freebsd-skq/sys/i386/xen/clock.c
Kip Macy f0c468df71 Compile fixes for xen build.
MFC after:	1 month.
2008-08-15 04:00:44 +00:00

895 lines
21 KiB
C

/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz and Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* #define DELAYDEBUG */
/*
* Routines to handle clock hardware.
*/
#include "opt_ddb.h"
#include "opt_clock.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/sysctl.h>
#include <sys/cons.h>
#include <sys/power.h>
#include <machine/clock.h>
#include <machine/cputypes.h>
#include <machine/frame.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/psl.h>
#if defined(SMP)
#include <machine/smp.h>
#endif
#include <machine/specialreg.h>
#include <machine/timerreg.h>
#include <i386/isa/icu.h>
#include <i386/isa/isa.h>
#include <isa/rtc.h>
#include <machine/xen/xen_intr.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/pmap.h>
#include <machine/xen/hypervisor.h>
#include <machine/xen/xen-os.h>
#include <machine/xen/xenfunc.h>
#include <xen/interface/vcpu.h>
#include <machine/cpu.h>
/*
* 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
* can use a simple formula for leap years.
*/
#define LEAPYEAR(y) (!((y) % 4))
#define DAYSPERYEAR (28+30*4+31*7)
#ifndef TIMER_FREQ
#define TIMER_FREQ 1193182
#endif
#ifdef CYC2NS_SCALE_FACTOR
#undef CYC2NS_SCALE_FACTOR
#endif
#define CYC2NS_SCALE_FACTOR 10
/* Values for timerX_state: */
#define RELEASED 0
#define RELEASE_PENDING 1
#define ACQUIRED 2
#define ACQUIRE_PENDING 3
struct mtx clock_lock;
#define RTC_LOCK_INIT \
mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE)
#define RTC_LOCK mtx_lock_spin(&clock_lock)
#define RTC_UNLOCK mtx_unlock_spin(&clock_lock)
int adjkerntz; /* local offset from GMT in seconds */
int clkintr_pending;
int pscnt = 1;
int psdiv = 1;
int statclock_disable;
int wall_cmos_clock;
u_int timer_freq = TIMER_FREQ;
static int independent_wallclock;
static int xen_disable_rtc_set;
static u_long cached_gtm; /* cached quotient for TSC -> microseconds */
static u_long cyc2ns_scale;
static struct timespec shadow_tv;
static uint32_t shadow_tv_version; /* XXX: lazy locking */
static uint64_t processed_system_time; /* stime (ns) at last processing. */
static const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
SYSCTL_INT(_machdep, OID_AUTO, independent_wallclock,
CTLFLAG_RW, &independent_wallclock, 0, "");
SYSCTL_INT(_machdep, OID_AUTO, xen_disable_rtc_set,
CTLFLAG_RW, &xen_disable_rtc_set, 1, "");
#define do_div(n,base) ({ \
unsigned long __upper, __low, __high, __mod, __base; \
__base = (base); \
__asm("":"=a" (__low), "=d" (__high):"A" (n)); \
__upper = __high; \
if (__high) { \
__upper = __high % (__base); \
__high = __high / (__base); \
} \
__asm("divl %2":"=a" (__low), "=d" (__mod):"rm" (__base), "0" (__low), "1" (__upper)); \
__asm("":"=A" (n):"a" (__low),"d" (__high)); \
__mod; \
})
/* These are peridically updated in shared_info, and then copied here. */
struct shadow_time_info {
uint64_t tsc_timestamp; /* TSC at last update of time vals. */
uint64_t system_timestamp; /* Time, in nanosecs, since boot. */
uint32_t tsc_to_nsec_mul;
uint32_t tsc_to_usec_mul;
int tsc_shift;
uint32_t version;
};
static DEFINE_PER_CPU(uint64_t, processed_system_time);
static DEFINE_PER_CPU(struct shadow_time_info, shadow_time);
#define NS_PER_TICK (1000000000ULL/hz)
#define rdtscll(val) \
__asm__ __volatile__("rdtsc" : "=A" (val))
/* convert from cycles(64bits) => nanoseconds (64bits)
* basic equation:
* ns = cycles / (freq / ns_per_sec)
* ns = cycles * (ns_per_sec / freq)
* ns = cycles * (10^9 / (cpu_mhz * 10^6))
* ns = cycles * (10^3 / cpu_mhz)
*
* Then we use scaling math (suggested by george@mvista.com) to get:
* ns = cycles * (10^3 * SC / cpu_mhz) / SC
* ns = cycles * cyc2ns_scale / SC
*
* And since SC is a constant power of two, we can convert the div
* into a shift.
