freebsd-skq/sys/dev/qlxge/qls_hw.c
2020-09-01 21:56:30 +00:00

2410 lines
56 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013-2014 Qlogic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File: qls_hw.c
* Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
* Content: Contains Hardware dependent functions
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "qls_os.h"
#include "qls_hw.h"
#include "qls_def.h"
#include "qls_inline.h"
#include "qls_ver.h"
#include "qls_glbl.h"
#include "qls_dbg.h"
/*
* Static Functions
*/
static int qls_wait_for_mac_proto_idx_ready(qla_host_t *ha, uint32_t op);
static int qls_config_unicast_mac_addr(qla_host_t *ha, uint32_t add_mac);
static int qls_config_mcast_mac_addr(qla_host_t *ha, uint8_t *mac_addr,
uint32_t add_mac, uint32_t index);
static int qls_init_rss(qla_host_t *ha);
static int qls_init_comp_queue(qla_host_t *ha, int cid);
static int qls_init_work_queue(qla_host_t *ha, int wid);
static int qls_init_fw_routing_table(qla_host_t *ha);
static int qls_hw_add_all_mcast(qla_host_t *ha);
static int qls_hw_add_mcast(qla_host_t *ha, uint8_t *mta);
static int qls_hw_del_mcast(qla_host_t *ha, uint8_t *mta);
static int qls_wait_for_flash_ready(qla_host_t *ha);
static int qls_sem_lock(qla_host_t *ha, uint32_t mask, uint32_t value);
static void qls_sem_unlock(qla_host_t *ha, uint32_t mask);
static void qls_free_tx_dma(qla_host_t *ha);
static int qls_alloc_tx_dma(qla_host_t *ha);
static void qls_free_rx_dma(qla_host_t *ha);
static int qls_alloc_rx_dma(qla_host_t *ha);
static void qls_free_mpi_dma(qla_host_t *ha);
static int qls_alloc_mpi_dma(qla_host_t *ha);
static void qls_free_rss_dma(qla_host_t *ha);
static int qls_alloc_rss_dma(qla_host_t *ha);
static int qls_flash_validate(qla_host_t *ha, const char *signature);
static int qls_wait_for_proc_addr_ready(qla_host_t *ha);
static int qls_proc_addr_rd_reg(qla_host_t *ha, uint32_t addr_module,
uint32_t reg, uint32_t *data);
static int qls_proc_addr_wr_reg(qla_host_t *ha, uint32_t addr_module,
uint32_t reg, uint32_t data);
static int qls_hw_reset(qla_host_t *ha);
/*
* MPI Related Functions
*/
static int qls_mbx_cmd(qla_host_t *ha, uint32_t *in_mbx, uint32_t i_count,
uint32_t *out_mbx, uint32_t o_count);
static int qls_mbx_set_mgmt_ctrl(qla_host_t *ha, uint32_t t_ctrl);
static int qls_mbx_get_mgmt_ctrl(qla_host_t *ha, uint32_t *t_status);
static void qls_mbx_get_link_status(qla_host_t *ha);
static void qls_mbx_about_fw(qla_host_t *ha);
int
qls_get_msix_count(qla_host_t *ha)
{
return (ha->num_rx_rings);
}
static int
qls_syctl_mpi_dump(SYSCTL_HANDLER_ARGS)
{
int err = 0, ret;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
qls_mpi_core_dump(ha);
}
return (err);
}
static int
qls_syctl_link_status(SYSCTL_HANDLER_ARGS)
{
int err = 0, ret;
qla_host_t *ha;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
qls_mbx_get_link_status(ha);
qls_mbx_about_fw(ha);
}
return (err);
}
void
qls_hw_add_sysctls(qla_host_t *ha)
{
device_t dev;
dev = ha->pci_dev;
ha->num_rx_rings = MAX_RX_RINGS; ha->num_tx_rings = MAX_TX_RINGS;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "num_rx_rings", CTLFLAG_RD, &ha->num_rx_rings,
ha->num_rx_rings, "Number of Completion Queues");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "num_tx_rings", CTLFLAG_RD, &ha->num_tx_rings,
ha->num_tx_rings, "Number of Transmit Rings");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "mpi_dump",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)ha, 0,
qls_syctl_mpi_dump, "I", "MPI Dump");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "link_status",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)ha, 0,
qls_syctl_link_status, "I", "Link Status");
}
/*
* Name: qls_free_dma
* Function: Frees the DMA'able memory allocated in qls_alloc_dma()
*/
void
qls_free_dma(qla_host_t *ha)
{
qls_free_rss_dma(ha);
qls_free_mpi_dma(ha);
qls_free_tx_dma(ha);
qls_free_rx_dma(ha);
return;
}
/*
* Name: qls_alloc_dma
* Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
*/
int
qls_alloc_dma(qla_host_t *ha)
{
if (qls_alloc_rx_dma(ha))
return (-1);
if (qls_alloc_tx_dma(ha)) {
qls_free_rx_dma(ha);
return (-1);
}
if (qls_alloc_mpi_dma(ha)) {
qls_free_tx_dma(ha);
qls_free_rx_dma(ha);
return (-1);
}
if (qls_alloc_rss_dma(ha)) {
qls_free_mpi_dma(ha);
qls_free_tx_dma(ha);
qls_free_rx_dma(ha);
return (-1);
}
return (0);
}
static int
qls_wait_for_mac_proto_idx_ready(qla_host_t *ha, uint32_t op)
{
uint32_t data32;
uint32_t count = 3;
while (count--) {
data32 = READ_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX);
if (data32 & op)
return (0);
QLA_USEC_DELAY(100);
}
ha->qla_initiate_recovery = 1;
return (-1);
}
/*
* Name: qls_config_unicast_mac_addr
* Function: binds/unbinds a unicast MAC address to the interface.
*/
static int
qls_config_unicast_mac_addr(qla_host_t *ha, uint32_t add_mac)
{
int ret = 0;
uint32_t mac_upper = 0;
uint32_t mac_lower = 0;
uint32_t value = 0, index;
if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_MAC_SERDES,
Q81_CTL_SEM_SET_MAC_SERDES)) {
QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__));
return(-1);
}
if (add_mac) {
mac_upper = (ha->mac_addr[0] << 8) | ha->mac_addr[1];
mac_lower = (ha->mac_addr[2] << 24) | (ha->mac_addr[3] << 16) |
(ha->mac_addr[4] << 8) | ha->mac_addr[5];
}
ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW);
if (ret)
goto qls_config_unicast_mac_addr_exit;
index = 128 * (ha->pci_func & 0x1); /* index */
value = (index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) |
Q81_CTL_MAC_PROTO_AI_TYPE_CAM_MAC;
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value);
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, mac_lower);
ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW);
if (ret)
goto qls_config_unicast_mac_addr_exit;
value = (index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) |
Q81_CTL_MAC_PROTO_AI_TYPE_CAM_MAC | 0x1;
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value);
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, mac_upper);
ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW);
if (ret)
goto qls_config_unicast_mac_addr_exit;
value = (index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) |
Q81_CTL_MAC_PROTO_AI_TYPE_CAM_MAC | 0x2;
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value);
value = Q81_CAM_MAC_OFF2_ROUTE_NIC |
((ha->pci_func & 0x1) << Q81_CAM_MAC_OFF2_FUNC_SHIFT) |
(0 << Q81_CAM_MAC_OFF2_CQID_SHIFT);
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, value);
qls_config_unicast_mac_addr_exit:
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_MAC_SERDES);
return (ret);
}
/*
* Name: qls_config_mcast_mac_addr
* Function: binds/unbinds a multicast MAC address to the interface.
*/
static int
qls_config_mcast_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint32_t add_mac,
uint32_t index)
{
int ret = 0;
uint32_t mac_upper = 0;
uint32_t mac_lower = 0;
uint32_t value = 0;
if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_MAC_SERDES,
Q81_CTL_SEM_SET_MAC_SERDES)) {
QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__));
return(-1);
}
if (add_mac) {
mac_upper = (mac_addr[0] << 8) | mac_addr[1];
mac_lower = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
}
ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW);
if (ret)
goto qls_config_mcast_mac_addr_exit;
value = Q81_CTL_MAC_PROTO_AI_E |
(index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) |
Q81_CTL_MAC_PROTO_AI_TYPE_MCAST ;
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value);
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, mac_lower);
ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW);
if (ret)
goto qls_config_mcast_mac_addr_exit;
value = Q81_CTL_MAC_PROTO_AI_E |
(index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) |
Q81_CTL_MAC_PROTO_AI_TYPE_MCAST | 0x1;
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value);
WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, mac_upper);
qls_config_mcast_mac_addr_exit:
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_MAC_SERDES);
return (ret);
}
/*
* Name: qls_set_mac_rcv_mode
* Function: Enable/Disable AllMulticast and Promiscuous Modes.
