freebsd-skq/sys/dev/mlx5/mlx5_en/mlx5_en_hw_tls.c
hselasky c3f12e5c78 Implement hardware TLS via send tags for mlx5en(4), which is supported by
ConnectX-6 DX.

Currently TLS v1.2 and v1.3 with AES 128/256 crypto over TCP/IP (v4
and v6) is supported.

A per PCI device UMA zone is used to manage the memory of the send
tags.  To optimize performance some crypto contexts may be cached by
the UMA zone, until the UMA zone finishes the memory of the given send
tag.

An asynchronous task is used manage setup of the send tags towards the
firmware. Most importantly setting the AES 128/256 bit pre-shared keys
for the crypto context.

Updating the state of the AES crypto engine and encrypting data, is
all done in the fast path. Each send tag tracks the TCP sequence
number in order to detect non-contiguous blocks of data, which may
require a dump of prior unencrypted data, to restore the crypto state
prior to wire transmission.

Statistics counters have been added to count the amount of TLS data
transmitted in total, and the amount of TLS data which has been dumped
prior to transmission. When non-contiguous TCP sequence numbers are
detected, the software needs to dump the beginning of the current TLS
record up until the point of retransmission. All TLS counters utilize
the counter(9) API.

In order to enable hardware TLS offload the following sysctls must be set:
kern.ipc.mb_use_ext_pgs=1
kern.ipc.tls.ifnet.permitted=1
kern.ipc.tls.enable=1

Sponsored by:	Mellanox Technologies
2019-12-06 15:36:32 +00:00

835 lines
21 KiB
C

/*-
* Copyright (c) 2019 Mellanox Technologies. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS `AS IS' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_kern_tls.h"
#include "en.h"
#include <dev/mlx5/tls.h>
#include <linux/delay.h>
#include <sys/ktls.h>
#include <opencrypto/cryptodev.h>
#ifdef KERN_TLS
MALLOC_DEFINE(M_MLX5E_TLS, "MLX5E_TLS", "MLX5 ethernet HW TLS");
/* software TLS context */
struct mlx5_ifc_sw_tls_cntx_bits {
struct mlx5_ifc_tls_static_params_bits param;
struct mlx5_ifc_tls_progress_params_bits progress;
struct {
uint8_t key_data[8][0x20];
uint8_t key_len[0x20];
} key;
};
CTASSERT(MLX5_ST_SZ_BYTES(sw_tls_cntx) <= sizeof(((struct mlx5e_tls_tag *)0)->crypto_params));
CTASSERT(MLX5_ST_SZ_BYTES(mkc) == sizeof(((struct mlx5e_tx_umr_wqe *)0)->mkc));
static const char *mlx5e_tls_stats_desc[] = {
MLX5E_TLS_STATS(MLX5E_STATS_DESC)
};
static void mlx5e_tls_work(struct work_struct *);
static int
mlx5e_tls_tag_zinit(void *mem, int size, int flags)
{
struct mlx5e_tls_tag *ptag = mem;
MPASS(size == sizeof(*ptag));
memset(ptag, 0, sizeof(*ptag));
mtx_init(&ptag->mtx, "mlx5-tls-tag-mtx", NULL, MTX_DEF);