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
*/
static inline void set_cyc2ns_scale(unsigned long cpu_mhz)
{
cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz;
}
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
}
/*
* Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
* yielding a 64-bit result.
*/
static inline uint64_t
scale_delta(uint64_t delta, uint32_t mul_frac, int shift)
{
uint64_t product;
uint32_t tmp1, tmp2;
if ( shift < 0 )
delta >>= -shift;
else
delta <<= shift;
__asm__ (
"mul %5 ; "
"mov %4,%%eax ; "
"mov %%edx,%4 ; "
"mul %5 ; "
"add %4,%%eax ; "
"xor %5,%5 ; "
"adc %5,%%edx ; "
: "=A" (product), "=r" (tmp1), "=r" (tmp2)
: "a" ((uint32_t)delta), "1" ((uint32_t)(delta >> 32)), "2" (mul_frac) );
return product;
}
static uint64_t get_nsec_offset(struct shadow_time_info *shadow)
{
uint64_t now, delta;
rdtscll(now);
delta = now - shadow->tsc_timestamp;
return scale_delta(delta, shadow->tsc_to_nsec_mul, shadow->tsc_shift);
}
static void update_wallclock(void)
{
shared_info_t *s = HYPERVISOR_shared_info;
do {
shadow_tv_version = s->wc_version;
rmb();
shadow_tv.tv_sec = s->wc_sec;
shadow_tv.tv_nsec = s->wc_nsec;
rmb();
}
while ((s->wc_version & 1) | (shadow_tv_version ^ s->wc_version));
}
/*
* Reads a consistent set of time-base values from Xen, into a shadow data
* area. Must be called with the xtime_lock held for writing.
*/
static void __get_time_values_from_xen(void)
{
shared_info_t *s = HYPERVISOR_shared_info;
struct vcpu_time_info *src;
struct shadow_time_info *dst;
src = &s->vcpu_info[smp_processor_id()].time;
dst = &per_cpu(shadow_time, smp_processor_id());
do {
dst->version = src->version;
rmb();
dst->tsc_timestamp = src->tsc_timestamp;
dst->system_timestamp = src->system_time;
dst->tsc_to_nsec_mul = src->tsc_to_system_mul;
dst->tsc_shift = src->tsc_shift;
rmb();
}
while ((src->version & 1) | (dst->version ^ src->version));
dst->tsc_to_usec_mul = dst->tsc_to_nsec_mul / 1000;
}
static inline int time_values_up_to_date(int cpu)
{
struct vcpu_time_info *src;
struct shadow_time_info *dst;
src = &HYPERVISOR_shared_info->vcpu_info[cpu].time;
dst = &per_cpu(shadow_time, cpu);
rmb();
return (dst->version == src->version);
}
static unsigned xen_get_timecount(struct timecounter *tc);
static struct timecounter xen_timecounter = {
xen_get_timecount, /* get_timecount */
0, /* no poll_pps */
~0u, /* counter_mask */
0, /* frequency */
"ixen", /* name */
0 /* quality */
};
static void
clkintr(struct trapframe *frame)
{
int64_t delta_cpu, delta;
int cpu = smp_processor_id();
struct shadow_time_info *shadow = &per_cpu(shadow_time, cpu);
do {
__get_time_values_from_xen();
delta = delta_cpu =
shadow->system_timestamp + get_nsec_offset(shadow);
delta -= processed_system_time;
delta_cpu -= per_cpu(processed_system_time, cpu);
} while (!time_values_up_to_date(cpu));
if (unlikely(delta < (int64_t)0) || unlikely(delta_cpu < (int64_t)0)) {
printf("Timer ISR: Time went backwards: %lld\n", delta);
return;
}
/* Process elapsed ticks since last call. */
if (delta >= NS_PER_TICK) {
processed_system_time += (delta / NS_PER_TICK) * NS_PER_TICK;
per_cpu(processed_system_time, cpu) += (delta_cpu / NS_PER_TICK) * NS_PER_TICK;
}
hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
/*
* Take synchronised time from Xen once a minute if we're not
* synchronised ourselves, and we haven't chosen to keep an independent
* time base.
