freebsd-skq/sys/i386/i386/mp_machdep.c
jeff de4ecca213 Replace kernel virtual address space allocation with vmem. This provides
transparent layering and better fragmentation.

 - Normalize functions that allocate memory to use kmem_*
 - Those that allocate address space are named kva_*
 - Those that operate on maps are named kmap_*
 - Implement recursive allocation handling for kmem_arena in vmem.

Reviewed by:	alc
Tested by:	pho
Sponsored by:	EMC / Isilon Storage Division
2013-08-07 06:21:20 +00:00

1588 lines
38 KiB
C

/*-
* Copyright (c) 1996, by Steve Passe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the developer may NOT be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_apic.h"
#include "opt_cpu.h"
#include "opt_kstack_pages.h"
#include "opt_pmap.h"
#include "opt_sched.h"
#include "opt_smp.h"
#if !defined(lint)
#if !defined(SMP)
#error How did you get here?
#endif
#ifndef DEV_APIC
#error The apic device is required for SMP, add "device apic" to your config file.
#endif
#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
#error SMP not supported with CPU_DISABLE_CMPXCHG
#endif
#endif /* not lint */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cons.h> /* cngetc() */
#include <sys/cpuset.h>
#ifdef GPROF
#include <sys/gmon.h>
#endif
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memrange.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <x86/apicreg.h>
#include <machine/clock.h>
#include <machine/cputypes.h>
#include <x86/mca.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/smp.h>
#include <machine/specialreg.h>
#define WARMBOOT_TARGET 0
#define WARMBOOT_OFF (KERNBASE + 0x0467)
#define WARMBOOT_SEG (KERNBASE + 0x0469)
#define CMOS_REG (0x70)
#define CMOS_DATA (0x71)
#define BIOS_RESET (0x0f)
#define BIOS_WARM (0x0a)
/*
* this code MUST be enabled here and in mpboot.s.
* it follows the very early stages of AP boot by placing values in CMOS ram.
* it NORMALLY will never be needed and thus the primitive method for enabling.
*
#define CHECK_POINTS
*/
#if defined(CHECK_POINTS) && !defined(PC98)
#define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
#define CHECK_INIT(D); \
CHECK_WRITE(0x34, (D)); \
CHECK_WRITE(0x35, (D)); \
CHECK_WRITE(0x36, (D)); \
CHECK_WRITE(0x37, (D)); \
CHECK_WRITE(0x38, (D)); \
CHECK_WRITE(0x39, (D));
#define CHECK_PRINT(S); \
printf("%s: %d, %d, %d, %d, %d, %d\n", \
(S), \
CHECK_READ(0x34), \
CHECK_READ(0x35), \
CHECK_READ(0x36), \
CHECK_READ(0x37), \
CHECK_READ(0x38), \
CHECK_READ(0x39));
#else /* CHECK_POINTS */
#define CHECK_INIT(D)
#define CHECK_PRINT(S)
#define CHECK_WRITE(A, D)
#endif /* CHECK_POINTS */
/* lock region used by kernel profiling */
int mcount_lock;
int mp_naps; /* # of Applications processors */
int boot_cpu_id = -1; /* designated BSP */
extern struct pcpu __pcpu[];
/* AP uses this during bootstrap. Do not staticize. */
char *bootSTK;
static int bootAP;
/* Free these after use */
void *bootstacks[MAXCPU];
static void *dpcpu;
struct pcb stoppcbs[MAXCPU];
struct pcb **susppcbs = NULL;
/* Variables needed for SMP tlb shootdown. */
vm_offset_t smp_tlb_addr1;
vm_offset_t smp_tlb_addr2;
volatile int smp_tlb_wait;
#ifdef COUNT_IPIS
/* Interrupt counts. */
static u_long *ipi_preempt_counts[MAXCPU];
static u_long *ipi_ast_counts[MAXCPU];
u_long *ipi_invltlb_counts[MAXCPU];
u_long *ipi_invlrng_counts[MAXCPU];
u_long *ipi_invlpg_counts[MAXCPU];
u_long *ipi_invlcache_counts[MAXCPU];
u_long *ipi_rendezvous_counts[MAXCPU];
u_long *ipi_lazypmap_counts[MAXCPU];
static u_long *ipi_hardclock_counts[MAXCPU];
#endif
/*
* Local data and functions.
*/
static volatile cpuset_t ipi_nmi_pending;
/* used to hold the AP's until we are ready to release them */
static struct mtx ap_boot_mtx;
/* Set to 1 once we're ready to let the APs out of the pen. */
static volatile int aps_ready = 0;
/*
* Store data from cpu_add() until later in the boot when we actually setup
* the APs.