INIT_WORK(&ptag->work, mlx5e_tls_work);
return (0);
}
static void
mlx5e_tls_tag_zfini(void *mem, int size)
{
struct mlx5e_tls_tag *ptag = mem;
struct mlx5e_priv *priv;
struct mlx5e_tls *ptls;
ptls = ptag->tls;
priv = container_of(ptls, struct mlx5e_priv, tls);
flush_work(&ptag->work);
if (ptag->tisn != 0) {
mlx5_tls_close_tis(priv->mdev, ptag->tisn);
atomic_add_32(&ptls->num_resources, -1U);
}
mtx_destroy(&ptag->mtx);
}
static void
mlx5e_tls_tag_zfree(struct mlx5e_tls_tag *ptag)
{
/* reset some variables */
ptag->state = MLX5E_TLS_ST_INIT;
ptag->dek_index = 0;
ptag->dek_index_ok = 0;
/* avoid leaking keys */
memset(ptag->crypto_params, 0, sizeof(ptag->crypto_params));
/* update number of TIS contexts */
if (ptag->tisn == 0)
atomic_add_32(&ptag->tls->num_resources, -1U);
/* return tag to UMA */
uma_zfree(ptag->tls->zone, ptag);
}
int
mlx5e_tls_init(struct mlx5e_priv *priv)
{
struct mlx5e_tls *ptls = &priv->tls;
struct sysctl_oid *node;
uint32_t x;
if (MLX5_CAP_GEN(priv->mdev, tls) == 0)
return (0);
ptls->wq = create_singlethread_workqueue("mlx5-tls-wq");
if (ptls->wq == NULL)
return (ENOMEM);
sysctl_ctx_init(&ptls->ctx);
snprintf(ptls->zname, sizeof(ptls->zname),
"mlx5_%u_tls", device_get_unit(priv->mdev->pdev->dev.bsddev));
ptls->zone = uma_zcreate(ptls->zname, sizeof(struct mlx5e_tls_tag),
NULL, NULL, mlx5e_tls_tag_zinit, mlx5e_tls_tag_zfini, UMA_ALIGN_CACHE, 0);
ptls->max_resources = 1U << MLX5_CAP_GEN(priv->mdev, log_max_dek);
for (x = 0; x != MLX5E_TLS_STATS_NUM; x++)
ptls->stats.arg[x] = counter_u64_alloc(M_WAITOK);
ptls->init = 1;
node = SYSCTL_ADD_NODE(&priv->sysctl_ctx,
SYSCTL_CHILDREN(priv->sysctl_ifnet), OID_AUTO,
"tls", CTLFLAG_RW, NULL, "Hardware TLS offload");
if (node == NULL)
return (0);
mlx5e_create_counter_stats(&ptls->ctx,
SYSCTL_CHILDREN(node), "stats",
mlx5e_tls_stats_desc, MLX5E_TLS_STATS_NUM,
ptls->stats.arg);
return (0);
}
void
mlx5e_tls_cleanup(struct mlx5e_priv *priv)
{
struct mlx5e_tls *ptls = &priv->tls;
uint32_t x;
if (MLX5_CAP_GEN(priv->mdev, tls) == 0)
return;
ptls->init = 0;
flush_workqueue(ptls->wq);
sysctl_ctx_free(&ptls->ctx);
uma_zdestroy(ptls->zone);
destroy_workqueue(ptls->wq);
/* check if all resources are freed */
MPASS(priv->tls.num_resources == 0);
for (x = 0; x != MLX5E_TLS_STATS_NUM; x++)
counter_u64_free(ptls->stats.arg[x]);
}
static void
mlx5e_tls_work(struct work_struct *work)
{
struct mlx5e_tls_tag *ptag;
struct mlx5e_priv *priv;
int err;
ptag = container_of(work, struct mlx5e_tls_tag, work);
priv = container_of(ptag->tls, struct mlx5e_priv, tls);
switch (ptag->state) {
case MLX5E_TLS_ST_SETUP:
/* try to open TIS, if not present */