*/
static int
qls_wait_for_route_idx_ready(qla_host_t *ha, uint32_t op)
{
uint32_t data32;
uint32_t count = 3;
while (count--) {
data32 = READ_REG32(ha, Q81_CTL_ROUTING_INDEX);
if (data32 & op)
return (0);
QLA_USEC_DELAY(100);
}
ha->qla_initiate_recovery = 1;
return (-1);
}
static int
qls_load_route_idx_reg(qla_host_t *ha, uint32_t index, uint32_t data)
{
int ret = 0;
ret = qls_wait_for_route_idx_ready(ha, Q81_CTL_RI_MW);
if (ret) {
device_printf(ha->pci_dev, "%s: [0x%08x, 0x%08x] failed\n",
__func__, index, data);
goto qls_load_route_idx_reg_exit;
}
WRITE_REG32(ha, Q81_CTL_ROUTING_INDEX, index);
WRITE_REG32(ha, Q81_CTL_ROUTING_DATA, data);
qls_load_route_idx_reg_exit:
return (ret);
}
static int
qls_load_route_idx_reg_locked(qla_host_t *ha, uint32_t index, uint32_t data)
{
int ret = 0;
if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG,
Q81_CTL_SEM_SET_RIDX_DATAREG)) {
QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__));
return(-1);
}
ret = qls_load_route_idx_reg(ha, index, data);
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG);
return (ret);
}
static int
qls_clear_routing_table(qla_host_t *ha)
{
int i, ret = 0;
if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG,
Q81_CTL_SEM_SET_RIDX_DATAREG)) {
QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__));
return(-1);
}
for (i = 0; i < 16; i++) {
ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_TYPE_NICQMASK|
(i << 8) | Q81_CTL_RI_DST_DFLTQ), 0);
if (ret)
break;
}
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG);
return (ret);
}
int
qls_set_promisc(qla_host_t *ha)
{
int ret;
ret = qls_load_route_idx_reg_locked(ha,
(Q81_CTL_RI_E | Q81_CTL_RI_TYPE_NICQMASK |
Q81_CTL_RI_IDX_PROMISCUOUS | Q81_CTL_RI_DST_DFLTQ),
Q81_CTL_RD_VALID_PKT);
return (ret);
}
void
qls_reset_promisc(qla_host_t *ha)
{
int ret;
ret = qls_load_route_idx_reg_locked(ha, (Q81_CTL_RI_TYPE_NICQMASK |
Q81_CTL_RI_IDX_PROMISCUOUS | Q81_CTL_RI_DST_DFLTQ), 0);
return;
}
int
qls_set_allmulti(qla_host_t *ha)
{
int ret;
ret = qls_load_route_idx_reg_locked(ha,
(Q81_CTL_RI_E | Q81_CTL_RI_TYPE_NICQMASK |
Q81_CTL_RI_IDX_ALLMULTI | Q81_CTL_RI_DST_DFLTQ),
Q81_CTL_RD_MCAST);
return (ret);
}
void
qls_reset_allmulti(qla_host_t *ha)
{
int ret;
ret = qls_load_route_idx_reg_locked(ha, (Q81_CTL_RI_TYPE_NICQMASK |
Q81_CTL_RI_IDX_ALLMULTI | Q81_CTL_RI_DST_DFLTQ), 0);
return;
}
static int
qls_init_fw_routing_table(qla_host_t *ha)
{
int ret = 0;
ret = qls_clear_routing_table(ha);
if (ret)
return (-1);
if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG,
Q81_CTL_SEM_SET_RIDX_DATAREG)) {
QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__));
return(-1);
}
ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_E | Q81_CTL_RI_DST_DROP |
Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_ALL_ERROR),
Q81_CTL_RD_ERROR_PKT);
if (ret)
goto qls_init_fw_routing_table_exit;
ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_E | Q81_CTL_RI_DST_DFLTQ |
Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_BCAST),
Q81_CTL_RD_BCAST);
if (ret)
goto qls_init_fw_routing_table_exit;
if (ha->num_rx_rings > 1 ) {
ret = qls_load_route_idx_reg(ha,
(Q81_CTL_RI_E | Q81_CTL_RI_DST_RSS |
Q81_CTL_RI_TYPE_NICQMASK |
Q81_CTL_RI_IDX_RSS_MATCH),
Q81_CTL_RD_RSS_MATCH);
if (ret)
goto qls_init_fw_routing_table_exit;
}
ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_E | Q81_CTL_RI_DST_DFLTQ |
Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_MCAST_MATCH),
Q81_CTL_RD_MCAST_REG_MATCH);
if (ret)
goto qls_init_fw_routing_table_exit;
ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_E | Q81_CTL_RI_DST_DFLTQ |
Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_CAM_HIT),
Q81_CTL_RD_CAM_HIT);
if (ret)
goto qls_init_fw_routing_table_exit;
qls_init_fw_routing_table_exit:
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG);
return (ret);
}
static int
qls_tx_tso_chksum(qla_host_t *ha, struct mbuf *mp, q81_tx_tso_t *tx_mac)
{
struct ether_vlan_header *eh;
struct ip *ip;
struct ip6_hdr *ip6;
struct tcphdr *th;
uint32_t ehdrlen, ip_hlen;
int ret = 0;
uint16_t etype;
device_t dev;
uint8_t buf[sizeof(struct ip6_hdr)];
dev = ha->pci_dev;
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
etype = ntohs(eh->evl_proto);
} else {
ehdrlen = ETHER_HDR_LEN;
etype = ntohs(eh->evl_encap_proto);
}
switch (etype) {
case ETHERTYPE_IP:
ip = (struct ip *)(mp->m_data + ehdrlen);
ip_hlen = sizeof (struct ip);
if (mp->m_len < (ehdrlen + ip_hlen)) {
m_copydata(mp, ehdrlen, sizeof(struct ip), buf);
ip = (struct ip *)buf;
}
tx_mac->opcode = Q81_IOCB_TX_TSO;
tx_mac->flags |= Q81_TX_TSO_FLAGS_IPV4 ;
tx_mac->phdr_offsets = ehdrlen;
tx_mac->phdr_offsets |= ((ehdrlen + ip_hlen) <<
Q81_TX_TSO_PHDR_SHIFT);
ip->ip_sum = 0;
if (mp->m_pkthdr.csum_flags & CSUM_TSO) {
tx_mac->flags |= Q81_TX_TSO_FLAGS_LSO;
th = (struct tcphdr *)(ip + 1);
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htons(IPPROTO_TCP));
tx_mac->mss = mp->m_pkthdr.tso_segsz;
tx_mac->phdr_length = ip_hlen + ehdrlen +
(th->th_off << 2);
break;
}
tx_mac->vlan_off |= Q81_TX_TSO_VLAN_OFF_IC ;
if (ip->ip_p == IPPROTO_TCP) {
tx_mac->flags |= Q81_TX_TSO_FLAGS_TC;
} else if (ip->ip_p == IPPROTO_UDP) {
tx_mac->flags |= Q81_TX_TSO_FLAGS_UC;
}
break;
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
ip_hlen = sizeof(struct ip6_hdr);
if (mp->m_len < (ehdrlen + ip_hlen)) {
m_copydata(mp, ehdrlen, sizeof (struct ip6_hdr),
buf);
ip6 = (struct ip6_hdr *)buf;
}
tx_mac->opcode = Q81_IOCB_TX_TSO;
tx_mac->flags |= Q81_TX_TSO_FLAGS_IPV6 ;
tx_mac->vlan_off |= Q81_TX_TSO_VLAN_OFF_IC ;
tx_mac->phdr_offsets = ehdrlen;
tx_mac->phdr_offsets |= ((ehdrlen + ip_hlen) <<
Q81_TX_TSO_PHDR_SHIFT);
if (ip6->ip6_nxt == IPPROTO_TCP) {
tx_mac->flags |= Q81_TX_TSO_FLAGS_TC;
} else if (ip6->ip6_nxt == IPPROTO_UDP) {
tx_mac->flags |= Q81_TX_TSO_FLAGS_UC;
}
break;
default:
ret = -1;
break;
}
return (ret);
}
#define QLA_TX_MIN_FREE 2
int
qls_hw_tx_done(qla_host_t *ha, uint32_t txr_idx)
{
uint32_t txr_done, txr_next;
txr_done = ha->tx_ring[txr_idx].txr_done;
txr_next = ha->tx_ring[txr_idx].txr_next;
if (txr_done == txr_next) {
ha->tx_ring[txr_idx].txr_free = NUM_TX_DESCRIPTORS;
} else if (txr_done > txr_next) {
ha->tx_ring[txr_idx].txr_free = txr_done - txr_next;
} else {
ha->tx_ring[txr_idx].txr_free = NUM_TX_DESCRIPTORS +
txr_done - txr_next;
}
if (ha->tx_ring[txr_idx].txr_free <= QLA_TX_MIN_FREE)
return (-1);
return (0);
}
/*
* Name: qls_hw_send
* Function: Transmits a packet. It first checks if the packet is a
* candidate for Large TCP Segment Offload and then for UDP/TCP checksum
* offload. If either of these creteria are not met, it is transmitted
* as a regular ethernet frame.
