1537078d8f
Mainly focus on files that use BSD 2-Clause license, however the tool I was using misidentified many licenses so this was mostly a manual - error prone - task. The Software Package Data Exchange (SPDX) group provides a specification to make it easier for automated tools to detect and summarize well known opensource licenses. We are gradually adopting the specification, noting that the tags are considered only advisory and do not, in any way, superceed or replace the license texts.
900 lines
24 KiB
C
900 lines
24 KiB
C
/*-
|
|
* Low level routines for Second Generation
|
|
* Advanced Systems Inc. SCSI controllers chips
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1998, 1999, 2000 Justin Gibbs.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
/*-
|
|
* Ported from:
|
|
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
|
|
*
|
|
* Copyright (c) 1995-1998 Advanced System Products, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that redistributions of source
|
|
* code retain the above copyright notice and this comment without
|
|
* modification.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_sim.h>
|
|
#include <cam/cam_xpt_sim.h>
|
|
#include <cam/scsi/scsi_all.h>
|
|
|
|
#include <dev/advansys/adwlib.h>
|
|
|
|
const struct adw_eeprom adw_asc3550_default_eeprom =
|
|
{
|
|
ADW_EEPROM_BIOS_ENABLE, /* cfg_lsw */
|
|
0x0000, /* cfg_msw */
|
|
0xFFFF, /* disc_enable */
|
|
0xFFFF, /* wdtr_able */
|
|
{ 0xFFFF }, /* sdtr_able */
|
|
0xFFFF, /* start_motor */
|
|
0xFFFF, /* tagqng_able */
|
|
0xFFFF, /* bios_scan */
|
|
0, /* scam_tolerant */
|
|
7, /* adapter_scsi_id */
|
|
0, /* bios_boot_delay */
|
|
3, /* scsi_reset_delay */
|
|
0, /* bios_id_lun */
|
|
0, /* termination */
|
|
0, /* reserved1 */
|
|
0xFFE7, /* bios_ctrl */
|
|
{ 0xFFFF }, /* ultra_able */
|
|
{ 0 }, /* reserved2 */
|
|
ADW_DEF_MAX_HOST_QNG, /* max_host_qng */
|
|
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
|
|
0, /* dvc_cntl */
|
|
{ 0 }, /* bug_fix */
|
|
{ 0, 0, 0 }, /* serial_number */
|
|
0, /* check_sum */
|
|
{ /* oem_name[16] */
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
},
|
|
0, /* dvc_err_code */
|
|
0, /* adv_err_code */
|
|
0, /* adv_err_addr */
|
|
0, /* saved_dvc_err_code */
|
|
0, /* saved_adv_err_code */
|
|
0 /* saved_adv_err_addr */
|
|
};
|
|
|
|
const struct adw_eeprom adw_asc38C0800_default_eeprom =
|
|
{
|
|
ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
|
|
0x0000, /* 01 cfg_msw */
|
|
0xFFFF, /* 02 disc_enable */
|
|
0xFFFF, /* 03 wdtr_able */
|
|
{ 0x4444 }, /* 04 sdtr_speed1 */
|
|
0xFFFF, /* 05 start_motor */
|
|
0xFFFF, /* 06 tagqng_able */
|
|
0xFFFF, /* 07 bios_scan */
|
|
0, /* 08 scam_tolerant */
|
|
7, /* 09 adapter_scsi_id */
|
|
0, /* bios_boot_delay */
|
|
3, /* 10 scsi_reset_delay */
|
|
0, /* bios_id_lun */
|
|
0, /* 11 termination_se */
|
|
0, /* termination_lvd */
|
|
0xFFE7, /* 12 bios_ctrl */
|
|
{ 0x4444 }, /* 13 sdtr_speed2 */
|
|
{ 0x4444 }, /* 14 sdtr_speed3 */
|
|
ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
|
|
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
|
|
0, /* 16 dvc_cntl */
|
|
{ 0x4444 } , /* 17 sdtr_speed4 */
|
|
{ 0, 0, 0 }, /* 18-20 serial_number */
|
|
0, /* 21 check_sum */
|
|
{ /* 22-29 oem_name[16] */
