54a3a11421
Historically we have not distinguished between kernel wirings and user wirings for accounting purposes. User wirings (via mlock(2)) were subject to a global limit on the number of wired pages, so if large swaths of physical memory were wired by the kernel, as happens with the ZFS ARC among other things, the limit could be exceeded, causing user wirings to fail. The change adds a new counter, v_user_wire_count, which counts the number of virtual pages wired by user processes via mlock(2) and mlockall(2). Only user-wired pages are subject to the system-wide limit which helps provide some safety against deadlocks. In particular, while sources of kernel wirings typically support some backpressure mechanism, there is no way to reclaim user-wired pages shorting of killing the wiring process. The limit is exported as vm.max_user_wired, renamed from vm.max_wired, and changed from u_int to u_long. The choice to count virtual user-wired pages rather than physical pages was done for simplicity. There are mechanisms that can cause user-wired mappings to be destroyed while maintaining a wiring of the backing physical page; these make it difficult to accurately track user wirings at the physical page layer. The change also closes some holes which allowed user wirings to succeed even when they would cause the system limit to be exceeded. For instance, mmap() may now fail with ENOMEM in a process that has called mlockall(MCL_FUTURE) if the new mapping would cause the user wiring limit to be exceeded. Note that bhyve -S is subject to the user wiring limit, which defaults to 1/3 of physical RAM. Users that wish to exceed the limit must tune vm.max_user_wired. Reviewed by: kib, ngie (mlock() test changes) Tested by: pho (earlier version) MFC after: 45 days Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D19908
599 lines
16 KiB
C
599 lines
16 KiB
C
/*-
|
|
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
|
|
*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_vm.h"
|
|
#include "opt_kstack_pages.h"
|
|
#include "opt_kstack_max_pages.h"
|
|
#include "opt_kstack_usage_prof.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/domainset.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/racct.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sf_buf.h>
|
|
#include <sys/shm.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/_kstack_cache.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/unistd.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_domainset.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/swap_pager.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
/*
|
|
* MPSAFE
|
|
*
|
|
* WARNING! This code calls vm_map_check_protection() which only checks
|
|
* the associated vm_map_entry range. It does not determine whether the
|
|
* contents of the memory is actually readable or writable. In most cases
|
|
* just checking the vm_map_entry is sufficient within the kernel's address
|
|
* space.
|
|
*/
|
|
int
|
|
kernacc(void *addr, int len, int rw)
|
|
{
|
|
boolean_t rv;
|
|
vm_offset_t saddr, eaddr;
|
|
vm_prot_t prot;
|
|
|
|
KASSERT((rw & ~VM_PROT_ALL) == 0,
|
|
("illegal ``rw'' argument to kernacc (%x)\n", rw));
|
|
|
|
if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
|
|
(vm_offset_t)addr + len < (vm_offset_t)addr)
|
|
return (FALSE);
|
|
|
|
prot = rw;
|
|
saddr = trunc_page((vm_offset_t)addr);
|
|
eaddr = round_page((vm_offset_t)addr + len);
|
|
vm_map_lock_read(kernel_map);
|
|
rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
|
|
vm_map_unlock_read(kernel_map);
|
|
return (rv == TRUE);
|
|
}
|
|
|
|
/*
|
|
* MPSAFE
|
|
*
|
|
* WARNING! This code calls vm_map_check_protection() which only checks
|
|
* the associated vm_map_entry range. It does not determine whether the
|
|
* contents of the memory is actually readable or writable. vmapbuf(),
|
|
* vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
|
|
* used in conjunction with this call.
|
|
*/
|
|
int
|
|
useracc(void *addr, int len, int rw)
|
|
{
|
|
boolean_t rv;
|
|
vm_prot_t prot;
|
|
vm_map_t map;
|
|
|
|
KASSERT((rw & ~VM_PROT_ALL) == 0,
|
|
("illegal ``rw'' argument to useracc (%x)\n", rw));
|
|
prot = rw;
|
|
map = &curproc->p_vmspace->vm_map;
|
|
if ((vm_offset_t)addr + len > vm_map_max(map) ||
|
|
(vm_offset_t)addr + len < (vm_offset_t)addr) {
|
|
return (FALSE);
|
|
}
|
|
vm_map_lock_read(map);
|
|
rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
|
|
round_page((vm_offset_t)addr + len), prot);
|
|
vm_map_unlock_read(map);
|
|
return (rv == TRUE);
|
|
}
|
|
|
|
int
|
|
vslock(void *addr, size_t len)
|
|
{
|
|
vm_offset_t end, last, start;
|
|
vm_size_t npages;
|
|
int error;
|
|
|
|
last = (vm_offset_t)addr + len;
|
|
start = trunc_page((vm_offset_t)addr);
|
|
end = round_page(last);
|
|
if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
|
|
return (EINVAL);
|
|
npages = atop(end - start);
|
|
if (npages > vm_page_max_user_wired)
|
|
return (ENOMEM);
|
|
error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
|
|
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
|
|
if (error == KERN_SUCCESS) {
|
|
curthread->td_vslock_sz += len;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return EFAULT on error to match copy{in,out}() behaviour
|
|
* rather than returning ENOMEM like mlock() would.