*/
if (shadow_tv_version != HYPERVISOR_shared_info->wc_version) {
update_wallclock();
tc_setclock(&shadow_tv);
}
/* XXX TODO */
}
static uint32_t
getit(void)
{
struct shadow_time_info *shadow;
shadow = &per_cpu(shadow_time, smp_processor_id());
__get_time_values_from_xen();
return shadow->system_timestamp + get_nsec_offset(shadow);
}
/*
* XXX: timer needs more SMP work.
*/
void
i8254_init(void)
{
RTC_LOCK_INIT;
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (timer_freq / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int delta, ticks_left;
uint32_t tick, prev_tick;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*
* However, if ddb is active then use a fake counter since reading
* the i8254 counter involves acquiring a lock. ddb must not go
* locking for many reasons, but it calls here for at least atkbd
* input.
*/
prev_tick = getit();
n -= 0; /* XXX actually guess no initial overhead */
/*
* Calculate (n * (timer_freq / 1e6)) without using floating point
* and without any avoidable overflows.
*/
if (n <= 0)
ticks_left = 0;
else if (n < 256)
/*
* Use fixed point to avoid a slow division by 1000000.
* 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
* 2^15 is the first power of 2 that gives exact results
* for n between 0 and 256.
*/
ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
else
/*
* Don't bother using fixed point, although gcc-2.7.2
* generates particularly poor code for the long long
* division, since even the slow way will complete long
* before the delay is up (unless we're interrupted).
*/
ticks_left = ((u_int)n * (long long)timer_freq + 999999)
/ 1000000;
while (ticks_left > 0) {
tick = getit();
#ifdef DELAYDEBUG
++getit_calls;
#endif
delta = tick - prev_tick;
prev_tick = tick;
if (delta < 0) {
/*
* Guard against timer0_max_count being wrong.
* This shouldn't happen in normal operation,
* but it may happen if set_timer_freq() is
* traced.
*/
/* delta += timer0_max_count; ??? */
if (delta < 0)
delta = 0;
}
ticks_left -= delta;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
/*
* Restore all the timers non-atomically (XXX: should be atomically).
*
* This function is called from pmtimer_resume() to restore all the timers.
* This should not be necessary, but there are broken laptops that do not
* restore all the timers on resume.
*/
void
timer_restore(void)
{
/* Get timebases for new environment. */
__get_time_values_from_xen();
/* Reset our own concept of passage of system time. */
processed_system_time = per_cpu(shadow_time, 0).system_timestamp;
per_cpu(processed_system_time, 0) = processed_system_time;
}
void
startrtclock()
{
unsigned long long alarm;
uint64_t __cpu_khz;
uint32_t cpu_khz;
struct vcpu_time_info *info;
/* initialize xen values */
__get_time_values_from_xen();
processed_system_time = per_cpu(shadow_time, 0).system_timestamp;
per_cpu(processed_system_time, 0) = processed_system_time;
__cpu_khz = 1000000ULL << 32;
info = &HYPERVISOR_shared_info->vcpu_info[0].time;
do_div(__cpu_khz, info->tsc_to_system_mul);
if ( info->tsc_shift < 0 )
cpu_khz = __cpu_khz << -info->tsc_shift;
else
cpu_khz = __cpu_khz >> info->tsc_shift;
printf("Xen reported: %u.%03u MHz processor.\n",
cpu_khz / 1000, cpu_khz % 1000);
/* (10^6 * 2^32) / cpu_hz = (10^3 * 2^32) / cpu_khz =
(2^32 * 1 / (clocks/us)) */
{
unsigned long eax=0, edx=1000;
__asm__("divl %2"
:"=a" (cached_gtm), "=d" (edx)
:"r" (cpu_khz),
"0" (eax), "1" (edx));
}
set_cyc2ns_scale(cpu_khz/1000);
tsc_freq = cpu_khz * 1000;
timer_freq = xen_timecounter.tc_frequency = 1000000000LL;
tc_init(&xen_timecounter);
rdtscll(alarm);
}
/*
* RTC support routines
*/
static __inline int
readrtc(int port)
{
return(bcd2bin(rtcin(port)));
}
#ifdef XEN_PRIVILEGED_GUEST
/*
* Initialize the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
static void
domu_inittodr(time_t base)
{
unsigned long sec;
int s, y;
struct timespec ts;
update_wallclock();
RTC_LOCK;
if (base) {
ts.tv_sec = base;
ts.tv_nsec = 0;
tc_setclock(&ts);
}
sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
y = time_second - shadow_tv.tv_sec;
if (y <= -2 || y >= 2) {
/* badly off, adjust it */
tc_setclock(&shadow_tv);
}
RTC_UNLOCK;
}
/*
* Write system time back to RTC.