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
},
|
|
0, /* 30 dvc_err_code */
|
|
0, /* 31 adv_err_code */
|
|
0, /* 32 adv_err_addr */
|
|
0, /* 33 saved_dvc_err_code */
|
|
0, /* 34 saved_adv_err_code */
|
|
0, /* 35 saved_adv_err_addr */
|
|
{ /* 36 - 55 reserved */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
},
|
|
0, /* 56 cisptr_lsw */
|
|
0, /* 57 cisprt_msw */
|
|
/* 58-59 sub-id */
|
|
(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
|
|
};
|
|
|
|
#define ADW_MC_SDTR_OFFSET_ULTRA2_DT 0
|
|
#define ADW_MC_SDTR_OFFSET_ULTRA2 1
|
|
#define ADW_MC_SDTR_OFFSET_ULTRA 2
|
|
const struct adw_syncrate adw_syncrates[] =
|
|
{
|
|
/* mc_sdtr period rate */
|
|
{ ADW_MC_SDTR_80, 9, "80.0" },
|
|
{ ADW_MC_SDTR_40, 10, "40.0" },
|
|
{ ADW_MC_SDTR_20, 12, "20.0" },
|
|
{ ADW_MC_SDTR_10, 25, "10.0" },
|
|
{ ADW_MC_SDTR_5, 50, "5.0" },
|
|
{ ADW_MC_SDTR_ASYNC, 0, "async" }
|
|
};
|
|
|
|
static u_int16_t adw_eeprom_read_16(struct adw_softc *adw, int addr);
|
|
static void adw_eeprom_write_16(struct adw_softc *adw, int addr,
|
|
u_int data);
|
|
static void adw_eeprom_wait(struct adw_softc *adw);
|
|
|
|
int
|
|
adw_find_signature(struct adw_softc *adw)
|
|
{
|
|
if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
|
|
&& adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reset Chip.
|
|
*/
|
|
void
|
|
adw_reset_chip(struct adw_softc *adw)
|
|
{
|
|
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
|
|
DELAY(1000 * 100);
|
|
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
|
|
|
|
/*
|
|
* Initialize Chip registers.
|
|
*/
|
|
adw_outw(adw, ADW_SCSI_CFG1,
|
|
adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
|
|
}
|
|
|
|
/*
|
|
* Reset the SCSI bus.
|
|
*/
|
|
int
|
|
adw_reset_bus(struct adw_softc *adw)
|
|
{
|
|
adw_idle_cmd_status_t status;
|
|
|
|
if (!dumping)
|
|
mtx_assert(&adw->lock, MA_OWNED);
|
|
status =
|
|
adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
|
|
if (status != ADW_IDLE_CMD_SUCCESS) {
|
|
xpt_print_path(adw->path);
|
|
printf("Bus Reset start attempt failed\n");
|
|
return (1);
|
|
}
|
|
DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
|
|
status =
|
|
adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
|
|
if (status != ADW_IDLE_CMD_SUCCESS) {
|
|
xpt_print_path(adw->path);
|
|
printf("Bus Reset end attempt failed\n");
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read the specified EEPROM location
|
|
*/
|
|
static u_int16_t
|
|
adw_eeprom_read_16(struct adw_softc *adw, int addr)
|
|
{
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
|
|
adw_eeprom_wait(adw);
|
|
return (adw_inw(adw, ADW_EEP_DATA));
|
|
}
|
|
|
|
static void
|
|
adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
|
|
{
|
|
adw_outw(adw, ADW_EEP_DATA, data);
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
|
|
adw_eeprom_wait(adw);
|
|
}
|
|
|
|
/*
|
|
* Wait for and EEPROM command to complete
|
|
*/
|
|
static void
|
|
adw_eeprom_wait(struct adw_softc *adw)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
|
|
if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (i == ADW_EEP_DELAY_MS)
|
|
panic("%s: Timedout Reading EEPROM",
|
|
device_get_nameunit(adw->device));
|
|
}
|
|
|
|
/*
|
|
* Read EEPROM configuration into the specified buffer.