|
|
*/
|
|
return (EFAULT);
|
|
}
|
|
|
|
void
|
|
vsunlock(void *addr, size_t len)
|
|
{
|
|
|
|
/* Rely on the parameter sanity checks performed by vslock(). */
|
|
MPASS(curthread->td_vslock_sz >= len);
|
|
curthread->td_vslock_sz -= len;
|
|
(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
|
|
trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
|
|
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
|
|
}
|
|
|
|
/*
|
|
* Pin the page contained within the given object at the given offset. If the
|
|
* page is not resident, allocate and load it using the given object's pager.
|
|
* Return the pinned page if successful; otherwise, return NULL.
|
|
*/
|
|
static vm_page_t
|
|
vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
|
|
{
|
|
vm_page_t m;
|
|
vm_pindex_t pindex;
|
|
int rv;
|
|
|
|
VM_OBJECT_WLOCK(object);
|
|
pindex = OFF_TO_IDX(offset);
|
|
m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
|
|
if (m->valid != VM_PAGE_BITS_ALL) {
|
|
vm_page_xbusy(m);
|
|
rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
|
|
if (rv != VM_PAGER_OK) {
|
|
vm_page_lock(m);
|
|
vm_page_free(m);
|
|
vm_page_unlock(m);
|
|
m = NULL;
|
|
goto out;
|
|
}
|
|
vm_page_xunbusy(m);
|
|
}
|
|
vm_page_lock(m);
|
|
vm_page_hold(m);
|
|
vm_page_activate(m);
|
|
vm_page_unlock(m);
|
|
out:
|
|
VM_OBJECT_WUNLOCK(object);
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Return a CPU private mapping to the page at the given offset within the
|
|
* given object. The page is pinned before it is mapped.
|
|
*/
|
|
struct sf_buf *
|
|
vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
|
|
{
|
|
vm_page_t m;
|
|
|
|
m = vm_imgact_hold_page(object, offset);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
sched_pin();
|
|
return (sf_buf_alloc(m, SFB_CPUPRIVATE));
|
|
}
|
|
|
|
/*
|
|
* Destroy the given CPU private mapping and unpin the page that it mapped.
|
|
*/
|
|
void
|
|
vm_imgact_unmap_page(struct sf_buf *sf)
|
|
{
|
|
vm_page_t m;
|
|
|
|
m = sf_buf_page(sf);
|
|
sf_buf_free(sf);
|
|
sched_unpin();
|
|
vm_page_lock(m);
|
|
vm_page_unhold(m);
|
|
vm_page_unlock(m);
|
|
}
|
|
|
|
void
|
|
vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
|
|
{
|
|
|
|
pmap_sync_icache(map->pmap, va, sz);
|
|
}
|
|
|
|
struct kstack_cache_entry *kstack_cache;
|
|
static int kstack_cache_size = 128;
|
|
static int kstacks, kstack_domain_iter;
|
|
static struct mtx kstack_cache_mtx;
|
|
MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
|
|
"");
|
|
SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
|
|
"");
|
|
|
|
/*
|
|
* Create the kernel stack (including pcb for i386) for a new thread.
|
|
* This routine directly affects the fork perf for a process and
|
|
* create performance for a thread.
|
|
*/
|
|
int
|
|
vm_thread_new(struct thread *td, int pages)
|
|
{
|
|
vm_object_t ksobj;
|
|
vm_offset_t ks;
|
|
vm_page_t ma[KSTACK_MAX_PAGES];
|
|
struct kstack_cache_entry *ks_ce;
|
|
int i;
|
|
|
|
/* Bounds check */
|
|
if (pages <= 1)
|
|
pages = kstack_pages;
|
|
else if (pages > KSTACK_MAX_PAGES)
|
|
pages = KSTACK_MAX_PAGES;
|
|
|
|
if (pages == kstack_pages && kstack_cache != NULL) {
|
|
mtx_lock(&kstack_cache_mtx);
|
|
if (kstack_cache != NULL) {
|
|
ks_ce = kstack_cache;
|
|
kstack_cache = ks_ce->next_ks_entry;
|
|
mtx_unlock(&kstack_cache_mtx);
|
|
|
|
td->td_kstack_obj = ks_ce->ksobj;
|
|
td->td_kstack = (vm_offset_t)ks_ce;
|
|
td->td_kstack_pages = kstack_pages;
|
|
return (1);
|
|
}
|
|
mtx_unlock(&kstack_cache_mtx);
|
|
}
|
|
|
|
/*
|
|
* Allocate an object for the kstack.