*/
int
qls_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
uint32_t txr_next, struct mbuf *mp, uint32_t txr_idx)
{
q81_tx_mac_t *tx_mac;
q81_txb_desc_t *tx_desc;
uint32_t total_length = 0;
uint32_t i;
device_t dev;
int ret = 0;
dev = ha->pci_dev;
total_length = mp->m_pkthdr.len;
if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
__func__, total_length);
return (-1);
}
if (ha->tx_ring[txr_idx].txr_free <= (NUM_TX_DESCRIPTORS >> 2)) {
if (qls_hw_tx_done(ha, txr_idx)) {
device_printf(dev, "%s: tx_free[%d] = %d\n",
__func__, txr_idx,
ha->tx_ring[txr_idx].txr_free);
return (-1);
}
}
tx_mac = (q81_tx_mac_t *)&ha->tx_ring[txr_idx].wq_vaddr[txr_next];
bzero(tx_mac, sizeof(q81_tx_mac_t));
if ((mp->m_pkthdr.csum_flags &
(CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO)) != 0) {
ret = qls_tx_tso_chksum(ha, mp, (q81_tx_tso_t *)tx_mac);
if (ret)
return (EINVAL);
if (mp->m_pkthdr.csum_flags & CSUM_TSO)
ha->tx_ring[txr_idx].tx_tso_frames++;
else
ha->tx_ring[txr_idx].tx_frames++;
} else {
tx_mac->opcode = Q81_IOCB_TX_MAC;
}
if (mp->m_flags & M_VLANTAG) {
tx_mac->vlan_tci = mp->m_pkthdr.ether_vtag;
tx_mac->vlan_off |= Q81_TX_MAC_VLAN_OFF_V;
ha->tx_ring[txr_idx].tx_vlan_frames++;
}
tx_mac->frame_length = total_length;
tx_mac->tid_lo = txr_next;
if (nsegs <= MAX_TX_MAC_DESC) {
QL_DPRINT2((dev, "%s: 1 [%d, %d]\n", __func__, total_length,
tx_mac->tid_lo));
for (i = 0; i < nsegs; i++) {
tx_mac->txd[i].baddr = segs->ds_addr;
tx_mac->txd[i].length = segs->ds_len;
segs++;
}
tx_mac->txd[(nsegs - 1)].flags = Q81_RXB_DESC_FLAGS_E;
} else {
QL_DPRINT2((dev, "%s: 2 [%d, %d]\n", __func__, total_length,
tx_mac->tid_lo));
tx_mac->txd[0].baddr =
ha->tx_ring[txr_idx].tx_buf[txr_next].oal_paddr;
tx_mac->txd[0].length =
nsegs * (sizeof(q81_txb_desc_t));
tx_mac->txd[0].flags = Q81_RXB_DESC_FLAGS_C;
tx_desc = ha->tx_ring[txr_idx].tx_buf[txr_next].oal_vaddr;
for (i = 0; i < nsegs; i++) {
tx_desc->baddr = segs->ds_addr;
tx_desc->length = segs->ds_len;
if (i == (nsegs -1))
tx_desc->flags = Q81_RXB_DESC_FLAGS_E;
else
tx_desc->flags = 0;
segs++;
tx_desc++;
}
}
txr_next = (txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
ha->tx_ring[txr_idx].txr_next = txr_next;
ha->tx_ring[txr_idx].txr_free--;
Q81_WR_WQ_PROD_IDX(txr_idx, txr_next);
return (0);
}
/*
* Name: qls_del_hw_if
* Function: Destroys the hardware specific entities corresponding to an
* Ethernet Interface
*/
void
qls_del_hw_if(qla_host_t *ha)
{
uint32_t value;
int i;
//int count;
if (ha->hw_init == 0) {
qls_hw_reset(ha);
return;
}
for (i = 0; i < ha->num_tx_rings; i++) {
Q81_SET_WQ_INVALID(i);
}
for (i = 0; i < ha->num_rx_rings; i++) {
Q81_SET_CQ_INVALID(i);
}
for (i = 0; i < ha->num_rx_rings; i++) {
Q81_DISABLE_INTR(ha, i); /* MSI-x i */
}
value = (Q81_CTL_INTRE_IHD << Q81_CTL_INTRE_MASK_SHIFT);
WRITE_REG32(ha, Q81_CTL_INTR_ENABLE, value);
value = (Q81_CTL_INTRE_EI << Q81_CTL_INTRE_MASK_SHIFT);
WRITE_REG32(ha, Q81_CTL_INTR_ENABLE, value);
ha->flags.intr_enable = 0;
qls_hw_reset(ha);
return;
}
/*
* Name: qls_init_hw_if
* Function: Creates the hardware specific entities corresponding to an
* Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
* corresponding to the interface. Enables LRO if allowed.
*/
int
qls_init_hw_if(qla_host_t *ha)
{
device_t dev;
uint32_t value;
int ret = 0;
int i;
QL_DPRINT2((ha->pci_dev, "%s:enter\n", __func__));
dev = ha->pci_dev;
ret = qls_hw_reset(ha);
if (ret)
goto qls_init_hw_if_exit;
ha->vm_pgsize = 4096;
/* Enable FAE and EFE bits in System Register */
value = Q81_CTL_SYSTEM_ENABLE_FAE | Q81_CTL_SYSTEM_ENABLE_EFE;
value = (value << Q81_CTL_SYSTEM_MASK_SHIFT) | value;
WRITE_REG32(ha, Q81_CTL_SYSTEM, value);
/* Set Default Completion Queue_ID in NIC Rcv Configuration Register */
value = (Q81_CTL_NIC_RCVC_DCQ_MASK << Q81_CTL_NIC_RCVC_MASK_SHIFT);
WRITE_REG32(ha, Q81_CTL_NIC_RCV_CONFIG, value);
/* Function Specific Control Register - Set Page Size and Enable NIC */
value = Q81_CTL_FUNC_SPECIFIC_FE |
Q81_CTL_FUNC_SPECIFIC_VM_PGSIZE_MASK |
Q81_CTL_FUNC_SPECIFIC_EPC_O |
Q81_CTL_FUNC_SPECIFIC_EPC_I |
Q81_CTL_FUNC_SPECIFIC_EC;
value = (value << Q81_CTL_FUNC_SPECIFIC_MASK_SHIFT) |
Q81_CTL_FUNC_SPECIFIC_FE |
Q81_CTL_FUNC_SPECIFIC_VM_PGSIZE_4K |
Q81_CTL_FUNC_SPECIFIC_EPC_O |
Q81_CTL_FUNC_SPECIFIC_EPC_I |
Q81_CTL_FUNC_SPECIFIC_EC;
WRITE_REG32(ha, Q81_CTL_FUNC_SPECIFIC, value);
/* Interrupt Mask Register */
value = Q81_CTL_INTRM_PI;
value = (value << Q81_CTL_INTRM_MASK_SHIFT) | value;
WRITE_REG32(ha, Q81_CTL_INTR_MASK, value);
/* Initialiatize Completion Queue */
for (i = 0; i < ha->num_rx_rings; i++) {
ret = qls_init_comp_queue(ha, i);
if (ret)
goto qls_init_hw_if_exit;
}
if (ha->num_rx_rings > 1 ) {
ret = qls_init_rss(ha);
if (ret)
goto qls_init_hw_if_exit;
}
/* Initialize Work Queue */
for (i = 0; i < ha->num_tx_rings; i++) {
ret = qls_init_work_queue(ha, i);
if (ret)
goto qls_init_hw_if_exit;
}
if (ret)
goto qls_init_hw_if_exit;
/* Set up CAM RAM with MAC Address */
ret = qls_config_unicast_mac_addr(ha, 1);
if (ret)
goto qls_init_hw_if_exit;
ret = qls_hw_add_all_mcast(ha);
if (ret)
goto qls_init_hw_if_exit;
/* Initialize Firmware Routing Table */
ret = qls_init_fw_routing_table(ha);
if (ret)
goto qls_init_hw_if_exit;
/* Get Chip Revision ID */
ha->rev_id = READ_REG32(ha, Q81_CTL_REV_ID);
/* Enable Global Interrupt */
value = Q81_CTL_INTRE_EI;
value = (value << Q81_CTL_INTRE_MASK_SHIFT) | value;
WRITE_REG32(ha, Q81_CTL_INTR_ENABLE, value);
/* Enable Interrupt Handshake Disable */
value = Q81_CTL_INTRE_IHD;
value = (value << Q81_CTL_INTRE_MASK_SHIFT) | value;
WRITE_REG32(ha, Q81_CTL_INTR_ENABLE, value);
/* Enable Completion Interrupt */
ha->flags.intr_enable = 1;
for (i = 0; i < ha->num_rx_rings; i++) {
Q81_ENABLE_INTR(ha, i); /* MSI-x i */
}
ha->hw_init = 1;
qls_mbx_get_link_status(ha);
QL_DPRINT2((ha->pci_dev, "%s:rxr [0x%08x]\n", __func__,
ha->rx_ring[0].cq_db_offset));
QL_DPRINT2((ha->pci_dev, "%s:txr [0x%08x]\n", __func__,
ha->tx_ring[0].wq_db_offset));
for (i = 0; i < ha->num_rx_rings; i++) {
Q81_WR_CQ_CONS_IDX(i, 0);