*/
struct cpu_info {
int cpu_present:1;
int cpu_bsp:1;
int cpu_disabled:1;
int cpu_hyperthread:1;
} static cpu_info[MAX_APIC_ID + 1];
int cpu_apic_ids[MAXCPU];
int apic_cpuids[MAX_APIC_ID + 1];
/* Holds pending bitmap based IPIs per CPU */
static volatile u_int cpu_ipi_pending[MAXCPU];
static u_int boot_address;
static int cpu_logical; /* logical cpus per core */
static int cpu_cores; /* cores per package */
static void assign_cpu_ids(void);
static void install_ap_tramp(void);
static void set_interrupt_apic_ids(void);
static int start_all_aps(void);
static int start_ap(int apic_id);
static void release_aps(void *dummy);
static u_int hyperthreading_cpus; /* logical cpus sharing L1 cache */
static int hyperthreading_allowed = 1;
static void
mem_range_AP_init(void)
{
if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
mem_range_softc.mr_op->initAP(&mem_range_softc);
}
static void
topo_probe_amd(void)
{
int core_id_bits;
int id;
/* AMD processors do not support HTT. */
cpu_logical = 1;
if ((amd_feature2 & AMDID2_CMP) == 0) {
cpu_cores = 1;
return;
}
core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
AMDID_COREID_SIZE_SHIFT;
if (core_id_bits == 0) {
cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
return;
}
/* Fam 10h and newer should get here. */
for (id = 0; id <= MAX_APIC_ID; id++) {
/* Check logical CPU availability. */
if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
continue;
/* Check if logical CPU has the same package ID. */
if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
continue;
cpu_cores++;
}
}
/*
* Round up to the next power of two, if necessary, and then
* take log2.
* Returns -1 if argument is zero.
*/
static __inline int
mask_width(u_int x)
{
return (fls(x << (1 - powerof2(x))) - 1);
}
static void
topo_probe_0x4(void)
{
u_int p[4];
int pkg_id_bits;
int core_id_bits;
int max_cores;
int max_logical;
int id;
/* Both zero and one here mean one logical processor per package. */
max_logical = (cpu_feature & CPUID_HTT) != 0 ?
(cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
if (max_logical <= 1)
return;
/*
* Because of uniformity assumption we examine only
* those logical processors that belong to the same
* package as BSP. Further, we count number of
* logical processors that belong to the same core
* as BSP thus deducing number of threads per core.
*/
if (cpu_high >= 0x4) {
cpuid_count(0x04, 0, p);
max_cores = ((p[0] >> 26) & 0x3f) + 1;
} else
max_cores = 1;
core_id_bits = mask_width(max_logical/max_cores);
if (core_id_bits < 0)
return;
pkg_id_bits = core_id_bits + mask_width(max_cores);
for (id = 0; id <= MAX_APIC_ID; id++) {
/* Check logical CPU availability. */
if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
continue;
/* Check if logical CPU has the same package ID. */
if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
continue;
cpu_cores++;
/* Check if logical CPU has the same package and core IDs. */
if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
cpu_logical++;
}
KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
("topo_probe_0x4 couldn't find BSP"));
cpu_cores /= cpu_logical;
hyperthreading_cpus = cpu_logical;
}
static void
topo_probe_0xb(void)
{
u_int p[4];
int bits;
int cnt;
int i;
int logical;
int type;
int x;
/* We only support three levels for now. */
for (i = 0; i < 3; i++) {
cpuid_count(0x0b, i, p);
/* Fall back if CPU leaf 11 doesn't really exist. */
if (i == 0 && p[1] == 0) {
topo_probe_0x4();
return;
}
bits = p[0] & 0x1f;
logical = p[1] &= 0xffff;
type = (p[2] >> 8) & 0xff;
if (type == 0 || logical == 0)
break;
/*
* Because of uniformity assumption we examine only
* those logical processors that belong to the same
* package as BSP.
*/
for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
if (!cpu_info[x].cpu_present ||
cpu_info[x].cpu_disabled)
continue;
if (x >> bits == boot_cpu_id >> bits)
cnt++;
}
if (type == CPUID_TYPE_SMT)
cpu_logical = cnt;
else if (type == CPUID_TYPE_CORE)
cpu_cores = cnt;
}
if (cpu_logical == 0)
cpu_logical = 1;
cpu_cores /= cpu_logical;
}
/*
* Both topology discovery code and code that consumes topology
* information assume top-down uniformity of the topology.
* That is, all physical packages must be identical and each
* core in a package must have the same number of threads.
* Topology information is queried only on BSP, on which this
* code runs and for which it can query CPUID information.
* Then topology is extrapolated on all packages using the
* uniformity assumption.