|
|
*/
|
|
ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
|
|
|
|
/*
|
|
* Get a kernel virtual address for this thread's kstack.
|
|
*/
|
|
#if defined(__mips__)
|
|
/*
|
|
* We need to align the kstack's mapped address to fit within
|
|
* a single TLB entry.
|
|
*/
|
|
if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
|
|
PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
|
|
M_BESTFIT | M_NOWAIT, &ks)) {
|
|
ks = 0;
|
|
}
|
|
#else
|
|
ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
|
|
#endif
|
|
if (ks == 0) {
|
|
printf("vm_thread_new: kstack allocation failed\n");
|
|
vm_object_deallocate(ksobj);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Ensure that kstack objects can draw pages from any memory
|
|
* domain. Otherwise a local memory shortage can block a process
|
|
* swap-in.
|
|
*/
|
|
if (vm_ndomains > 1) {
|
|
ksobj->domain.dr_policy = DOMAINSET_RR();
|
|
ksobj->domain.dr_iter =
|
|
atomic_fetchadd_int(&kstack_domain_iter, 1);
|
|
}
|
|
|
|
atomic_add_int(&kstacks, 1);
|
|
if (KSTACK_GUARD_PAGES != 0) {
|
|
pmap_qremove(ks, KSTACK_GUARD_PAGES);
|
|
ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
|
|
}
|
|
td->td_kstack_obj = ksobj;
|
|
td->td_kstack = ks;
|
|
/*
|
|
* Knowing the number of pages allocated is useful when you
|
|
* want to deallocate them.
|
|
*/
|
|
td->td_kstack_pages = pages;
|
|
/*
|
|
* For the length of the stack, link in a real page of ram for each
|
|
* page of stack.
|
|
*/
|
|
VM_OBJECT_WLOCK(ksobj);
|
|
(void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY |
|
|
VM_ALLOC_WIRED, ma, pages);
|
|
for (i = 0; i < pages; i++)
|
|
ma[i]->valid = VM_PAGE_BITS_ALL;
|
|
VM_OBJECT_WUNLOCK(ksobj);
|
|
pmap_qenter(ks, ma, pages);
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
|
|
{
|
|
vm_page_t m;
|
|
int i;
|
|
|
|
atomic_add_int(&kstacks, -1);
|
|
pmap_qremove(ks, pages);
|
|
VM_OBJECT_WLOCK(ksobj);
|
|
for (i = 0; i < pages; i++) {
|
|
m = vm_page_lookup(ksobj, i);
|
|
if (m == NULL)
|
|
panic("vm_thread_dispose: kstack already missing?");
|
|
vm_page_lock(m);
|
|
vm_page_unwire(m, PQ_NONE);
|
|
vm_page_free(m);
|
|
vm_page_unlock(m);
|
|
}
|
|
VM_OBJECT_WUNLOCK(ksobj);
|
|
vm_object_deallocate(ksobj);
|
|
kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
|
|
(pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Dispose of a thread's kernel stack.
|
|
*/
|
|
void
|
|
vm_thread_dispose(struct thread *td)
|
|
{
|
|
vm_object_t ksobj;
|
|
vm_offset_t ks;
|
|
struct kstack_cache_entry *ks_ce;
|
|
int pages;
|
|
|
|
pages = td->td_kstack_pages;
|
|
ksobj = td->td_kstack_obj;
|
|
ks = td->td_kstack;
|
|
td->td_kstack = 0;
|
|
td->td_kstack_pages = 0;
|
|
if (pages == kstack_pages && kstacks <= kstack_cache_size) {
|
|
ks_ce = (struct kstack_cache_entry *)ks;
|
|
ks_ce->ksobj = ksobj;
|
|
mtx_lock(&kstack_cache_mtx);
|
|
ks_ce->next_ks_entry = kstack_cache;
|
|
kstack_cache = ks_ce;
|
|
mtx_unlock(&kstack_cache_mtx);
|
|
return;
|
|
}
|
|
vm_thread_stack_dispose(ksobj, ks, pages);
|
|
}
|
|
|
|
static void
|
|
vm_thread_stack_lowmem(void *nulll)
|
|
{
|
|
struct kstack_cache_entry *ks_ce, *ks_ce1;
|
|
|
|
mtx_lock(&kstack_cache_mtx);
|
|
ks_ce = kstack_cache;
|
|
kstack_cache = NULL;
|
|
mtx_unlock(&kstack_cache_mtx);
|
|
|
|
while (ks_ce != NULL) {
|
|
ks_ce1 = ks_ce;
|
|
ks_ce = ks_ce->next_ks_entry;
|
|
|
|
vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
|
|
kstack_pages);
|
|
}
|
|
}
|
|
|
|
static void
|
|
kstack_cache_init(void *nulll)
|
|
{
|
|
|
|
EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
|
|
EVENTHANDLER_PRI_ANY);
|
|
}
|
|
|
|
SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
|
|
|
|
#ifdef KSTACK_USAGE_PROF
|
|
/*
|
|
* Track maximum stack used by a thread in kernel.