Q81_WR_LBQ_PROD_IDX(i, ha->rx_ring[i].lbq_in);
Q81_WR_SBQ_PROD_IDX(i, ha->rx_ring[i].sbq_in);
QL_DPRINT2((dev, "%s: [wq_idx, cq_idx, lbq_idx, sbq_idx]"
"[0x%08x, 0x%08x, 0x%08x, 0x%08x]\n", __func__,
Q81_RD_WQ_IDX(i), Q81_RD_CQ_IDX(i), Q81_RD_LBQ_IDX(i),
Q81_RD_SBQ_IDX(i)));
}
for (i = 0; i < ha->num_rx_rings; i++) {
Q81_SET_CQ_VALID(i);
}
qls_init_hw_if_exit:
QL_DPRINT2((ha->pci_dev, "%s:exit\n", __func__));
return (ret);
}
static int
qls_wait_for_config_reg_bits(qla_host_t *ha, uint32_t bits, uint32_t value)
{
uint32_t data32;
uint32_t count = 3;
while (count--) {
data32 = READ_REG32(ha, Q81_CTL_CONFIG);
if ((data32 & bits) == value)
return (0);
QLA_USEC_DELAY(100);
}
ha->qla_initiate_recovery = 1;
device_printf(ha->pci_dev, "%s: failed\n", __func__);
return (-1);
}
static uint8_t q81_hash_key[] = {
0xda, 0x56, 0x5a, 0x6d,
0xc2, 0x0e, 0x5b, 0x25,
0x3d, 0x25, 0x67, 0x41,
0xb0, 0x8f, 0xa3, 0x43,
0xcb, 0x2b, 0xca, 0xd0,
0xb4, 0x30, 0x7b, 0xae,
0xa3, 0x2d, 0xcb, 0x77,
0x0c, 0xf2, 0x30, 0x80,
0x3b, 0xb7, 0x42, 0x6a,
0xfa, 0x01, 0xac, 0xbe };
static int
qls_init_rss(qla_host_t *ha)
{
q81_rss_icb_t *rss_icb;
int ret = 0;
int i;
uint32_t value;
rss_icb = ha->rss_dma.dma_b;
bzero(rss_icb, sizeof (q81_rss_icb_t));
rss_icb->flags_base_cq_num = Q81_RSS_ICB_FLAGS_L4K |
Q81_RSS_ICB_FLAGS_L6K | Q81_RSS_ICB_FLAGS_LI |
Q81_RSS_ICB_FLAGS_LB | Q81_RSS_ICB_FLAGS_LM |
Q81_RSS_ICB_FLAGS_RT4 | Q81_RSS_ICB_FLAGS_RT6;
rss_icb->mask = 0x3FF;
for (i = 0; i < Q81_RSS_ICB_NUM_INDTBL_ENTRIES; i++) {
rss_icb->cq_id[i] = (i & (ha->num_rx_rings - 1));
}
memcpy(rss_icb->ipv6_rss_hash_key, q81_hash_key, 40);
memcpy(rss_icb->ipv4_rss_hash_key, q81_hash_key, 16);
ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LR, 0);
if (ret)
goto qls_init_rss_exit;
ret = qls_sem_lock(ha, Q81_CTL_SEM_MASK_ICB, Q81_CTL_SEM_SET_ICB);
if (ret) {
QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__));
goto qls_init_rss_exit;
}
value = (uint32_t)ha->rss_dma.dma_addr;
WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_LO, value);
value = (uint32_t)(ha->rss_dma.dma_addr >> 32);
WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_HI, value);
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_ICB);
value = (Q81_CTL_CONFIG_LR << Q81_CTL_CONFIG_MASK_SHIFT) |
Q81_CTL_CONFIG_LR;
WRITE_REG32(ha, Q81_CTL_CONFIG, value);
ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LR, 0);
qls_init_rss_exit:
return (ret);
}
static int
qls_init_comp_queue(qla_host_t *ha, int cid)
{
q81_cq_icb_t *cq_icb;
qla_rx_ring_t *rxr;
int ret = 0;
uint32_t value;
rxr = &ha->rx_ring[cid];
rxr->cq_db_offset = ha->vm_pgsize * (128 + cid);
cq_icb = rxr->cq_icb_vaddr;
bzero(cq_icb, sizeof (q81_cq_icb_t));
cq_icb->msix_vector = cid;
cq_icb->flags = Q81_CQ_ICB_FLAGS_LC |
Q81_CQ_ICB_FLAGS_LI |
Q81_CQ_ICB_FLAGS_LL |
Q81_CQ_ICB_FLAGS_LS |
Q81_CQ_ICB_FLAGS_LV;
cq_icb->length_v = NUM_CQ_ENTRIES;
cq_icb->cq_baddr_lo = (rxr->cq_base_paddr & 0xFFFFFFFF);
cq_icb->cq_baddr_hi = (rxr->cq_base_paddr >> 32) & 0xFFFFFFFF;
cq_icb->cqi_addr_lo = (rxr->cqi_paddr & 0xFFFFFFFF);
cq_icb->cqi_addr_hi = (rxr->cqi_paddr >> 32) & 0xFFFFFFFF;
cq_icb->pkt_idelay = 10;
cq_icb->idelay = 100;
cq_icb->lbq_baddr_lo = (rxr->lbq_addr_tbl_paddr & 0xFFFFFFFF);
cq_icb->lbq_baddr_hi = (rxr->lbq_addr_tbl_paddr >> 32) & 0xFFFFFFFF;
cq_icb->lbq_bsize = QLA_LGB_SIZE;
cq_icb->lbq_length = QLA_NUM_LGB_ENTRIES;
cq_icb->sbq_baddr_lo = (rxr->sbq_addr_tbl_paddr & 0xFFFFFFFF);
cq_icb->sbq_baddr_hi = (rxr->sbq_addr_tbl_paddr >> 32) & 0xFFFFFFFF;
cq_icb->sbq_bsize = (uint16_t)ha->msize;
cq_icb->sbq_length = QLA_NUM_SMB_ENTRIES;
QL_DUMP_CQ(ha);
ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LCQ, 0);
if (ret)
goto qls_init_comp_queue_exit;
ret = qls_sem_lock(ha, Q81_CTL_SEM_MASK_ICB, Q81_CTL_SEM_SET_ICB);
if (ret) {
QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__));
goto qls_init_comp_queue_exit;
}
value = (uint32_t)rxr->cq_icb_paddr;
WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_LO, value);
value = (uint32_t)(rxr->cq_icb_paddr >> 32);
WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_HI, value);
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_ICB);
value = Q81_CTL_CONFIG_LCQ | Q81_CTL_CONFIG_Q_NUM_MASK;
value = (value << Q81_CTL_CONFIG_MASK_SHIFT) | Q81_CTL_CONFIG_LCQ;
value |= (cid << Q81_CTL_CONFIG_Q_NUM_SHIFT);
WRITE_REG32(ha, Q81_CTL_CONFIG, value);
ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LCQ, 0);
rxr->cq_next = 0;
rxr->lbq_next = rxr->lbq_free = 0;
rxr->sbq_next = rxr->sbq_free = 0;
rxr->rx_free = rxr->rx_next = 0;
rxr->lbq_in = (QLA_NUM_LGB_ENTRIES - 1) & ~0xF;
rxr->sbq_in = (QLA_NUM_SMB_ENTRIES - 1) & ~0xF;
qls_init_comp_queue_exit:
return (ret);
}
static int
qls_init_work_queue(qla_host_t *ha, int wid)
{
q81_wq_icb_t *wq_icb;
qla_tx_ring_t *txr;
int ret = 0;
uint32_t value;
txr = &ha->tx_ring[wid];
txr->wq_db_addr = (struct resource *)((uint8_t *)ha->pci_reg1
+ (ha->vm_pgsize * wid));
txr->wq_db_offset = (ha->vm_pgsize * wid);
wq_icb = txr->wq_icb_vaddr;
bzero(wq_icb, sizeof (q81_wq_icb_t));
wq_icb->length_v = NUM_TX_DESCRIPTORS |
Q81_WQ_ICB_VALID;
wq_icb->flags = Q81_WQ_ICB_FLAGS_LO | Q81_WQ_ICB_FLAGS_LI |
Q81_WQ_ICB_FLAGS_LB | Q81_WQ_ICB_FLAGS_LC;
wq_icb->wqcqid_rss = wid;
wq_icb->baddr_lo = txr->wq_paddr & 0xFFFFFFFF;
wq_icb->baddr_hi = (txr->wq_paddr >> 32)& 0xFFFFFFFF;
wq_icb->ci_addr_lo = txr->txr_cons_paddr & 0xFFFFFFFF;
wq_icb->ci_addr_hi = (txr->txr_cons_paddr >> 32)& 0xFFFFFFFF;
ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LRQ, 0);
if (ret)
goto qls_init_wq_exit;
ret = qls_sem_lock(ha, Q81_CTL_SEM_MASK_ICB, Q81_CTL_SEM_SET_ICB);
if (ret) {
QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__));
goto qls_init_wq_exit;
}
value = (uint32_t)txr->wq_icb_paddr;
WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_LO, value);
value = (uint32_t)(txr->wq_icb_paddr >> 32);
WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_HI, value);
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_ICB);
value = Q81_CTL_CONFIG_LRQ | Q81_CTL_CONFIG_Q_NUM_MASK;
