 0);
|
|
PCPU_SET(switchticks, ticks);
|
|
|
|
/* Indicate that we are resumed */
|
|
CPU_CLR_ATOMIC(cpu, &suspended_cpus);
|
|
}
|
|
|
|
/* Wait for resume */
|
|
while (!CPU_ISSET(cpu, &started_cpus))
|
|
ia32_pause();
|
|
|
|
/* Resume MCA and local APIC */
|
|
mca_resume();
|
|
lapic_setup(0);
|
|
|
|
CPU_CLR_ATOMIC(cpu, &started_cpus);
|
|
}
|
|
/*
|
|
* This is called once the rest of the system is up and running and we're
|
|
* ready to let the AP's out of the pen.
|
|
*/
|
|
static void
|
|
release_aps(void *dummy __unused)
|
|
{
|
|
|
|
if (mp_ncpus == 1)
|
|
return;
|
|
atomic_store_rel_int(&aps_ready, 1);
|
|
while (smp_started == 0)
|
|
ia32_pause();
|
|
}
|
|
SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
|
|
|
|
#ifdef COUNT_IPIS
|
|
/*
|
|
* Setup interrupt counters for IPI handlers.
|
|
*/
|
|
static void
|
|
mp_ipi_intrcnt(void *dummy)
|
|
{
|
|
char buf[64];
|
|
int i;
|
|
|
|
CPU_FOREACH(i) {
|
|
snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
|
|
intrcnt_add(buf, &ipi_invltlb_counts[i]);
|
|
snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
|
|
intrcnt_add(buf, &ipi_invlrng_counts[i]);
|
|
snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
|
|
intrcnt_add(buf, &ipi_invlpg_counts[i]);
|
|
snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
|
|
intrcnt_add(buf, &ipi_invlcache_counts[i]);
|
|
snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
|
|
intrcnt_add(buf, &ipi_preempt_counts[i]);
|
|
snprintf(buf, sizeof(buf), "cpu%d:ast", i);
|
|
intrcnt_add(buf, &ipi_ast_counts[i]);
|
|
snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
|
|
intrcnt_add(buf, &ipi_rendezvous_counts[i]);
|
|
snprintf(buf, sizeof(buf), "cpu%d:lazypmap", i);
|
|
intrcnt_add(buf, &ipi_lazypmap_counts[i]);
|
|
snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
|
|
intrcnt_add(buf, &ipi_hardclock_counts[i]);
|
|
}
|
|
}
|
|
SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
|
|
#endif
|