if (ptag->tisn == 0) {
err = mlx5_tls_open_tis(priv->mdev, 0, priv->tdn,
priv->pdn, &ptag->tisn);
if (err) {
MLX5E_TLS_STAT_INC(ptag, tx_error, 1);
break;
}
}
MLX5_SET(sw_tls_cntx, ptag->crypto_params, progress.pd, ptag->tisn);
/* try to allocate a DEK context ID */
err = mlx5_encryption_key_create(priv->mdev, priv->pdn,
MLX5_ADDR_OF(sw_tls_cntx, ptag->crypto_params, key.key_data),
MLX5_GET(sw_tls_cntx, ptag->crypto_params, key.key_len),
&ptag->dek_index);
if (err) {
MLX5E_TLS_STAT_INC(ptag, tx_error, 1);
break;
}
MLX5_SET(sw_tls_cntx, ptag->crypto_params, param.dek_index, ptag->dek_index);
ptag->dek_index_ok = 1;
MLX5E_TLS_TAG_LOCK(ptag);
if (ptag->state == MLX5E_TLS_ST_SETUP)
ptag->state = MLX5E_TLS_ST_TXRDY;
MLX5E_TLS_TAG_UNLOCK(ptag);
break;
case MLX5E_TLS_ST_FREED:
/* wait for all refs to go away */
while (ptag->refs != 0)
msleep(1);
/* try to destroy DEK context by ID */
if (ptag->dek_index_ok)
err = mlx5_encryption_key_destroy(priv->mdev, ptag->dek_index);
/* free tag */
mlx5e_tls_tag_zfree(ptag);
break;
default:
break;
}
}
static int
mlx5e_tls_set_params(void *ctx, const struct tls_session_params *en)
{
MLX5_SET(sw_tls_cntx, ctx, param.const_2, 2);
if (en->tls_vminor == TLS_MINOR_VER_TWO)
MLX5_SET(sw_tls_cntx, ctx, param.tls_version, 2); /* v1.2 */
else
MLX5_SET(sw_tls_cntx, ctx, param.tls_version, 3); /* v1.3 */
MLX5_SET(sw_tls_cntx, ctx, param.const_1, 1);
MLX5_SET(sw_tls_cntx, ctx, param.encryption_standard, 1); /* TLS */
/* copy the initial vector in place */
if (en->iv_len == MLX5_FLD_SZ_BYTES(sw_tls_cntx, param.gcm_iv)) {
memcpy(MLX5_ADDR_OF(sw_tls_cntx, ctx, param.gcm_iv),
en->iv, MLX5_FLD_SZ_BYTES(sw_tls_cntx, param.gcm_iv));
} else if (en->iv_len == (MLX5_FLD_SZ_BYTES(sw_tls_cntx, param.gcm_iv) +
MLX5_FLD_SZ_BYTES(sw_tls_cntx, param.implicit_iv))) {
memcpy(MLX5_ADDR_OF(sw_tls_cntx, ctx, param.gcm_iv),
(char *)en->iv + MLX5_FLD_SZ_BYTES(sw_tls_cntx, param.implicit_iv),
MLX5_FLD_SZ_BYTES(sw_tls_cntx, param.gcm_iv));
memcpy(MLX5_ADDR_OF(sw_tls_cntx, ctx, param.implicit_iv),
en->iv,
MLX5_FLD_SZ_BYTES(sw_tls_cntx, param.implicit_iv));
} else {
return (EINVAL);
}
if (en->cipher_key_len <= MLX5_FLD_SZ_BYTES(sw_tls_cntx, key.key_data)) {
memcpy(MLX5_ADDR_OF(sw_tls_cntx, ctx, key.key_data),
en->cipher_key, en->cipher_key_len);
MLX5_SET(sw_tls_cntx, ctx, key.key_len, en->cipher_key_len);
} else {
return (EINVAL);
}
return (0);
}
/* Verify zero default */
CTASSERT(MLX5E_TLS_ST_INIT == 0);
int
mlx5e_tls_snd_tag_alloc(struct ifnet *ifp,
union if_snd_tag_alloc_params *params,
struct m_snd_tag **ppmt)
{
struct if_snd_tag_alloc_rate_limit rl_params;
struct mlx5e_priv *priv;