*/
static void
topo_probe(void)
{
static int cpu_topo_probed = 0;
if (cpu_topo_probed)
return;
CPU_ZERO(&logical_cpus_mask);
if (mp_ncpus <= 1)
cpu_cores = cpu_logical = 1;
else if (cpu_vendor_id == CPU_VENDOR_AMD)
topo_probe_amd();
else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
/*
* See Intel(R) 64 Architecture Processor
* Topology Enumeration article for details.
*
* Note that 0x1 <= cpu_high < 4 case should be
* compatible with topo_probe_0x4() logic when
* CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
* or it should trigger the fallback otherwise.
*/
if (cpu_high >= 0xb)
topo_probe_0xb();
else if (cpu_high >= 0x1)
topo_probe_0x4();
}
/*
* Fallback: assume each logical CPU is in separate
* physical package. That is, no multi-core, no SMT.
*/
if (cpu_cores == 0 || cpu_logical == 0)
cpu_cores = cpu_logical = 1;
cpu_topo_probed = 1;
}
struct cpu_group *
cpu_topo(void)
{
int cg_flags;
/*
* Determine whether any threading flags are
* necessry.
*/
topo_probe();
if (cpu_logical > 1 && hyperthreading_cpus)
cg_flags = CG_FLAG_HTT;
else if (cpu_logical > 1)
cg_flags = CG_FLAG_SMT;
else
cg_flags = 0;
if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
printf("WARNING: Non-uniform processors.\n");
printf("WARNING: Using suboptimal topology.\n");
return (smp_topo_none());
}
/*
* No multi-core or hyper-threaded.
*/
if (cpu_logical * cpu_cores == 1)
return (smp_topo_none());
/*
* Only HTT no multi-core.
*/
if (cpu_logical > 1 && cpu_cores == 1)
return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
/*
* Only multi-core no HTT.
*/
if (cpu_cores > 1 && cpu_logical == 1)
return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
/*
* Both HTT and multi-core.
*/
return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
CG_SHARE_L1, cpu_logical, cg_flags));
}
/*
* Calculate usable address in base memory for AP trampoline code.
*/
u_int
mp_bootaddress(u_int basemem)
{
boot_address = trunc_page(basemem); /* round down to 4k boundary */
if ((basemem - boot_address) < bootMP_size)
boot_address -= PAGE_SIZE; /* not enough, lower by 4k */
return boot_address;
}
void
cpu_add(u_int apic_id, char boot_cpu)
{
if (apic_id > MAX_APIC_ID) {
panic("SMP: APIC ID %d too high", apic_id);
return;
}
KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
apic_id));
cpu_info[apic_id].cpu_present = 1;
if (boot_cpu) {
KASSERT(boot_cpu_id == -1,
("CPU %d claims to be BSP, but CPU %d already is", apic_id,
boot_cpu_id));
boot_cpu_id = apic_id;
cpu_info[apic_id].cpu_bsp = 1;
}
if (mp_ncpus < MAXCPU) {
mp_ncpus++;
mp_maxid = mp_ncpus - 1;
}
if (bootverbose)
printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
"AP");
}
void
cpu_mp_setmaxid(void)
{
/*
* mp_maxid should be already set by calls to cpu_add().
* Just sanity check its value here.
*/
if (mp_ncpus == 0)
KASSERT(mp_maxid == 0,
("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
else if (mp_ncpus == 1)
mp_maxid = 0;
else
KASSERT(mp_maxid >= mp_ncpus - 1,
("%s: counters out of sync: max %d, count %d", __func__,
mp_maxid, mp_ncpus));
}
int
cpu_mp_probe(void)
{
/*
* Always record BSP in CPU map so that the mbuf init code works
* correctly.
*/
CPU_SETOF(0, &all_cpus);
if (mp_ncpus == 0) {
/*
* No CPUs were found, so this must be a UP system. Setup
* the variables to represent a system with a single CPU
* with an id of 0.
*/
mp_ncpus = 1;
return (0);
}
/* At least one CPU was found. */
if (mp_ncpus == 1) {
/*
* One CPU was found, so this must be a UP system with
* an I/O APIC.
*/
mp_maxid = 0;
return (0);
}
/* At least two CPUs were found. */
return (1);
}
/*
* Initialize the IPI handlers and start up the AP's.