value = (value << Q81_CTL_CONFIG_MASK_SHIFT) | Q81_CTL_CONFIG_LRQ;
value |= (wid << Q81_CTL_CONFIG_Q_NUM_SHIFT);
WRITE_REG32(ha, Q81_CTL_CONFIG, value);
ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LRQ, 0);
txr->txr_free = NUM_TX_DESCRIPTORS;
txr->txr_next = 0;
txr->txr_done = 0;
qls_init_wq_exit:
return (ret);
}
static int
qls_hw_add_all_mcast(qla_host_t *ha)
{
int i, nmcast;
nmcast = ha->nmcast;
for (i = 0 ; ((i < Q8_MAX_NUM_MULTICAST_ADDRS) && nmcast); i++) {
if ((ha->mcast[i].addr[0] != 0) ||
(ha->mcast[i].addr[1] != 0) ||
(ha->mcast[i].addr[2] != 0) ||
(ha->mcast[i].addr[3] != 0) ||
(ha->mcast[i].addr[4] != 0) ||
(ha->mcast[i].addr[5] != 0)) {
if (qls_config_mcast_mac_addr(ha, ha->mcast[i].addr,
1, i)) {
device_printf(ha->pci_dev, "%s: failed\n",
__func__);
return (-1);
}
nmcast--;
}
}
return 0;
}
static int
qls_hw_add_mcast(qla_host_t *ha, uint8_t *mta)
{
int i;
for (i = 0; i < Q8_MAX_NUM_MULTICAST_ADDRS; i++) {
if (QL_MAC_CMP(ha->mcast[i].addr, mta) == 0)
return 0; /* its been already added */
}
for (i = 0; i < Q8_MAX_NUM_MULTICAST_ADDRS; i++) {
if ((ha->mcast[i].addr[0] == 0) &&
(ha->mcast[i].addr[1] == 0) &&
(ha->mcast[i].addr[2] == 0) &&
(ha->mcast[i].addr[3] == 0) &&
(ha->mcast[i].addr[4] == 0) &&
(ha->mcast[i].addr[5] == 0)) {
if (qls_config_mcast_mac_addr(ha, mta, 1, i))
return (-1);
bcopy(mta, ha->mcast[i].addr, Q8_MAC_ADDR_LEN);
ha->nmcast++;
return 0;
}
}
return 0;
}
static int
qls_hw_del_mcast(qla_host_t *ha, uint8_t *mta)
{
int i;
for (i = 0; i < Q8_MAX_NUM_MULTICAST_ADDRS; i++) {
if (QL_MAC_CMP(ha->mcast[i].addr, mta) == 0) {
if (qls_config_mcast_mac_addr(ha, mta, 0, i))
return (-1);
ha->mcast[i].addr[0] = 0;
ha->mcast[i].addr[1] = 0;
ha->mcast[i].addr[2] = 0;
ha->mcast[i].addr[3] = 0;
ha->mcast[i].addr[4] = 0;
ha->mcast[i].addr[5] = 0;
ha->nmcast--;
return 0;
}
}
return 0;
}
/*
* Name: qls_hw_set_multi
* Function: Sets the Multicast Addresses provided the host O.S into the
* hardware (for the given interface)
*/
void
qls_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt,
uint32_t add_mac)
{
int i;
for (i = 0; i < mcnt; i++) {
if (add_mac) {
if (qls_hw_add_mcast(ha, mta))
break;
} else {
if (qls_hw_del_mcast(ha, mta))
break;
}
mta += Q8_MAC_ADDR_LEN;
}
return;
}
void
qls_update_link_state(qla_host_t *ha)
{
uint32_t link_state;
uint32_t prev_link_state;
if (!(ha->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ha->link_up = 0;
return;
}
link_state = READ_REG32(ha, Q81_CTL_STATUS);
prev_link_state = ha->link_up;
if ((ha->pci_func & 0x1) == 0)
ha->link_up = ((link_state & Q81_CTL_STATUS_PL0)? 1 : 0);
else
ha->link_up = ((link_state & Q81_CTL_STATUS_PL1)? 1 : 0);
if (prev_link_state != ha->link_up) {
if (ha->link_up) {
if_link_state_change(ha->ifp, LINK_STATE_UP);
} else {
if_link_state_change(ha->ifp, LINK_STATE_DOWN);
}
}
return;
}
static void
qls_free_tx_ring_dma(qla_host_t *ha, int r_idx)
{
if (ha->tx_ring[r_idx].flags.wq_dma) {
qls_free_dmabuf(ha, &ha->tx_ring[r_idx].wq_dma);
ha->tx_ring[r_idx].flags.wq_dma = 0;
}
if (ha->tx_ring[r_idx].flags.privb_dma) {
qls_free_dmabuf(ha, &ha->tx_ring[r_idx].privb_dma);
ha->tx_ring[r_idx].flags.privb_dma = 0;
}
return;
}
static void
qls_free_tx_dma(qla_host_t *ha)
{
int i, j;
qla_tx_buf_t *txb;
for (i = 0; i < ha->num_tx_rings; i++) {
qls_free_tx_ring_dma(ha, i);
for (j = 0; j < NUM_TX_DESCRIPTORS; j++) {
txb = &ha->tx_ring[i].tx_buf[j];
if (txb->map) {
bus_dmamap_destroy(ha->tx_tag, txb->map);
}
}
}
if (ha->tx_tag != NULL) {
bus_dma_tag_destroy(ha->tx_tag);
ha->tx_tag = NULL;
}
return;
}
static int
qls_alloc_tx_ring_dma(qla_host_t *ha, int ridx)
{
int ret = 0, i;
uint8_t *v_addr;
bus_addr_t p_addr;
qla_tx_buf_t *txb;
device_t dev = ha->pci_dev;
ha->tx_ring[ridx].wq_dma.alignment = 8;
ha->tx_ring[ridx].wq_dma.size =
NUM_TX_DESCRIPTORS * (sizeof (q81_tx_cmd_t));
ret = qls_alloc_dmabuf(ha, &ha->tx_ring[ridx].wq_dma);
if (ret) {
device_printf(dev, "%s: [%d] txr failed\n", __func__, ridx);
goto qls_alloc_tx_ring_dma_exit;
}
ha->tx_ring[ridx].flags.wq_dma = 1;
ha->tx_ring[ridx].privb_dma.alignment = 8;
ha->tx_ring[ridx].privb_dma.size = QLA_TX_PRIVATE_BSIZE;
ret = qls_alloc_dmabuf(ha, &ha->tx_ring[ridx].privb_dma);
if (ret) {
device_printf(dev, "%s: [%d] oalb failed\n", __func__, ridx);
goto qls_alloc_tx_ring_dma_exit;
}
ha->tx_ring[ridx].flags.privb_dma = 1;
ha->tx_ring[ridx].wq_vaddr = ha->tx_ring[ridx].wq_dma.dma_b;
ha->tx_ring[ridx].wq_paddr = ha->tx_ring[ridx].wq_dma.dma_addr;
v_addr = ha->tx_ring[ridx].privb_dma.dma_b;
p_addr = ha->tx_ring[ridx].privb_dma.dma_addr;
ha->tx_ring[ridx].wq_icb_vaddr = v_addr;
ha->tx_ring[ridx].wq_icb_paddr = p_addr;
ha->tx_ring[ridx].txr_cons_vaddr =
(uint32_t *)(v_addr + (PAGE_SIZE >> 1));
ha->tx_ring[ridx].txr_cons_paddr = p_addr + (PAGE_SIZE >> 1);
v_addr = v_addr + (PAGE_SIZE >> 1);
p_addr = p_addr + (PAGE_SIZE >> 1);
txb = ha->tx_ring[ridx].tx_buf;
for (i = 0; i < NUM_TX_DESCRIPTORS; i++) {
txb[i].oal_vaddr = v_addr;
txb[i].oal_paddr = p_addr;
v_addr = v_addr + QLA_OAL_BLK_SIZE;
p_addr = p_addr + QLA_OAL_BLK_SIZE;
}
qls_alloc_tx_ring_dma_exit:
return (ret);
}
static int
qls_alloc_tx_dma(qla_host_t *ha)
{
int i, j;
int ret = 0;
qla_tx_buf_t *txb;
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
QLA_MAX_TSO_FRAME_SIZE, /* maxsize */
QLA_MAX_SEGMENTS, /* nsegments */
PAGE_SIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->tx_tag)) {
device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n",
__func__);
return (ENOMEM);
}
for (i = 0; i < ha->num_tx_rings; i++) {
ret = qls_alloc_tx_ring_dma(ha, i);
if (ret) {
qls_free_tx_dma(ha);
break;
}
for (j = 0; j < NUM_TX_DESCRIPTORS; j++) {
txb = &ha->tx_ring[i].tx_buf[j];
ret = bus_dmamap_create(ha->tx_tag,
BUS_DMA_NOWAIT, &txb->map);
if (ret) {
ha->err_tx_dmamap_create++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_create failed[%d, %d, %d]\n",
__func__, ret, i, j);
qls_free_tx_dma(ha);
return (ret);
}
}
}
return (ret);
}
static void
qls_free_rss_dma(qla_host_t *ha)
{
qls_free_dmabuf(ha, &ha->rss_dma);
ha->flags.rss_dma = 0;
}
static int
qls_alloc_rss_dma(qla_host_t *ha)