struct mlx5e_tls_tag *ptag;
const struct tls_session_params *en;
int error;
priv = ifp->if_softc;
if (priv->tls.init == 0)
return (EOPNOTSUPP);
/* allocate new tag from zone, if any */
ptag = uma_zalloc(priv->tls.zone, M_NOWAIT);
if (ptag == NULL)
return (ENOMEM);
/* sanity check default values */
MPASS(ptag->state == MLX5E_TLS_ST_INIT);
MPASS(ptag->dek_index == 0);
MPASS(ptag->dek_index_ok == 0);
/* setup TLS tag */
ptag->tls = &priv->tls;
ptag->tag.type = params->hdr.type;
/* check if there is no TIS context */
if (ptag->tisn == 0) {
uint32_t value;
value = atomic_fetchadd_32(&priv->tls.num_resources, 1U);
/* check resource limits */
if (value >= priv->tls.max_resources) {
error = ENOMEM;
goto failure;
}
}
en = &params->tls.tls->params;
/* only TLS v1.2 and v1.3 is currently supported */
if (en->tls_vmajor != TLS_MAJOR_VER_ONE ||
(en->tls_vminor != TLS_MINOR_VER_TWO
#ifdef TLS_MINOR_VER_THREE
&& en->tls_vminor != TLS_MINOR_VER_THREE
#endif
)) {
error = EPROTONOSUPPORT;
goto failure;
}
switch (en->cipher_algorithm) {
case CRYPTO_AES_NIST_GCM_16:
switch (en->cipher_key_len) {
case 128 / 8:
if (en->auth_algorithm != CRYPTO_AES_128_NIST_GMAC) {
error = EINVAL;
goto failure;
}
if (en->tls_vminor == TLS_MINOR_VER_TWO) {
if (MLX5_CAP_TLS(priv->mdev, tls_1_2_aes_gcm_128) == 0) {
error = EPROTONOSUPPORT;
goto failure;
}
} else {
if (MLX5_CAP_TLS(priv->mdev, tls_1_3_aes_gcm_128) == 0) {
error = EPROTONOSUPPORT;
goto failure;
}
}
error = mlx5e_tls_set_params(ptag->crypto_params, en);
if (error)
goto failure;
break;
case 256 / 8:
if (en->auth_algorithm != CRYPTO_AES_256_NIST_GMAC) {
error = EINVAL;
goto failure;
}
if (en->tls_vminor == TLS_MINOR_VER_TWO) {
if (MLX5_CAP_TLS(priv->mdev, tls_1_2_aes_gcm_256) == 0) {
error = EPROTONOSUPPORT;
goto failure;
}
} else {
if (MLX5_CAP_TLS(priv->mdev, tls_1_3_aes_gcm_256) == 0) {
error = EPROTONOSUPPORT;
goto failure;
}
}
error = mlx5e_tls_set_params(ptag->crypto_params, en);
if (error)
goto failure;
break;
default:
error = EINVAL;
goto failure;
}
break;
default:
error = EPROTONOSUPPORT;
goto failure;
}
switch (ptag->tag.type) {
#if defined(RATELIMIT) && defined(IF_SND_TAG_TYPE_TLS_RATE_LIMIT)
case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
memset(&rl_params, 0, sizeof(rl_params));
rl_params.hdr = params->tls_rate_limit.hdr;
rl_params.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT;
rl_params.max_rate = params->tls_rate_limit.max_rate;
error = mlx5e_rl_snd_tag_alloc(ifp,
container_of(&rl_params, union if_snd_tag_alloc_params, rate_limit),
&ptag->rl_tag);
if (error)
goto failure;
break;
#endif
case IF_SND_TAG_TYPE_TLS:
memset(&rl_params, 0, sizeof(rl_params));