*/
void
cpu_mp_start(void)
{
int i;
/* Initialize the logical ID to APIC ID table. */
for (i = 0; i < MAXCPU; i++) {
cpu_apic_ids[i] = -1;
cpu_ipi_pending[i] = 0;
}
/* Install an inter-CPU IPI for TLB invalidation */
setidt(IPI_INVLTLB, IDTVEC(invltlb),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(IPI_INVLPG, IDTVEC(invlpg),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
setidt(IPI_INVLRNG, IDTVEC(invlrng),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an inter-CPU IPI for cache invalidation. */
setidt(IPI_INVLCACHE, IDTVEC(invlcache),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an inter-CPU IPI for lazy pmap release */
setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an inter-CPU IPI for all-CPU rendezvous */
setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install generic inter-CPU IPI handler */
setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an inter-CPU IPI for CPU stop/restart */
setidt(IPI_STOP, IDTVEC(cpustop),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Install an inter-CPU IPI for CPU suspend/resume */
setidt(IPI_SUSPEND, IDTVEC(cpususpend),
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* Set boot_cpu_id if needed. */
if (boot_cpu_id == -1) {
boot_cpu_id = PCPU_GET(apic_id);
cpu_info[boot_cpu_id].cpu_bsp = 1;
} else
KASSERT(boot_cpu_id == PCPU_GET(apic_id),
("BSP's APIC ID doesn't match boot_cpu_id"));
/* Probe logical/physical core configuration. */
topo_probe();
assign_cpu_ids();
/* Start each Application Processor */
start_all_aps();
set_interrupt_apic_ids();
}
/*
* Print various information about the SMP system hardware and setup.
*/
void
cpu_mp_announce(void)
{
const char *hyperthread;
int i;
printf("FreeBSD/SMP: %d package(s) x %d core(s)",
mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
if (hyperthreading_cpus > 1)
printf(" x %d HTT threads", cpu_logical);
else if (cpu_logical > 1)
printf(" x %d SMT threads", cpu_logical);
printf("\n");
/* List active CPUs first. */
printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
for (i = 1; i < mp_ncpus; i++) {
if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
hyperthread = "/HT";
else
hyperthread = "";
printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
cpu_apic_ids[i]);
}
/* List disabled CPUs last. */
for (i = 0; i <= MAX_APIC_ID; i++) {
if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
continue;
if (cpu_info[i].cpu_hyperthread)
hyperthread = "/HT";
else
hyperthread = "";
printf(" cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
i);
}
}
/*
* AP CPU's call this to initialize themselves.
*/
void
init_secondary(void)
{
struct pcpu *pc;
vm_offset_t addr;
int gsel_tss;
int x, myid;
u_int cpuid, cr0;
/* bootAP is set in start_ap() to our ID. */
myid = bootAP;
/* Get per-cpu data */
pc = &__pcpu[myid];
/* prime data page for it to use */
pcpu_init(pc, myid, sizeof(struct pcpu));
dpcpu_init(dpcpu, myid);
pc->pc_apic_id = cpu_apic_ids[myid];
pc->pc_prvspace = pc;
pc->pc_curthread = 0;
gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
for (x = 0; x < NGDT; x++) {
ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
}
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
r_gdt.rd_base = (int) &gdt[myid * NGDT];
lgdt(&r_gdt); /* does magic intra-segment return */
lidt(&r_idt);
lldt(_default_ldt);
PCPU_SET(currentldt, _default_ldt);
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
ltr(gsel_tss);
PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
/*
* Set to a known state:
* Set by mpboot.s: CR0_PG, CR0_PE
* Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
*/
cr0 = rcr0();
cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
load_cr0(cr0);
CHECK_WRITE(0x38, 5);
/* Disable local APIC just to be sure. */
lapic_disable();
/* signal our startup to the BSP. */
mp_naps++;
CHECK_WRITE(0x39, 6);
/* Spin until the BSP releases the AP's. */
while (!aps_ready)
ia32_pause();
/* BSP may have changed PTD while we were waiting */
invltlb();
for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
invlpg(addr);
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
lidt(&r_idt);
#endif
/* Initialize the PAT MSR if present. */
pmap_init_pat();
/* set up CPU registers and state */
cpu_setregs();
/* set up FPU state on the AP */
npxinit();
/* set up SSE registers */
enable_sse();
#ifdef PAE
/* Enable the PTE no-execute bit. */
if ((amd_feature & AMDID_NX) != 0) {
uint64_t msr;
msr = rdmsr(MSR_EFER) | EFER_NXE;
wrmsr(MSR_EFER, msr);
}
#endif
/* A quick check from sanity claus */
cpuid = PCPU_GET(cpuid);
if (PCPU_GET(apic_id) != lapic_id()) {
printf("SMP: cpuid = %d\n", cpuid);
printf("SMP: actual apic_id = %d\n", lapic_id());
printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
panic("cpuid mismatch! boom!!");
}
/* Initialize curthread. */
KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
PCPU_SET(curthread, PCPU_GET(idlethread));
mca_init();
mtx_lock_spin(&ap_boot_mtx);
/* Init local apic for irq's */
lapic_setup(1);
/* Set memory range attributes for this CPU to match the BSP */
mem_range_AP_init();
smp_cpus++;
CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
printf("SMP: AP CPU #%d Launched!\n", cpuid);
/* Determine if we are a logical CPU. */
/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
CPU_SET(cpuid, &logical_cpus_mask);
if (bootverbose)
lapic_dump("AP");
if (smp_cpus == mp_ncpus) {
/* enable IPI's, tlb shootdown, freezes etc */
atomic_store_rel_int(&smp_started, 1);
smp_active = 1; /* historic */
}
mtx_unlock_spin(&ap_boot_mtx);
/* Wait until all the AP's are up. */
while (smp_started == 0)
ia32_pause();
/* Start per-CPU event timers. */
cpu_initclocks_ap();
/* Enter the scheduler. */
sched_throw(NULL);
panic("scheduler returned us to %s", __func__);
/* NOTREACHED */
}
/*******************************************************************
* local functions and data
*/
/*
* We tell the I/O APIC code about all the CPUs we want to receive
* interrupts. If we don't want certain CPUs to receive IRQs we
* can simply not tell the I/O APIC code about them in this function.