{
int ret = 0;
ha->rss_dma.alignment = 4;
ha->rss_dma.size = PAGE_SIZE;
ret = qls_alloc_dmabuf(ha, &ha->rss_dma);
if (ret)
device_printf(ha->pci_dev, "%s: failed\n", __func__);
else
ha->flags.rss_dma = 1;
return (ret);
}
static void
qls_free_mpi_dma(qla_host_t *ha)
{
qls_free_dmabuf(ha, &ha->mpi_dma);
ha->flags.mpi_dma = 0;
}
static int
qls_alloc_mpi_dma(qla_host_t *ha)
{
int ret = 0;
ha->mpi_dma.alignment = 4;
ha->mpi_dma.size = (0x4000 * 4);
ret = qls_alloc_dmabuf(ha, &ha->mpi_dma);
if (ret)
device_printf(ha->pci_dev, "%s: failed\n", __func__);
else
ha->flags.mpi_dma = 1;
return (ret);
}
static void
qls_free_rx_ring_dma(qla_host_t *ha, int ridx)
{
if (ha->rx_ring[ridx].flags.cq_dma) {
qls_free_dmabuf(ha, &ha->rx_ring[ridx].cq_dma);
ha->rx_ring[ridx].flags.cq_dma = 0;
}
if (ha->rx_ring[ridx].flags.lbq_dma) {
qls_free_dmabuf(ha, &ha->rx_ring[ridx].lbq_dma);
ha->rx_ring[ridx].flags.lbq_dma = 0;
}
if (ha->rx_ring[ridx].flags.sbq_dma) {
qls_free_dmabuf(ha, &ha->rx_ring[ridx].sbq_dma);
ha->rx_ring[ridx].flags.sbq_dma = 0;
}
if (ha->rx_ring[ridx].flags.lb_dma) {
qls_free_dmabuf(ha, &ha->rx_ring[ridx].lb_dma);
ha->rx_ring[ridx].flags.lb_dma = 0;
}
return;
}
static void
qls_free_rx_dma(qla_host_t *ha)
{
int i;
for (i = 0; i < ha->num_rx_rings; i++) {
qls_free_rx_ring_dma(ha, i);
}
if (ha->rx_tag != NULL) {
bus_dma_tag_destroy(ha->rx_tag);
ha->rx_tag = NULL;
}
return;
}
static int
qls_alloc_rx_ring_dma(qla_host_t *ha, int ridx)
{
int i, ret = 0;
uint8_t *v_addr;
bus_addr_t p_addr;
volatile q81_bq_addr_e_t *bq_e;
device_t dev = ha->pci_dev;
ha->rx_ring[ridx].cq_dma.alignment = 128;
ha->rx_ring[ridx].cq_dma.size =
(NUM_CQ_ENTRIES * (sizeof (q81_cq_e_t))) + PAGE_SIZE;
ret = qls_alloc_dmabuf(ha, &ha->rx_ring[ridx].cq_dma);
if (ret) {
device_printf(dev, "%s: [%d] cq failed\n", __func__, ridx);
goto qls_alloc_rx_ring_dma_exit;
}
ha->rx_ring[ridx].flags.cq_dma = 1;
ha->rx_ring[ridx].lbq_dma.alignment = 8;
ha->rx_ring[ridx].lbq_dma.size = QLA_LGBQ_AND_TABLE_SIZE;
ret = qls_alloc_dmabuf(ha, &ha->rx_ring[ridx].lbq_dma);
if (ret) {
device_printf(dev, "%s: [%d] lbq failed\n", __func__, ridx);
goto qls_alloc_rx_ring_dma_exit;
}
ha->rx_ring[ridx].flags.lbq_dma = 1;
ha->rx_ring[ridx].sbq_dma.alignment = 8;
ha->rx_ring[ridx].sbq_dma.size = QLA_SMBQ_AND_TABLE_SIZE;
ret = qls_alloc_dmabuf(ha, &ha->rx_ring[ridx].sbq_dma);
if (ret) {
device_printf(dev, "%s: [%d] sbq failed\n", __func__, ridx);
goto qls_alloc_rx_ring_dma_exit;
}
ha->rx_ring[ridx].flags.sbq_dma = 1;
ha->rx_ring[ridx].lb_dma.alignment = 8;
ha->rx_ring[ridx].lb_dma.size = (QLA_LGB_SIZE * QLA_NUM_LGB_ENTRIES);
ret = qls_alloc_dmabuf(ha, &ha->rx_ring[ridx].lb_dma);
if (ret) {
device_printf(dev, "%s: [%d] lb failed\n", __func__, ridx);
goto qls_alloc_rx_ring_dma_exit;
}
ha->rx_ring[ridx].flags.lb_dma = 1;
bzero(ha->rx_ring[ridx].cq_dma.dma_b, ha->rx_ring[ridx].cq_dma.size);
bzero(ha->rx_ring[ridx].lbq_dma.dma_b, ha->rx_ring[ridx].lbq_dma.size);
bzero(ha->rx_ring[ridx].sbq_dma.dma_b, ha->rx_ring[ridx].sbq_dma.size);
bzero(ha->rx_ring[ridx].lb_dma.dma_b, ha->rx_ring[ridx].lb_dma.size);
/* completion queue */
ha->rx_ring[ridx].cq_base_vaddr = ha->rx_ring[ridx].cq_dma.dma_b;
ha->rx_ring[ridx].cq_base_paddr = ha->rx_ring[ridx].cq_dma.dma_addr;
v_addr = ha->rx_ring[ridx].cq_dma.dma_b;
p_addr = ha->rx_ring[ridx].cq_dma.dma_addr;
v_addr = v_addr + (NUM_CQ_ENTRIES * (sizeof (q81_cq_e_t)));
p_addr = p_addr + (NUM_CQ_ENTRIES * (sizeof (q81_cq_e_t)));
/* completion queue icb */
ha->rx_ring[ridx].cq_icb_vaddr = v_addr;
ha->rx_ring[ridx].cq_icb_paddr = p_addr;
v_addr = v_addr + (PAGE_SIZE >> 2);
p_addr = p_addr + (PAGE_SIZE >> 2);
/* completion queue index register */
ha->rx_ring[ridx].cqi_vaddr = (uint32_t *)v_addr;
ha->rx_ring[ridx].cqi_paddr = p_addr;
v_addr = ha->rx_ring[ridx].lbq_dma.dma_b;
p_addr = ha->rx_ring[ridx].lbq_dma.dma_addr;
/* large buffer queue address table */
ha->rx_ring[ridx].lbq_addr_tbl_vaddr = v_addr;
ha->rx_ring[ridx].lbq_addr_tbl_paddr = p_addr;
/* large buffer queue */
ha->rx_ring[ridx].lbq_vaddr = v_addr + PAGE_SIZE;
ha->rx_ring[ridx].lbq_paddr = p_addr + PAGE_SIZE;
v_addr = ha->rx_ring[ridx].sbq_dma.dma_b;
p_addr = ha->rx_ring[ridx].sbq_dma.dma_addr;
/* small buffer queue address table */
ha->rx_ring[ridx].sbq_addr_tbl_vaddr = v_addr;
ha->rx_ring[ridx].sbq_addr_tbl_paddr = p_addr;
/* small buffer queue */
ha->rx_ring[ridx].sbq_vaddr = v_addr + PAGE_SIZE;
ha->rx_ring[ridx].sbq_paddr = p_addr + PAGE_SIZE;
ha->rx_ring[ridx].lb_vaddr = ha->rx_ring[ridx].lb_dma.dma_b;
ha->rx_ring[ridx].lb_paddr = ha->rx_ring[ridx].lb_dma.dma_addr;
/* Initialize Large Buffer Queue Table */
p_addr = ha->rx_ring[ridx].lbq_paddr;
bq_e = ha->rx_ring[ridx].lbq_addr_tbl_vaddr;
bq_e->addr_lo = p_addr & 0xFFFFFFFF;
bq_e->addr_hi = (p_addr >> 32) & 0xFFFFFFFF;
p_addr = ha->rx_ring[ridx].lb_paddr;
bq_e = ha->rx_ring[ridx].lbq_vaddr;
for (i = 0; i < QLA_NUM_LGB_ENTRIES; i++) {
bq_e->addr_lo = p_addr & 0xFFFFFFFF;
bq_e->addr_hi = (p_addr >> 32) & 0xFFFFFFFF;
p_addr = p_addr + QLA_LGB_SIZE;
bq_e++;
}
/* Initialize Small Buffer Queue Table */
p_addr = ha->rx_ring[ridx].sbq_paddr;
bq_e = ha->rx_ring[ridx].sbq_addr_tbl_vaddr;
for (i =0; i < (QLA_SBQ_SIZE/QLA_PAGE_SIZE); i++) {
bq_e->addr_lo = p_addr & 0xFFFFFFFF;
bq_e->addr_hi = (p_addr >> 32) & 0xFFFFFFFF;
p_addr = p_addr + QLA_PAGE_SIZE;
bq_e++;
}
qls_alloc_rx_ring_dma_exit:
return (ret);
}
static int
qls_alloc_rx_dma(qla_host_t *ha)
{
int i;
int ret = 0;
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MJUM9BYTES, /* maxsize */
1, /* nsegments */
MJUM9BYTES, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&ha->rx_tag)) {
device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n",
__func__);
return (ENOMEM);
}
for (i = 0; i < ha->num_rx_rings; i++) {
ret = qls_alloc_rx_ring_dma(ha, i);
if (ret) {
qls_free_rx_dma(ha);
break;
}
}
return (ret);
}
static int
qls_wait_for_flash_ready(qla_host_t *ha)
{
uint32_t data32;
uint32_t count = 3;
while (count--) {
data32 = READ_REG32(ha, Q81_CTL_FLASH_ADDR);
if (data32 & Q81_CTL_FLASH_ADDR_ERR)