rl_params.hdr = params->tls.hdr;
rl_params.hdr.type = IF_SND_TAG_TYPE_UNLIMITED;
error = mlx5e_ul_snd_tag_alloc(ifp,
container_of(&rl_params, union if_snd_tag_alloc_params, unlimited),
&ptag->rl_tag);
if (error)
goto failure;
break;
default:
error = EOPNOTSUPP;
goto failure;
}
/* store pointer to mbuf tag */
MPASS(ptag->tag.m_snd_tag.refcount == 0);
m_snd_tag_init(&ptag->tag.m_snd_tag, ifp);
*ppmt = &ptag->tag.m_snd_tag;
return (0);
failure:
mlx5e_tls_tag_zfree(ptag);
return (error);
}
int
mlx5e_tls_snd_tag_modify(struct m_snd_tag *pmt, union if_snd_tag_modify_params *params)
{
#if defined(RATELIMIT) && defined(IF_SND_TAG_TYPE_TLS_RATE_LIMIT)
struct if_snd_tag_rate_limit_params rl_params;
int error;
#endif
struct mlx5e_tls_tag *ptag =
container_of(pmt, struct mlx5e_tls_tag, tag.m_snd_tag);
switch (ptag->tag.type) {
#if defined(RATELIMIT) && defined(IF_SND_TAG_TYPE_TLS_RATE_LIMIT)
case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
memset(&rl_params, 0, sizeof(rl_params));
rl_params.max_rate = params->tls_rate_limit.max_rate;
error = mlx5e_rl_snd_tag_modify(ptag->rl_tag,
container_of(&rl_params, union if_snd_tag_modify_params, rate_limit));
return (error);
#endif
default:
return (EOPNOTSUPP);
}
}
int
mlx5e_tls_snd_tag_query(struct m_snd_tag *pmt, union if_snd_tag_query_params *params)
{
struct mlx5e_tls_tag *ptag =
container_of(pmt, struct mlx5e_tls_tag, tag.m_snd_tag);
int error;
switch (ptag->tag.type) {
#if defined(RATELIMIT) && defined(IF_SND_TAG_TYPE_TLS_RATE_LIMIT)
case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
error = mlx5e_rl_snd_tag_query(ptag->rl_tag, params);
break;
#endif
case IF_SND_TAG_TYPE_TLS:
error = mlx5e_ul_snd_tag_query(ptag->rl_tag, params);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
void
mlx5e_tls_snd_tag_free(struct m_snd_tag *pmt)
{
struct mlx5e_tls_tag *ptag =
container_of(pmt, struct mlx5e_tls_tag, tag.m_snd_tag);
struct mlx5e_priv *priv;
switch (ptag->tag.type) {
#if defined(RATELIMIT) && defined(IF_SND_TAG_TYPE_TLS_RATE_LIMIT)
case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
mlx5e_rl_snd_tag_free(ptag->rl_tag);
break;
#endif
case IF_SND_TAG_TYPE_TLS:
mlx5e_ul_snd_tag_free(ptag->rl_tag);
break;
default:
break;
}
MLX5E_TLS_TAG_LOCK(ptag);
ptag->state = MLX5E_TLS_ST_FREED;
MLX5E_TLS_TAG_UNLOCK(ptag);
priv = ptag->tag.m_snd_tag.ifp->if_softc;
queue_work(priv->tls.wq, &ptag->work);
}
CTASSERT((MLX5_FLD_SZ_BYTES(sw_tls_cntx, param) % 16) == 0);
static void
mlx5e_tls_send_static_parameters(struct mlx5e_sq *sq, struct mlx5e_tls_tag *ptag)
{
const u32 ds_cnt = DIV_ROUND_UP(sizeof(struct mlx5e_tx_umr_wqe) +
MLX5_FLD_SZ_BYTES(sw_tls_cntx, param), MLX5_SEND_WQE_DS);