*/
static void
domu_resettodr(void)
{
unsigned long tm;
int s;
dom0_op_t op;
struct shadow_time_info *shadow;
shadow = &per_cpu(shadow_time, smp_processor_id());
if (xen_disable_rtc_set)
return;
s = splclock();
tm = time_second;
splx(s);
tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
if ((xen_start_info->flags & SIF_INITDOMAIN) &&
!independent_wallclock)
{
op.cmd = DOM0_SETTIME;
op.u.settime.secs = tm;
op.u.settime.nsecs = 0;
op.u.settime.system_time = shadow->system_timestamp;
HYPERVISOR_dom0_op(&op);
update_wallclock();
} else if (independent_wallclock) {
/* notyet */
;
}
}
/*
* Initialize the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
void
inittodr(time_t base)
{
unsigned long sec, days;
int year, month;
int y, m, s;
struct timespec ts;
if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
domu_inittodr(base);
return;
}
if (base) {
s = splclock();
ts.tv_sec = base;
ts.tv_nsec = 0;
tc_setclock(&ts);
splx(s);
}
/* Look if we have a RTC present and the time is valid */
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
goto wrong_time;
/* wait for time update to complete */
/* If RTCSA_TUP is zero, we have at least 244us before next update */
s = splhigh();
while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
splx(s);
s = splhigh();
}
days = 0;
#ifdef USE_RTC_CENTURY
year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
#else
year = readrtc(RTC_YEAR) + 1900;
if (year < 1970)
year += 100;
#endif
if (year < 1970) {
splx(s);
goto wrong_time;
}
month = readrtc(RTC_MONTH);
for (m = 1; m < month; m++)
days += daysinmonth[m-1];
if ((month > 2) && LEAPYEAR(year))
days ++;
days += readrtc(RTC_DAY) - 1;
for (y = 1970; y < year; y++)
days += DAYSPERYEAR + LEAPYEAR(y);
sec = ((( days * 24 +
readrtc(RTC_HRS)) * 60 +
readrtc(RTC_MIN)) * 60 +
readrtc(RTC_SEC));
/* sec now contains the number of seconds, since Jan 1 1970,
in the local time zone */
sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
y = time_second - sec;
if (y <= -2 || y >= 2) {
/* badly off, adjust it */
ts.tv_sec = sec;
ts.tv_nsec = 0;
tc_setclock(&ts);
}
splx(s);
return;
wrong_time:
printf("Invalid time in real time clock.\n");
printf("Check and reset the date immediately!\n");
}
/*
* Write system time back to RTC
*/
void
resettodr()
{
unsigned long tm;
int y, m, s;
if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
domu_resettodr();
return;
}
if (xen_disable_rtc_set)
return;
s = splclock();
tm = time_second;
splx(s);
/* Disable RTC updates and interrupts. */
writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
/* Calculate local time to put in RTC */
tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */
writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */
writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24; /* Write back Hours */
/* We have now the days since 01-01-1970 in tm */
writertc(RTC_WDAY, (tm + 4) % 7 + 1); /* Write back Weekday */
for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
tm >= m;
y++, m = DAYSPERYEAR + LEAPYEAR(y))
tm -= m;
/* Now we have the years in y and the day-of-the-year in tm */
writertc(RTC_YEAR, bin2bcd(y%100)); /* Write back Year */
#ifdef USE_RTC_CENTURY
writertc(RTC_CENTURY, bin2bcd(y/100)); /* ... and Century */
#endif
for (m = 0; ; m++) {
int ml;
ml = daysinmonth[m];
if (m == 1 && LEAPYEAR(y))
ml++;
if (tm < ml)
break;
tm -= ml;
}
writertc(RTC_MONTH, bin2bcd(m + 1)); /* Write back Month */
writertc(RTC_DAY, bin2bcd(tm + 1)); /* Write back Month Day */
/* Reenable RTC updates and interrupts. */
writertc(RTC_STATUSB, RTCSB_24HR);
rtcin(RTC_INTR);
}
#endif
static struct vcpu_set_periodic_timer xen_set_periodic_tick;
/*
* Start clocks running.