* We also do not tell it about the BSP since it tells itself about
* the BSP internally to work with UP kernels and on UP machines.
*/
static void
set_interrupt_apic_ids(void)
{
u_int i, apic_id;
for (i = 0; i < MAXCPU; i++) {
apic_id = cpu_apic_ids[i];
if (apic_id == -1)
continue;
if (cpu_info[apic_id].cpu_bsp)
continue;
if (cpu_info[apic_id].cpu_disabled)
continue;
/* Don't let hyperthreads service interrupts. */
if (hyperthreading_cpus > 1 &&
apic_id % hyperthreading_cpus != 0)
continue;
intr_add_cpu(i);
}
}
/*
* Assign logical CPU IDs to local APICs.
*/
static void
assign_cpu_ids(void)
{
u_int i;
TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
&hyperthreading_allowed);
/* Check for explicitly disabled CPUs. */
for (i = 0; i <= MAX_APIC_ID; i++) {
if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
continue;
if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
cpu_info[i].cpu_hyperthread = 1;
/*
* Don't use HT CPU if it has been disabled by a
* tunable.
*/
if (hyperthreading_allowed == 0) {
cpu_info[i].cpu_disabled = 1;
continue;
}
}
/* Don't use this CPU if it has been disabled by a tunable. */
if (resource_disabled("lapic", i)) {
cpu_info[i].cpu_disabled = 1;
continue;
}
}
if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
hyperthreading_cpus = 0;
cpu_logical = 1;
}
/*
* Assign CPU IDs to local APIC IDs and disable any CPUs
* beyond MAXCPU. CPU 0 is always assigned to the BSP.
*
* To minimize confusion for userland, we attempt to number
* CPUs such that all threads and cores in a package are
* grouped together. For now we assume that the BSP is always
* the first thread in a package and just start adding APs
* starting with the BSP's APIC ID.
*/
mp_ncpus = 1;
cpu_apic_ids[0] = boot_cpu_id;
apic_cpuids[boot_cpu_id] = 0;
for (i = boot_cpu_id + 1; i != boot_cpu_id;
i == MAX_APIC_ID ? i = 0 : i++) {
if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
cpu_info[i].cpu_disabled)
continue;
if (mp_ncpus < MAXCPU) {
cpu_apic_ids[mp_ncpus] = i;
apic_cpuids[i] = mp_ncpus;
mp_ncpus++;
} else
cpu_info[i].cpu_disabled = 1;
}
KASSERT(mp_maxid >= mp_ncpus - 1,
("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
mp_ncpus));
}
/*
* start each AP in our list
*/
/* Lowest 1MB is already mapped: don't touch*/
#define TMPMAP_START 1
static int
start_all_aps(void)
{
#ifndef PC98
u_char mpbiosreason;
#endif
u_int32_t mpbioswarmvec;
int apic_id, cpu, i;
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
/* install the AP 1st level boot code */
install_ap_tramp();
/* save the current value of the warm-start vector */
mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
mpbiosreason = inb(CMOS_DATA);
#endif
/* set up temporary P==V mapping for AP boot */
/* XXX this is a hack, we should boot the AP on its own stack/PTD */
for (i = TMPMAP_START; i < NKPT; i++)
PTD[i] = PTD[KPTDI + i];
invltlb();
/* start each AP */
for (cpu = 1; cpu < mp_ncpus; cpu++) {
apic_id = cpu_apic_ids[cpu];
/* allocate and set up a boot stack data page */
bootstacks[cpu] =
(char *)kmem_malloc(kernel_arena, KSTACK_PAGES * PAGE_SIZE,
M_WAITOK | M_ZERO);
dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
M_WAITOK | M_ZERO);
/* setup a vector to our boot code */
*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
#endif
bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
bootAP = cpu;
/* attempt to start the Application Processor */
CHECK_INIT(99); /* setup checkpoints */
if (!start_ap(apic_id)) {
printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
CHECK_PRINT("trace"); /* show checkpoints */
/* better panic as the AP may be running loose */
printf("panic y/n? [y] ");
if (cngetc() != 'n')
panic("bye-bye");
}
CHECK_PRINT("trace"); /* show checkpoints */
CPU_SET(cpu, &all_cpus); /* record AP in CPU map */
}
/* restore the warmstart vector */
*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, mpbiosreason);
#endif
/* Undo V==P hack from above */
for (i = TMPMAP_START; i < NKPT; i++)
PTD[i] = 0;
pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
/* number of APs actually started */
return mp_naps;
}
/*
* load the 1st level AP boot code into base memory.