struct mlx5e_tx_umr_wqe *wqe;
u16 pi;
pi = sq->pc & sq->wq.sz_m1;
wqe = mlx5_wq_cyc_get_wqe(&sq->wq, pi);
memset(wqe, 0, sizeof(*wqe));
wqe->ctrl.opmod_idx_opcode = cpu_to_be32((sq->pc << 8) |
MLX5_OPCODE_UMR | (MLX5_OPCODE_MOD_UMR_TLS_TIS_STATIC_PARAMS << 24));
wqe->ctrl.qpn_ds = cpu_to_be32((sq->sqn << 8) | ds_cnt);
wqe->ctrl.imm = cpu_to_be32(ptag->tisn << 8);
if (mlx5e_do_send_cqe(sq))
wqe->ctrl.fm_ce_se = MLX5_WQE_CTRL_CQ_UPDATE | MLX5_FENCE_MODE_INITIATOR_SMALL;
else
wqe->ctrl.fm_ce_se = MLX5_FENCE_MODE_INITIATOR_SMALL;
/* fill out UMR control segment */
wqe->umr.flags = 0x80; /* inline data */
wqe->umr.bsf_octowords = cpu_to_be16(MLX5_FLD_SZ_BYTES(sw_tls_cntx, param) / 16);
/* copy in the static crypto parameters */
memcpy(wqe + 1, MLX5_ADDR_OF(sw_tls_cntx, ptag->crypto_params, param),
MLX5_FLD_SZ_BYTES(sw_tls_cntx, param));
/* copy data for doorbell */
memcpy(sq->doorbell.d32, &wqe->ctrl, sizeof(sq->doorbell.d32));
sq->mbuf[pi].mbuf = NULL;
sq->mbuf[pi].num_bytes = 0;
sq->mbuf[pi].num_wqebbs = DIV_ROUND_UP(ds_cnt, MLX5_SEND_WQEBB_NUM_DS);
sq->mbuf[pi].p_refcount = &ptag->refs;
atomic_add_int(&ptag->refs, 1);
sq->pc += sq->mbuf[pi].num_wqebbs;
}
CTASSERT(MLX5_FLD_SZ_BYTES(sw_tls_cntx, progress) ==
sizeof(((struct mlx5e_tx_psv_wqe *)0)->psv));
static void
mlx5e_tls_send_progress_parameters(struct mlx5e_sq *sq, struct mlx5e_tls_tag *ptag)
{
const u32 ds_cnt = DIV_ROUND_UP(sizeof(struct mlx5e_tx_psv_wqe),
MLX5_SEND_WQE_DS);
struct mlx5e_tx_psv_wqe *wqe;
u16 pi;
pi = sq->pc & sq->wq.sz_m1;
wqe = mlx5_wq_cyc_get_wqe(&sq->wq, pi);
memset(wqe, 0, sizeof(*wqe));
wqe->ctrl.opmod_idx_opcode = cpu_to_be32((sq->pc << 8) |
MLX5_OPCODE_SET_PSV | (MLX5_OPCODE_MOD_PSV_TLS_TIS_PROGRESS_PARAMS << 24));
wqe->ctrl.qpn_ds = cpu_to_be32((sq->sqn << 8) | ds_cnt);
if (mlx5e_do_send_cqe(sq))
wqe->ctrl.fm_ce_se = MLX5_WQE_CTRL_CQ_UPDATE | MLX5_FENCE_MODE_INITIATOR_SMALL;
else
wqe->ctrl.fm_ce_se = MLX5_FENCE_MODE_INITIATOR_SMALL;
/* copy in the PSV control segment */
memcpy(&wqe->psv, MLX5_ADDR_OF(sw_tls_cntx, ptag->crypto_params, progress),
sizeof(wqe->psv));
/* copy data for doorbell */
memcpy(sq->doorbell.d32, &wqe->ctrl, sizeof(sq->doorbell.d32));
sq->mbuf[pi].mbuf = NULL;
sq->mbuf[pi].num_bytes = 0;
sq->mbuf[pi].num_wqebbs = DIV_ROUND_UP(ds_cnt, MLX5_SEND_WQEBB_NUM_DS);
sq->mbuf[pi].p_refcount = &ptag->refs;
atomic_add_int(&ptag->refs, 1);
sq->pc += sq->mbuf[pi].num_wqebbs;
}
static void
mlx5e_tls_send_nop(struct mlx5e_sq *sq, struct mlx5e_tls_tag *ptag)
{
const u32 ds_cnt = MLX5_SEND_WQEBB_NUM_DS;
struct mlx5e_tx_wqe *wqe;
u16 pi;
pi = sq->pc & sq->wq.sz_m1;
wqe = mlx5_wq_cyc_get_wqe(&sq->wq, pi);