|
|
*
|
|
* Return a checksum based on the EEPROM configuration read.
|
|
*/
|
|
u_int16_t
|
|
adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
|
|
{
|
|
u_int16_t *wbuf;
|
|
u_int16_t wval;
|
|
u_int16_t chksum;
|
|
int eep_addr;
|
|
|
|
wbuf = (u_int16_t *)eep_buf;
|
|
chksum = 0;
|
|
|
|
for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
|
|
eep_addr < ADW_EEP_DVC_CFG_END;
|
|
eep_addr++, wbuf++) {
|
|
wval = adw_eeprom_read_16(adw, eep_addr);
|
|
chksum += wval;
|
|
*wbuf = wval;
|
|
}
|
|
|
|
/* checksum field is not counted in the checksum */
|
|
*wbuf = adw_eeprom_read_16(adw, eep_addr);
|
|
wbuf++;
|
|
|
|
/* Driver seeprom variables are not included in the checksum */
|
|
for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
|
|
eep_addr < ADW_EEP_MAX_WORD_ADDR;
|
|
eep_addr++, wbuf++)
|
|
*wbuf = adw_eeprom_read_16(adw, eep_addr);
|
|
|
|
return (chksum);
|
|
}
|
|
|
|
void
|
|
adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
|
|
{
|
|
u_int16_t *wbuf;
|
|
u_int16_t addr;
|
|
u_int16_t chksum;
|
|
|
|
wbuf = (u_int16_t *)eep_buf;
|
|
chksum = 0;
|
|
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
|
|
adw_eeprom_wait(adw);
|
|
|
|
/*
|
|
* Write EEPROM until checksum.
|
|
*/
|
|
for (addr = ADW_EEP_DVC_CFG_BEGIN;
|
|
addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
|
|
chksum += *wbuf;
|
|
adw_eeprom_write_16(adw, addr, *wbuf);
|
|
}
|
|
|
|
/*
|
|
* Write calculated EEPROM checksum
|
|
*/
|
|
adw_eeprom_write_16(adw, addr, chksum);
|
|
|
|
/* skip over buffer's checksum */
|
|
wbuf++;
|
|
|
|
/*
|
|
* Write the rest.
|
|
*/
|
|
for (addr = ADW_EEP_DVC_CTL_BEGIN;
|
|
addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
|
|
adw_eeprom_write_16(adw, addr, *wbuf);
|
|
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
|
|
adw_eeprom_wait(adw);
|
|
}
|
|
|
|
int
|
|
adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
|
|
{
|
|
u_int8_t biosmem[ADW_MC_BIOSLEN];
|
|
const u_int16_t *word_table;
|
|
const u_int8_t *byte_codes;
|
|
const u_int8_t *byte_codes_end;
|
|
u_int bios_sig;
|
|
u_int bytes_downloaded;
|
|
u_int addr;
|
|
u_int end_addr;
|
|
u_int checksum;
|
|
u_int scsicfg1;
|
|
u_int tid;
|
|
|
|
/*
|
|
* Save the RISC memory BIOS region before writing the microcode.
|
|
* The BIOS may already be loaded and using its RISC LRAM region
|
|
* so its region must be saved and restored.
|
|
*/
|
|
for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
|
|
biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
|
|
|
|
/*
|
|
* Save current per TID negotiated values if the BIOS has been
|
|
* loaded (BIOS signature is present). These will be used if
|
|
* we cannot get information from the EEPROM.