*/
/* targets for relocation */
extern void bigJump(void);
extern void bootCodeSeg(void);
extern void bootDataSeg(void);
extern void MPentry(void);
extern u_int MP_GDT;
extern u_int mp_gdtbase;
static void
install_ap_tramp(void)
{
int x;
int size = *(int *) ((u_long) & bootMP_size);
vm_offset_t va = boot_address + KERNBASE;
u_char *src = (u_char *) ((u_long) bootMP);
u_char *dst = (u_char *) va;
u_int boot_base = (u_int) bootMP;
u_int8_t *dst8;
u_int16_t *dst16;
u_int32_t *dst32;
KASSERT (size <= PAGE_SIZE,
("'size' do not fit into PAGE_SIZE, as expected."));
pmap_kenter(va, boot_address);
pmap_invalidate_page (kernel_pmap, va);
for (x = 0; x < size; ++x)
*dst++ = *src++;
/*
* modify addresses in code we just moved to basemem. unfortunately we
* need fairly detailed info about mpboot.s for this to work. changes
* to mpboot.s might require changes here.
*/
/* boot code is located in KERNEL space */
dst = (u_char *) va;
/* modify the lgdt arg */
dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
/* modify the ljmp target for MPentry() */
dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
*dst32 = ((u_int) MPentry - KERNBASE);
/* modify the target for boot code segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_address & 0xffff;
*dst8 = ((u_int) boot_address >> 16) & 0xff;
/* modify the target for boot data segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_address & 0xffff;
*dst8 = ((u_int) boot_address >> 16) & 0xff;
}
/*
* This function starts the AP (application processor) identified
* by the APIC ID 'physicalCpu'. It does quite a "song and dance"
* to accomplish this. This is necessary because of the nuances
* of the different hardware we might encounter. It isn't pretty,
* but it seems to work.
*/
static int
start_ap(int apic_id)
{
int vector, ms;
int cpus;
/* calculate the vector */
vector = (boot_address >> 12) & 0xff;
/* used as a watchpoint to signal AP startup */
cpus = mp_naps;
ipi_startup(apic_id, vector);
/* Wait up to 5 seconds for it to start. */
for (ms = 0; ms < 5000; ms++) {
if (mp_naps > cpus)
return 1; /* return SUCCESS */
DELAY(1000);
}
return 0; /* return FAILURE */
}
#ifdef COUNT_XINVLTLB_HITS
u_int xhits_gbl[MAXCPU];
u_int xhits_pg[MAXCPU];
u_int xhits_rng[MAXCPU];
static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
sizeof(xhits_gbl), "IU", "");
SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
sizeof(xhits_pg), "IU", "");
SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
sizeof(xhits_rng), "IU", "");
u_int ipi_global;
u_int ipi_page;
u_int ipi_range;
u_int ipi_range_size;
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
0, "");
u_int ipi_masked_global;
u_int ipi_masked_page;
u_int ipi_masked_range;
u_int ipi_masked_range_size;
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
&ipi_masked_global, 0, "");
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
&ipi_masked_page, 0, "");
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
&ipi_masked_range, 0, "");
SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
&ipi_masked_range_size, 0, "");
#endif /* COUNT_XINVLTLB_HITS */
/*
* Init and startup IPI.
*/
void
ipi_startup(int apic_id, int vector)
{
/*
* first we do an INIT IPI: this INIT IPI might be run, resetting
* and running the target CPU. OR this INIT IPI might be latched (P5
* bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
* ignored.
*/
lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
lapic_ipi_wait(-1);
DELAY(10000); /* wait ~10mS */
/*
* next we do a STARTUP IPI: the previous INIT IPI might still be
* latched, (P5 bug) this 1st STARTUP would then terminate
* immediately, and the previously started INIT IPI would continue. OR
* the previous INIT IPI has already run. and this STARTUP IPI will
* run. OR the previous INIT IPI was ignored. and this STARTUP IPI
* will run.