memset(&wqe->ctrl, 0, sizeof(wqe->ctrl));
wqe->ctrl.opmod_idx_opcode = cpu_to_be32((sq->pc << 8) | MLX5_OPCODE_NOP);
wqe->ctrl.qpn_ds = cpu_to_be32((sq->sqn << 8) | ds_cnt);
if (mlx5e_do_send_cqe(sq))
wqe->ctrl.fm_ce_se = MLX5_WQE_CTRL_CQ_UPDATE | MLX5_FENCE_MODE_INITIATOR_SMALL;
else
wqe->ctrl.fm_ce_se = MLX5_FENCE_MODE_INITIATOR_SMALL;
/* Copy data for doorbell */
memcpy(sq->doorbell.d32, &wqe->ctrl, sizeof(sq->doorbell.d32));
sq->mbuf[pi].mbuf = NULL;
sq->mbuf[pi].num_bytes = 0;
sq->mbuf[pi].num_wqebbs = DIV_ROUND_UP(ds_cnt, MLX5_SEND_WQEBB_NUM_DS);
sq->mbuf[pi].p_refcount = &ptag->refs;
atomic_add_int(&ptag->refs, 1);
sq->pc += sq->mbuf[pi].num_wqebbs;
}
#define SBTLS_MBUF_NO_DATA ((struct mbuf *)1)
static struct mbuf *
sbtls_recover_record(struct mbuf *mb, int wait, uint32_t tcp_old, uint32_t *ptcp_seq)
{
struct mbuf *mr;
uint32_t offset;
uint32_t delta;
/* check format of incoming mbuf */
if (mb->m_next == NULL ||
(mb->m_next->m_flags & (M_NOMAP | M_EXT)) != (M_NOMAP | M_EXT) ||
mb->m_next->m_ext.ext_buf == NULL) {
mr = NULL;
goto done;
}
/* get unmapped data offset */
offset = mtod(mb->m_next, uintptr_t);
/* check if we don't need to re-transmit anything */
if (offset == 0) {
mr = SBTLS_MBUF_NO_DATA;
goto done;
}
/* try to get a new mbufs with packet header */
mr = m_gethdr(wait, MT_DATA);
if (mr == NULL)
goto done;
mb_dupcl(mr, mb->m_next);
/* the beginning of the TLS record */
mr->m_data = NULL;
/* setup packet header length */
mr->m_pkthdr.len = mr->m_len = offset;
/* check for partial re-transmit */
delta = *ptcp_seq - tcp_old;
if (delta < offset) {
m_adj(mr, offset - delta);
offset = delta;
}
/*
* Rewind the TCP sequence number by the amount of data
* retransmitted:
*/
*ptcp_seq -= offset;
done:
return (mr);
}
static int
mlx5e_sq_tls_populate(struct mbuf *mb, uint64_t *pseq)
{
struct mbuf_ext_pgs *ext_pgs;
for (; mb != NULL; mb = mb->m_next) {
if (!(mb->m_flags & M_NOMAP))
continue;
ext_pgs = (void *)mb->m_ext.ext_buf;
*pseq = ext_pgs->seqno;
return (1);
}
return (0);
}
int
mlx5e_sq_tls_xmit(struct mlx5e_sq *sq, struct mlx5e_xmit_args *parg, struct mbuf **ppmb)
{
struct mlx5e_tls_tag *ptls_tag;
struct mlx5e_snd_tag *ptag;
struct tcphdr *th;
struct mbuf *mb = *ppmb;
u64 rcd_sn;
u32 header_size;
u32 mb_seq;
if ((mb->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0)
return (MLX5E_TLS_CONTINUE);
ptag = container_of(mb->m_pkthdr.snd_tag,
struct mlx5e_snd_tag, m_snd_tag);
if (
#if defined(RATELIMIT) && defined(IF_SND_TAG_TYPE_TLS_RATE_LIMIT)
ptag->type != IF_SND_TAG_TYPE_TLS_RATE_LIMIT &&
#endif
ptag->type != IF_SND_TAG_TYPE_TLS)
return (MLX5E_TLS_CONTINUE);