*/
void
cpu_initclocks(void)
{
int time_irq;
xen_set_periodic_tick.period_ns = NS_PER_TICK;
HYPERVISOR_vcpu_op(VCPUOP_set_periodic_timer, 0,
&xen_set_periodic_tick);
if ((time_irq = bind_virq_to_irqhandler(VIRQ_TIMER, 0, "clk",
(driver_filter_t *)clkintr, NULL,
INTR_TYPE_CLK | INTR_FAST)) < 0) {
panic("failed to register clock interrupt\n");
}
/* should fast clock be enabled ? */
}
/*
*
* XXX
*/
#if 0 && defined(SMP)
void
ap_cpu_initclocks(void)
{
int irq;
int cpu = smp_processor_id();
per_cpu(processed_system_time, cpu) = processed_system_time;
irq = bind_virq_to_irq(VIRQ_TIMER);
PCPU_SET(time_irq, irq);
PANIC_IF(intr_add_handler("clk", irq, (driver_filter_t *)clkintr, NULL,
NULL, INTR_TYPE_CLK | INTR_FAST, NULL));
}
#endif
void
cpu_startprofclock(void)
{
printf("cpu_startprofclock: profiling clock is not supported\n");
}
void
cpu_stopprofclock(void)
{
printf("cpu_stopprofclock: profiling clock is not supported\n");
}
#define NSEC_PER_USEC 1000
static uint32_t
xen_get_timecount(struct timecounter *tc)
{
uint64_t clk;
struct shadow_time_info *shadow;
shadow = &per_cpu(shadow_time, smp_processor_id());
__get_time_values_from_xen();
clk = shadow->system_timestamp + get_nsec_offset(shadow);
return (uint32_t)((clk / NS_PER_TICK) * NS_PER_TICK);
}
/* Return system time offset by ticks */
uint64_t
get_system_time(int ticks)
{
return processed_system_time + (ticks * NS_PER_TICK);
}
/*
* Track behavior of cur_timer->get_offset() functionality in timer_tsc.c
*/
#if 0
static uint32_t
xen_get_offset(void)
{
register unsigned long eax, edx;
/* Read the Time Stamp Counter */
rdtsc(eax,edx);
/* .. relative to previous jiffy (32 bits is enough) */
eax -= shadow_tsc_stamp;
/*
* Time offset = (tsc_low delta) * cached_gtm
* = (tsc_low delta) * (usecs_per_clock)
* = (tsc_low delta) * (usecs_per_jiffy / clocks_per_jiffy)
*
* Using a mull instead of a divl saves up to 31 clock cycles
* in the critical path.
*/
__asm__("mull %2"
:"=a" (eax), "=d" (edx)
:"rm" (cached_gtm),
"0" (eax));
/* our adjusted time offset in microseconds */
return edx;
}
#endif
void
idle_block(void)
{
__get_time_values_from_xen();
PANIC_IF(HYPERVISOR_set_timer_op(processed_system_time + NS_PER_TICK) != 0);
HYPERVISOR_sched_op(SCHEDOP_block, 0);
}
int
timer_spkr_acquire(void)
{
return (0);
}
int
timer_spkr_release(void)
{
return (0);
}
void
timer_spkr_setfreq(int freq)
{
}