|
|
*/
|
|
static int max_kstack_used;
|
|
|
|
SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
|
|
&max_kstack_used, 0,
|
|
"Maxiumum stack depth used by a thread in kernel");
|
|
|
|
void
|
|
intr_prof_stack_use(struct thread *td, struct trapframe *frame)
|
|
{
|
|
vm_offset_t stack_top;
|
|
vm_offset_t current;
|
|
int used, prev_used;
|
|
|
|
/*
|
|
* Testing for interrupted kernel mode isn't strictly
|
|
* needed. It optimizes the execution, since interrupts from
|
|
* usermode will have only the trap frame on the stack.
|
|
*/
|
|
if (TRAPF_USERMODE(frame))
|
|
return;
|
|
|
|
stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
|
|
current = (vm_offset_t)(uintptr_t)&stack_top;
|
|
|
|
/*
|
|
* Try to detect if interrupt is using kernel thread stack.
|
|
* Hardware could use a dedicated stack for interrupt handling.
|
|
*/
|
|
if (stack_top <= current || current < td->td_kstack)
|
|
return;
|
|
|
|
used = stack_top - current;
|
|
for (;;) {
|
|
prev_used = max_kstack_used;
|
|
if (prev_used >= used)
|
|
break;
|
|
if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
|
|
break;
|
|
}
|
|
}
|
|
#endif /* KSTACK_USAGE_PROF */
|
|
|
|
/*
|
|
* Implement fork's actions on an address space.
|
|
* Here we arrange for the address space to be copied or referenced,
|
|
* allocate a user struct (pcb and kernel stack), then call the
|
|
* machine-dependent layer to fill those in and make the new process
|
|
* ready to run. The new process is set up so that it returns directly
|
|
* to user mode to avoid stack copying and relocation problems.
|
|
*/
|
|
int
|
|
vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
|
|
struct vmspace *vm2, int flags)
|
|
{
|
|
struct proc *p1 = td->td_proc;
|
|
struct domainset *dset;
|
|
int error;
|
|
|
|
if ((flags & RFPROC) == 0) {
|
|
/*
|
|
* Divorce the memory, if it is shared, essentially
|
|
* this changes shared memory amongst threads, into
|
|
* COW locally.
|
|
*/
|
|
if ((flags & RFMEM) == 0) {
|
|
if (p1->p_vmspace->vm_refcnt > 1) {
|
|
error = vmspace_unshare(p1);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
}
|
|
cpu_fork(td, p2, td2, flags);
|
|
return (0);
|
|
}
|
|
|
|
if (flags & RFMEM) {
|
|
p2->p_vmspace = p1->p_vmspace;
|
|
atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
|
|
}
|
|
dset = td2->td_domain.dr_policy;
|
|
while (vm_page_count_severe_set(&dset->ds_mask)) {
|
|
vm_wait_doms(&dset->ds_mask);
|
|
}
|
|
|
|
if ((flags & RFMEM) == 0) {
|
|
p2->p_vmspace = vm2;
|
|
if (p1->p_vmspace->vm_shm)
|
|
shmfork(p1, p2);
|
|
}
|
|
|
|
/*
|
|
* cpu_fork will copy and update the pcb, set up the kernel stack,
|
|
* and make the child ready to run.
|
|
*/
|
|
cpu_fork(td, p2, td2, flags);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Called after process has been wait(2)'ed upon and is being reaped.
|
|
* The idea is to reclaim resources that we could not reclaim while
|
|
* the process was still executing.
|
|
*/
|
|
void
|
|
vm_waitproc(p)
|
|
struct proc *p;
|
|
{
|
|
|
|
vmspace_exitfree(p); /* and clean-out the vmspace */
|
|
}
|
|
|
|
void
|
|
kick_proc0(void)
|
|
{
|
|
|
|
wakeup(&proc0);
|
|
}
|