*/
lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
vector, apic_id);
lapic_ipi_wait(-1);
DELAY(200); /* wait ~200uS */
/*
* finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
* the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
* this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
* recognized after hardware RESET or INIT IPI.
*/
lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
vector, apic_id);
lapic_ipi_wait(-1);
DELAY(200); /* wait ~200uS */
}
/*
* Send an IPI to specified CPU handling the bitmap logic.
*/
static void
ipi_send_cpu(int cpu, u_int ipi)
{
u_int bitmap, old_pending, new_pending;
KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
if (IPI_IS_BITMAPED(ipi)) {
bitmap = 1 << ipi;
ipi = IPI_BITMAP_VECTOR;
do {
old_pending = cpu_ipi_pending[cpu];
new_pending = old_pending | bitmap;
} while (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
old_pending, new_pending));
if (old_pending)
return;
}
lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
}
/*
* Flush the TLB on all other CPU's
*/
static void
smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
{
u_int ncpu;
ncpu = mp_ncpus - 1; /* does not shootdown self */
if (ncpu < 1)
return; /* no other cpus */
if (!(read_eflags() & PSL_I))
panic("%s: interrupts disabled", __func__);
mtx_lock_spin(&smp_ipi_mtx);
smp_tlb_addr1 = addr1;
smp_tlb_addr2 = addr2;
atomic_store_rel_int(&smp_tlb_wait, 0);
ipi_all_but_self(vector);
while (smp_tlb_wait < ncpu)
ia32_pause();
mtx_unlock_spin(&smp_ipi_mtx);
}
static void
smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
{
int cpu, ncpu, othercpus;
othercpus = mp_ncpus - 1;
if (CPU_ISFULLSET(&mask)) {
if (othercpus < 1)
return;
} else {
CPU_CLR(PCPU_GET(cpuid), &mask);
if (CPU_EMPTY(&mask))
return;
}
if (!(read_eflags() & PSL_I))
panic("%s: interrupts disabled", __func__);
mtx_lock_spin(&smp_ipi_mtx);
smp_tlb_addr1 = addr1;
smp_tlb_addr2 = addr2;
atomic_store_rel_int(&smp_tlb_wait, 0);
if (CPU_ISFULLSET(&mask)) {
ncpu = othercpus;
ipi_all_but_self(vector);
} else {
ncpu = 0;
while ((cpu = CPU_FFS(&mask)) != 0) {
cpu--;
CPU_CLR(cpu, &mask);
CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu,
vector);
ipi_send_cpu(cpu, vector);
ncpu++;
}
}
while (smp_tlb_wait < ncpu)
ia32_pause();
mtx_unlock_spin(&smp_ipi_mtx);
}
void
smp_cache_flush(void)
{
if (smp_started)
smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
}
void
smp_invltlb(void)
{
if (smp_started) {
smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
#ifdef COUNT_XINVLTLB_HITS
ipi_global++;
#endif
}
}
void
smp_invlpg(vm_offset_t addr)
{
if (smp_started) {
smp_tlb_shootdown(IPI_INVLPG, addr, 0);
#ifdef COUNT_XINVLTLB_HITS
ipi_page++;
#endif
}
}
void
smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
{
if (smp_started) {
smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
#ifdef COUNT_XINVLTLB_HITS
ipi_range++;
ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
#endif
}
}
void
smp_masked_invltlb(cpuset_t mask)
{
if (smp_started) {
smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
#ifdef COUNT_XINVLTLB_HITS
ipi_masked_global++;
#endif
}
}
void
smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
{
if (smp_started) {
smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
#ifdef COUNT_XINVLTLB_HITS
ipi_masked_page++;
#endif
}
}
void
smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
{
if (smp_started) {
smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
#ifdef COUNT_XINVLTLB_HITS
ipi_masked_range++;
ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
#endif
}
}
void
ipi_bitmap_handler(struct trapframe frame)
{
struct trapframe *oldframe;
struct thread *td;
int cpu = PCPU_GET(cpuid);
u_int ipi_bitmap;
critical_enter();
td = curthread;
td->td_intr_nesting_level++;
oldframe = td->td_intr_frame;
td->td_intr_frame = &frame;
ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
if (ipi_bitmap & (1 << IPI_PREEMPT)) {
#ifdef COUNT_IPIS
(*ipi_preempt_counts[cpu])++;
#endif
sched_preempt(td);
}
if (ipi_bitmap & (1 << IPI_AST)) {
#ifdef COUNT_IPIS
(*ipi_ast_counts[cpu])++;
#endif
/* Nothing to do for AST */
}
if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
#ifdef COUNT_IPIS
(*ipi_hardclock_counts[cpu])++;
#endif
hardclockintr();
}
td->td_intr_frame = oldframe;
td->td_intr_nesting_level--;
critical_exit();
}
/*
* send an IPI to a set of cpus.