goto qls_wait_for_flash_ready_exit;
if (data32 & Q81_CTL_FLASH_ADDR_RDY)
return (0);
QLA_USEC_DELAY(100);
}
qls_wait_for_flash_ready_exit:
QL_DPRINT1((ha->pci_dev, "%s: failed\n", __func__));
return (-1);
}
/*
* Name: qls_rd_flash32
* Function: Read Flash Memory
*/
int
qls_rd_flash32(qla_host_t *ha, uint32_t addr, uint32_t *data)
{
int ret;
ret = qls_wait_for_flash_ready(ha);
if (ret)
return (ret);
WRITE_REG32(ha, Q81_CTL_FLASH_ADDR, (addr | Q81_CTL_FLASH_ADDR_R));
ret = qls_wait_for_flash_ready(ha);
if (ret)
return (ret);
*data = READ_REG32(ha, Q81_CTL_FLASH_DATA);
return 0;
}
static int
qls_flash_validate(qla_host_t *ha, const char *signature)
{
uint16_t csum16 = 0;
uint16_t *data16;
int i;
if (bcmp(ha->flash.id, signature, 4)) {
QL_DPRINT1((ha->pci_dev, "%s: invalid signature "
"%x:%x:%x:%x %s\n", __func__, ha->flash.id[0],
ha->flash.id[1], ha->flash.id[2], ha->flash.id[3],
signature));
return(-1);
}
data16 = (uint16_t *)&ha->flash;
for (i = 0; i < (sizeof (q81_flash_t) >> 1); i++) {
csum16 += *data16++;
}
if (csum16) {
QL_DPRINT1((ha->pci_dev, "%s: invalid checksum\n", __func__));
return(-1);
}
return(0);
}
int
qls_rd_nic_params(qla_host_t *ha)
{
int i, ret = 0;
uint32_t faddr;
uint32_t *qflash;
if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_FLASH, Q81_CTL_SEM_SET_FLASH)) {
QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__));
return(-1);
}
if ((ha->pci_func & 0x1) == 0)
faddr = Q81_F0_FLASH_OFFSET >> 2;
else
faddr = Q81_F1_FLASH_OFFSET >> 2;
qflash = (uint32_t *)&ha->flash;
for (i = 0; i < (sizeof(q81_flash_t) >> 2) ; i++) {
ret = qls_rd_flash32(ha, faddr, qflash);
if (ret)
goto qls_rd_flash_data_exit;
faddr++;
qflash++;
}
QL_DUMP_BUFFER8(ha, __func__, (&ha->flash), (sizeof (q81_flash_t)));
ret = qls_flash_validate(ha, Q81_FLASH_ID);
if (ret)
goto qls_rd_flash_data_exit;
bcopy(ha->flash.mac_addr0, ha->mac_addr, ETHER_ADDR_LEN);
QL_DPRINT1((ha->pci_dev, "%s: mac %02x:%02x:%02x:%02x:%02x:%02x\n",
__func__, ha->mac_addr[0], ha->mac_addr[1], ha->mac_addr[2],
ha->mac_addr[3], ha->mac_addr[4], ha->mac_addr[5]));
qls_rd_flash_data_exit:
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_FLASH);
return(ret);
}
static int
qls_sem_lock(qla_host_t *ha, uint32_t mask, uint32_t value)
{
uint32_t count = 30;
uint32_t data;
while (count--) {
WRITE_REG32(ha, Q81_CTL_SEMAPHORE, (mask|value));
data = READ_REG32(ha, Q81_CTL_SEMAPHORE);
if (data & value) {
return (0);
} else {
QLA_USEC_DELAY(100);
}
}
ha->qla_initiate_recovery = 1;
return (-1);
}
static void
qls_sem_unlock(qla_host_t *ha, uint32_t mask)
{
WRITE_REG32(ha, Q81_CTL_SEMAPHORE, mask);
}
static int
qls_wait_for_proc_addr_ready(qla_host_t *ha)
{
uint32_t data32;
uint32_t count = 3;
while (count--) {
data32 = READ_REG32(ha, Q81_CTL_PROC_ADDR);
if (data32 & Q81_CTL_PROC_ADDR_ERR)
goto qls_wait_for_proc_addr_ready_exit;
if (data32 & Q81_CTL_PROC_ADDR_RDY)
return (0);
QLA_USEC_DELAY(100);
}
qls_wait_for_proc_addr_ready_exit:
QL_DPRINT1((ha->pci_dev, "%s: failed\n", __func__));
ha->qla_initiate_recovery = 1;
return (-1);
}
static int
qls_proc_addr_rd_reg(qla_host_t *ha, uint32_t addr_module, uint32_t reg,
uint32_t *data)
{
int ret;
uint32_t value;
ret = qls_wait_for_proc_addr_ready(ha);
if (ret)
goto qls_proc_addr_rd_reg_exit;
value = addr_module | reg | Q81_CTL_PROC_ADDR_READ;
WRITE_REG32(ha, Q81_CTL_PROC_ADDR, value);
ret = qls_wait_for_proc_addr_ready(ha);
if (ret)
goto qls_proc_addr_rd_reg_exit;
*data = READ_REG32(ha, Q81_CTL_PROC_DATA);
qls_proc_addr_rd_reg_exit:
return (ret);
}
static int
qls_proc_addr_wr_reg(qla_host_t *ha, uint32_t addr_module, uint32_t reg,
uint32_t data)
{
int ret;
uint32_t value;
ret = qls_wait_for_proc_addr_ready(ha);
if (ret)
goto qls_proc_addr_wr_reg_exit;
WRITE_REG32(ha, Q81_CTL_PROC_DATA, data);
value = addr_module | reg;
WRITE_REG32(ha, Q81_CTL_PROC_ADDR, value);
ret = qls_wait_for_proc_addr_ready(ha);
qls_proc_addr_wr_reg_exit:
return (ret);
}
static int
qls_hw_nic_reset(qla_host_t *ha)
{
int count;
uint32_t data;
device_t dev = ha->pci_dev;
ha->hw_init = 0;
data = (Q81_CTL_RESET_FUNC << Q81_CTL_RESET_MASK_SHIFT) |
Q81_CTL_RESET_FUNC;
WRITE_REG32(ha, Q81_CTL_RESET, data);
count = 10;
while (count--) {
data = READ_REG32(ha, Q81_CTL_RESET);
if ((data & Q81_CTL_RESET_FUNC) == 0)
break;
QLA_USEC_DELAY(10);
}
if (count == 0) {
device_printf(dev, "%s: Bit 15 not cleared after Reset\n",
__func__);
return (-1);
}
return (0);
}
static int
qls_hw_reset(qla_host_t *ha)
{
device_t dev = ha->pci_dev;
int ret;
int count;
uint32_t data;
QL_DPRINT2((ha->pci_dev, "%s:enter[%d]\n", __func__, ha->hw_init));
if (ha->hw_init == 0) {
ret = qls_hw_nic_reset(ha);
goto qls_hw_reset_exit;
}
ret = qls_clear_routing_table(ha);
if (ret)
goto qls_hw_reset_exit;
ret = qls_mbx_set_mgmt_ctrl(ha, Q81_MBX_SET_MGMT_CTL_STOP);
if (ret)
goto qls_hw_reset_exit;
/*
* Wait for FIFO to empty
*/
count = 5;
while (count--) {
data = READ_REG32(ha, Q81_CTL_STATUS);
if (data & Q81_CTL_STATUS_NFE)
break;
qls_mdelay(__func__, 100);
}
if (count == 0) {
device_printf(dev, "%s: NFE bit not set\n", __func__);
goto qls_hw_reset_exit;
}
count = 5;
while (count--) {
(void)qls_mbx_get_mgmt_ctrl(ha, &data);
if ((data & Q81_MBX_GET_MGMT_CTL_FIFO_EMPTY) &&
(data & Q81_MBX_GET_MGMT_CTL_SET_MGMT))
break;
qls_mdelay(__func__, 100);
}
if (count == 0)
goto qls_hw_reset_exit;
/*
* Reset the NIC function
*/
ret = qls_hw_nic_reset(ha);
if (ret)
goto qls_hw_reset_exit;
ret = qls_mbx_set_mgmt_ctrl(ha, Q81_MBX_SET_MGMT_CTL_RESUME);
qls_hw_reset_exit:
if (ret)
device_printf(dev, "%s: failed\n", __func__);
return (ret);
}
/*
* MPI Related Functions
*/
int
qls_mpi_risc_rd_reg(qla_host_t *ha, uint32_t reg, uint32_t *data)
{
int ret;
ret = qls_proc_addr_rd_reg(ha, Q81_CTL_PROC_ADDR_MPI_RISC,
reg, data);
return (ret);
}
int
qls_mpi_risc_wr_reg(qla_host_t *ha, uint32_t reg, uint32_t data)
{
int ret;
ret = qls_proc_addr_wr_reg(ha, Q81_CTL_PROC_ADDR_MPI_RISC,
reg, data);
return (ret);
}
int
qls_mbx_rd_reg(qla_host_t *ha, uint32_t reg, uint32_t *data)
{
int ret;
if ((ha->pci_func & 0x1) == 0)