ptls_tag = container_of(ptag, struct mlx5e_tls_tag, tag);
header_size = mlx5e_get_full_header_size(mb, &th);
if (unlikely(header_size == 0 || th == NULL))
return (MLX5E_TLS_FAILURE);
/*
* Send non-TLS TCP packets AS-IS:
*/
if (header_size == mb->m_pkthdr.len ||
mlx5e_sq_tls_populate(mb, &rcd_sn) == 0) {
parg->tisn = 0;
parg->ihs = header_size;
return (MLX5E_TLS_CONTINUE);
}
mb_seq = ntohl(th->th_seq);
MLX5E_TLS_TAG_LOCK(ptls_tag);
switch (ptls_tag->state) {
case MLX5E_TLS_ST_INIT:
queue_work(sq->priv->tls.wq, &ptls_tag->work);
ptls_tag->state = MLX5E_TLS_ST_SETUP;
ptls_tag->expected_seq = ~mb_seq; /* force setup */
MLX5E_TLS_TAG_UNLOCK(ptls_tag);
return (MLX5E_TLS_FAILURE);
case MLX5E_TLS_ST_SETUP:
MLX5E_TLS_TAG_UNLOCK(ptls_tag);
return (MLX5E_TLS_FAILURE);
default:
MLX5E_TLS_TAG_UNLOCK(ptls_tag);
break;
}
if (unlikely(ptls_tag->expected_seq != mb_seq)) {
struct mbuf *r_mb;
uint32_t tcp_seq = mb_seq;
r_mb = sbtls_recover_record(mb, M_NOWAIT, ptls_tag->expected_seq, &tcp_seq);
if (r_mb == NULL) {
MLX5E_TLS_STAT_INC(ptls_tag, tx_error, 1);
return (MLX5E_TLS_FAILURE);
}
MLX5E_TLS_STAT_INC(ptls_tag, tx_packets_ooo, 1);
/* check if this is the first fragment of a TLS record */
if (r_mb == SBTLS_MBUF_NO_DATA || r_mb->m_data == NULL) {
/* setup TLS static parameters */
MLX5_SET64(sw_tls_cntx, ptls_tag->crypto_params,
param.initial_record_number, rcd_sn);
/* setup TLS progress parameters */
MLX5_SET(sw_tls_cntx, ptls_tag->crypto_params,
progress.next_record_tcp_sn, tcp_seq);
/*
* NOTE: The sendqueue should have enough room to
* carry both the static and the progress parameters
* when we get here!
*/
mlx5e_tls_send_static_parameters(sq, ptls_tag);
mlx5e_tls_send_progress_parameters(sq, ptls_tag);
if (r_mb == SBTLS_MBUF_NO_DATA) {
mlx5e_tls_send_nop(sq, ptls_tag);
ptls_tag->expected_seq = mb_seq;
return (MLX5E_TLS_LOOP);
}
}
MLX5E_TLS_STAT_INC(ptls_tag, tx_bytes_ooo, r_mb->m_pkthdr.len);
/* setup transmit arguments */
parg->tisn = ptls_tag->tisn;
parg->pref = &ptls_tag->refs;
/* try to send DUMP data */
if (mlx5e_sq_dump_xmit(sq, parg, &r_mb) != 0) {
m_freem(r_mb);
ptls_tag->expected_seq = tcp_seq;
return (MLX5E_TLS_FAILURE);
} else {
ptls_tag->expected_seq = mb_seq;
return (MLX5E_TLS_LOOP);
}
} else {
MLX5E_TLS_STAT_INC(ptls_tag, tx_packets, 1);
MLX5E_TLS_STAT_INC(ptls_tag, tx_bytes, mb->m_pkthdr.len);
}
ptls_tag->expected_seq += mb->m_pkthdr.len - header_size;
parg->tisn = ptls_tag->tisn;
parg->ihs = header_size;
parg->pref = &ptls_tag->refs;
return (MLX5E_TLS_CONTINUE);
}
#else
int
mlx5e_tls_init(struct mlx5e_priv *priv)
{
return (0);
}
void
mlx5e_tls_cleanup(struct mlx5e_priv *priv)
{
/* NOP */
}
#endif /* KERN_TLS */