*/
void
ipi_selected(cpuset_t cpus, u_int ipi)
{
int cpu;
/*
* IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
* of help in order to understand what is the source.
* Set the mask of receiving CPUs for this purpose.
*/
if (ipi == IPI_STOP_HARD)
CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
while ((cpu = CPU_FFS(&cpus)) != 0) {
cpu--;
CPU_CLR(cpu, &cpus);
CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
ipi_send_cpu(cpu, ipi);
}
}
/*
* send an IPI to a specific CPU.
*/
void
ipi_cpu(int cpu, u_int ipi)
{
/*
* IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
* of help in order to understand what is the source.
* Set the mask of receiving CPUs for this purpose.
*/
if (ipi == IPI_STOP_HARD)
CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
ipi_send_cpu(cpu, ipi);
}
/*
* send an IPI to all CPUs EXCEPT myself
*/
void
ipi_all_but_self(u_int ipi)
{
cpuset_t other_cpus;
other_cpus = all_cpus;
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
if (IPI_IS_BITMAPED(ipi)) {
ipi_selected(other_cpus, ipi);
return;
}
/*
* IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
* of help in order to understand what is the source.
* Set the mask of receiving CPUs for this purpose.
*/
if (ipi == IPI_STOP_HARD)
CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
}
int
ipi_nmi_handler()
{
u_int cpuid;
/*
* As long as there is not a simple way to know about a NMI's
* source, if the bitmask for the current CPU is present in
* the global pending bitword an IPI_STOP_HARD has been issued
* and should be handled.
*/
cpuid = PCPU_GET(cpuid);
if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
return (1);
CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
cpustop_handler();
return (0);
}
/*
* Handle an IPI_STOP by saving our current context and spinning until we
* are resumed.
*/
void
cpustop_handler(void)
{
u_int cpu;
cpu = PCPU_GET(cpuid);
savectx(&stoppcbs[cpu]);
/* Indicate that we are stopped */
CPU_SET_ATOMIC(cpu, &stopped_cpus);
/* Wait for restart */
while (!CPU_ISSET(cpu, &started_cpus))
ia32_pause();
CPU_CLR_ATOMIC(cpu, &started_cpus);
CPU_CLR_ATOMIC(cpu, &stopped_cpus);
if (cpu == 0 && cpustop_restartfunc != NULL) {
cpustop_restartfunc();
cpustop_restartfunc = NULL;
}
}
/*
* Handle an IPI_SUSPEND by saving our current context and spinning until we
* are resumed.
*/
void
cpususpend_handler(void)
{
u_int cpu;
cpu = PCPU_GET(cpuid);
if (savectx(susppcbs[cpu])) {
wbinvd();
CPU_SET_ATOMIC(cpu, &suspended_cpus);
} else {
pmap_init_pat();
PCPU_SET(switchtime, 0);
PCPU_SET(switchticks, ticks);
/* Indicate that we are resumed */
CPU_CLR_ATOMIC(cpu, &suspended_cpus);
}
/* Wait for resume */
while (!CPU_ISSET(cpu, &started_cpus))
ia32_pause();
/* Resume MCA and local APIC */
mca_resume();
lapic_setup(0);
CPU_CLR_ATOMIC(cpu, &started_cpus);
}
/*
* This is called once the rest of the system is up and running and we're
* ready to let the AP's out of the pen.
*/
static void
release_aps(void *dummy __unused)
{
if (mp_ncpus == 1)
return;
atomic_store_rel_int(&aps_ready, 1);
while (smp_started == 0)
ia32_pause();
}
SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
#ifdef COUNT_IPIS
/*
* Setup interrupt counters for IPI handlers.
*/
static void
mp_ipi_intrcnt(void *dummy)
{
char buf[64];
int i;
CPU_FOREACH(i) {
snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
intrcnt_add(buf, &ipi_invltlb_counts[i]);
snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
intrcnt_add(buf, &ipi_invlrng_counts[i]);
snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
intrcnt_add(buf, &ipi_invlpg_counts[i]);
snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
intrcnt_add(buf, &ipi_invlcache_counts[i]);
snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
intrcnt_add(buf, &ipi_preempt_counts[i]);
snprintf(buf, sizeof(buf), "cpu%d:ast", i);
intrcnt_add(buf, &ipi_ast_counts[i]);
snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
intrcnt_add(buf, &ipi_rendezvous_counts[i]);
snprintf(buf, sizeof(buf), "cpu%d:lazypmap", i);
intrcnt_add(buf, &ipi_lazypmap_counts[i]);
snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
intrcnt_add(buf, &ipi_hardclock_counts[i]);
}
}
SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
#endif