reg += Q81_FUNC0_MBX_OUT_REG0;
else
reg += Q81_FUNC1_MBX_OUT_REG0;
ret = qls_mpi_risc_rd_reg(ha, reg, data);
return (ret);
}
int
qls_mbx_wr_reg(qla_host_t *ha, uint32_t reg, uint32_t data)
{
int ret;
if ((ha->pci_func & 0x1) == 0)
reg += Q81_FUNC0_MBX_IN_REG0;
else
reg += Q81_FUNC1_MBX_IN_REG0;
ret = qls_mpi_risc_wr_reg(ha, reg, data);
return (ret);
}
static int
qls_mbx_cmd(qla_host_t *ha, uint32_t *in_mbx, uint32_t i_count,
uint32_t *out_mbx, uint32_t o_count)
{
int i, ret = -1;
uint32_t data32, mbx_cmd = 0;
uint32_t count = 50;
QL_DPRINT2((ha->pci_dev, "%s: enter[0x%08x 0x%08x 0x%08x]\n",
__func__, *in_mbx, *(in_mbx + 1), *(in_mbx + 2)));
data32 = READ_REG32(ha, Q81_CTL_HOST_CMD_STATUS);
if (data32 & Q81_CTL_HCS_HTR_INTR) {
device_printf(ha->pci_dev, "%s: cmd_status[0x%08x]\n",
__func__, data32);
goto qls_mbx_cmd_exit;
}
if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_PROC_ADDR_NIC_RCV,
Q81_CTL_SEM_SET_PROC_ADDR_NIC_RCV)) {
device_printf(ha->pci_dev, "%s: semlock failed\n", __func__);
goto qls_mbx_cmd_exit;
}
ha->mbx_done = 0;
mbx_cmd = *in_mbx;
for (i = 0; i < i_count; i++) {
ret = qls_mbx_wr_reg(ha, i, *in_mbx);
if (ret) {
device_printf(ha->pci_dev,
"%s: mbx_wr[%d, 0x%08x] failed\n", __func__,
i, *in_mbx);
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_PROC_ADDR_NIC_RCV);
goto qls_mbx_cmd_exit;
}
in_mbx++;
}
WRITE_REG32(ha, Q81_CTL_HOST_CMD_STATUS, Q81_CTL_HCS_CMD_SET_HTR_INTR);
qls_sem_unlock(ha, Q81_CTL_SEM_MASK_PROC_ADDR_NIC_RCV);
ret = -1;
ha->mbx_done = 0;
while (count--) {
if (ha->flags.intr_enable == 0) {
data32 = READ_REG32(ha, Q81_CTL_STATUS);
if (!(data32 & Q81_CTL_STATUS_PI)) {
qls_mdelay(__func__, 100);
continue;
}
ret = qls_mbx_rd_reg(ha, 0, &data32);
if (ret == 0 ) {
if ((data32 & 0xF000) == 0x4000) {
out_mbx[0] = data32;
for (i = 1; i < o_count; i++) {
ret = qls_mbx_rd_reg(ha, i,
&data32);
if (ret) {
device_printf(
ha->pci_dev,
"%s: mbx_rd[%d]"
" failed\n",
__func__, i);
break;
}
out_mbx[i] = data32;
}
break;
} else if ((data32 & 0xF000) == 0x8000) {
count = 50;
WRITE_REG32(ha,\
Q81_CTL_HOST_CMD_STATUS,\
Q81_CTL_HCS_CMD_CLR_RTH_INTR);
}
}
} else {
if (ha->mbx_done) {
for (i = 1; i < o_count; i++) {
out_mbx[i] = ha->mbox[i];
}
ret = 0;
break;
}
}
qls_mdelay(__func__, 1000);
}
qls_mbx_cmd_exit:
if (ha->flags.intr_enable == 0) {
WRITE_REG32(ha, Q81_CTL_HOST_CMD_STATUS,\
Q81_CTL_HCS_CMD_CLR_RTH_INTR);
}
if (ret) {
ha->qla_initiate_recovery = 1;
}
QL_DPRINT2((ha->pci_dev, "%s: exit[%d]\n", __func__, ret));
return (ret);
}
static int
qls_mbx_set_mgmt_ctrl(qla_host_t *ha, uint32_t t_ctrl)
{
uint32_t *mbox;
device_t dev = ha->pci_dev;
mbox = ha->mbox;
bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS));
mbox[0] = Q81_MBX_SET_MGMT_CTL;
mbox[1] = t_ctrl;
if (qls_mbx_cmd(ha, mbox, 2, mbox, 1)) {
device_printf(dev, "%s failed\n", __func__);
return (-1);
}
if ((mbox[0] == Q81_MBX_CMD_COMPLETE) ||
((t_ctrl == Q81_MBX_SET_MGMT_CTL_STOP) &&
(mbox[0] == Q81_MBX_CMD_ERROR))){
return (0);
}
device_printf(dev, "%s failed [0x%08x]\n", __func__, mbox[0]);
return (-1);
}
static int
qls_mbx_get_mgmt_ctrl(qla_host_t *ha, uint32_t *t_status)
{
uint32_t *mbox;
device_t dev = ha->pci_dev;
*t_status = 0;
mbox = ha->mbox;
bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS));
mbox[0] = Q81_MBX_GET_MGMT_CTL;
if (qls_mbx_cmd(ha, mbox, 1, mbox, 2)) {
device_printf(dev, "%s failed\n", __func__);
return (-1);
}
*t_status = mbox[1];
return (0);
}
static void
qls_mbx_get_link_status(qla_host_t *ha)
{
uint32_t *mbox;
device_t dev = ha->pci_dev;
mbox = ha->mbox;
bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS));
mbox[0] = Q81_MBX_GET_LNK_STATUS;
if (qls_mbx_cmd(ha, mbox, 1, mbox, 6)) {
device_printf(dev, "%s failed\n", __func__);
return;
}
ha->link_status = mbox[1];
ha->link_down_info = mbox[2];
ha->link_hw_info = mbox[3];
ha->link_dcbx_counters = mbox[4];
ha->link_change_counters = mbox[5];
device_printf(dev, "%s 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
__func__, mbox[0],mbox[1],mbox[2],mbox[3],mbox[4],mbox[5]);
return;
}
static void
qls_mbx_about_fw(qla_host_t *ha)
{
uint32_t *mbox;
device_t dev = ha->pci_dev;
mbox = ha->mbox;
bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS));
mbox[0] = Q81_MBX_ABOUT_FW;
if (qls_mbx_cmd(ha, mbox, 1, mbox, 6)) {
device_printf(dev, "%s failed\n", __func__);
return;
}
device_printf(dev, "%s 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
__func__, mbox[0],mbox[1],mbox[2],mbox[3],mbox[4],mbox[5]);
}
int
qls_mbx_dump_risc_ram(qla_host_t *ha, void *buf, uint32_t r_addr,
uint32_t r_size)
{
bus_addr_t b_paddr;
uint32_t *mbox;
device_t dev = ha->pci_dev;
mbox = ha->mbox;
bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS));
bzero(ha->mpi_dma.dma_b,(r_size << 2));
b_paddr = ha->mpi_dma.dma_addr;
mbox[0] = Q81_MBX_DUMP_RISC_RAM;
mbox[1] = r_addr & 0xFFFF;
mbox[2] = ((uint32_t)(b_paddr >> 16)) & 0xFFFF;
mbox[3] = ((uint32_t)b_paddr) & 0xFFFF;
mbox[4] = (r_size >> 16) & 0xFFFF;
mbox[5] = r_size & 0xFFFF;
mbox[6] = ((uint32_t)(b_paddr >> 48)) & 0xFFFF;
mbox[7] = ((uint32_t)(b_paddr >> 32)) & 0xFFFF;
mbox[8] = (r_addr >> 16) & 0xFFFF;
bus_dmamap_sync(ha->mpi_dma.dma_tag, ha->mpi_dma.dma_map,
BUS_DMASYNC_PREREAD);
if (qls_mbx_cmd(ha, mbox, 9, mbox, 1)) {
device_printf(dev, "%s failed\n", __func__);
return (-1);
}
if (mbox[0] != 0x4000) {
device_printf(ha->pci_dev, "%s: failed!\n", __func__);
return (-1);
} else {
bus_dmamap_sync(ha->mpi_dma.dma_tag, ha->mpi_dma.dma_map,
BUS_DMASYNC_POSTREAD);
bcopy(ha->mpi_dma.dma_b, buf, (r_size << 2));
}
return (0);
}
int
qls_mpi_reset(qla_host_t *ha)
{
int count;
uint32_t data;
device_t dev = ha->pci_dev;
WRITE_REG32(ha, Q81_CTL_HOST_CMD_STATUS,\
Q81_CTL_HCS_CMD_SET_RISC_RESET);
count = 10;
while (count--) {
data = READ_REG32(ha, Q81_CTL_HOST_CMD_STATUS);
if (data & Q81_CTL_HCS_RISC_RESET) {
WRITE_REG32(ha, Q81_CTL_HOST_CMD_STATUS,\
Q81_CTL_HCS_CMD_CLR_RISC_RESET);
break;
}
qls_mdelay(__func__, 10);
}
if (count == 0) {
device_printf(dev, "%s: failed\n", __func__);
return (-1);
}
return (0);
}