|
|
*/
|
|
addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
|
|
bios_sig = biosmem[addr]
|
|
| (biosmem[addr + 1] << 8);
|
|
if (bios_sig == 0x55AA
|
|
&& (adw->flags & ADW_EEPROM_FAILED) != 0) {
|
|
u_int major_ver;
|
|
u_int minor_ver;
|
|
u_int sdtr_able;
|
|
|
|
addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
|
|
minor_ver = biosmem[addr + 1] & 0xF;
|
|
major_ver = (biosmem[addr + 1] >> 4) & 0xF;
|
|
if ((adw->chip == ADW_CHIP_ASC3550)
|
|
&& (major_ver <= 3
|
|
|| (major_ver == 3 && minor_ver <= 1))) {
|
|
/*
|
|
* BIOS 3.1 and earlier location of
|
|
* 'wdtr_able' variable.
|
|
*/
|
|
adw->user_wdtr =
|
|
adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
|
|
} else {
|
|
adw->user_wdtr =
|
|
adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
|
|
}
|
|
sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
|
|
for (tid = 0; tid < ADW_MAX_TID; tid++) {
|
|
u_int tid_mask;
|
|
u_int mc_sdtr;
|
|
|
|
tid_mask = 0x1 << tid;
|
|
if ((sdtr_able & tid_mask) == 0)
|
|
mc_sdtr = ADW_MC_SDTR_ASYNC;
|
|
else if ((adw->features & ADW_DT) != 0)
|
|
mc_sdtr = ADW_MC_SDTR_80;
|
|
else if ((adw->features & ADW_ULTRA2) != 0)
|
|
mc_sdtr = ADW_MC_SDTR_40;
|
|
else
|
|
mc_sdtr = ADW_MC_SDTR_20;
|
|
adw_set_user_sdtr(adw, tid, mc_sdtr);
|
|
}
|
|
adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
|
|
}
|
|
|
|
/*
|
|
* Load the Microcode.
|
|
*
|
|
* Assume the following compressed format of the microcode buffer:
|
|
*
|
|
* 253 word (506 byte) table indexed by byte code followed
|
|
* by the following byte codes:
|
|
*
|
|
* 1-Byte Code:
|
|
* 00: Emit word 0 in table.
|
|
* 01: Emit word 1 in table.
|
|
* .
|
|
* FD: Emit word 253 in table.
|
|
*
|
|
* Multi-Byte Code:
|
|
* FD RESEVED
|
|
*
|
|
* FE WW WW: (3 byte code)
|
|
* Word to emit is the next word WW WW.
|
|
* FF BB WW WW: (4 byte code)
|
|
* Emit BB count times next word WW WW.
|
|
*
|
|
*/
|
|
bytes_downloaded = 0;
|
|
word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
|
|
byte_codes = (const u_int8_t *)&word_table[253];
|
|
byte_codes_end = adw->mcode_data->mcode_buf
|
|
+ adw->mcode_data->mcode_size;
|
|
adw_outw(adw, ADW_RAM_ADDR, 0);
|
|
while (byte_codes < byte_codes_end) {
|
|
if (*byte_codes == 0xFF) {
|
|
u_int16_t value;
|
|
|
|
value = byte_codes[2]
|
|
| byte_codes[3] << 8;
|
|
adw_set_multi_2(adw, ADW_RAM_DATA,
|
|
value, byte_codes[1]);
|
|
bytes_downloaded += byte_codes[1];
|
|
byte_codes += 4;
|
|
} else if (*byte_codes == 0xFE) {
|
|
u_int16_t value;
|
|
|
|
value = byte_codes[1]
|
|
| byte_codes[2] << 8;
|
|
adw_outw(adw, ADW_RAM_DATA, value);
|
|
bytes_downloaded++;
|
|
byte_codes += 3;
|
|
} else {
|
|
adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
|
|
bytes_downloaded++;
|
|
byte_codes++;
|
|
}
|
|
}
|
|
/* Convert from words to bytes */
|
|
bytes_downloaded *= 2;
|
|
|
|
/*
|
|
* Clear the rest of LRAM.
|
|
*/
|
|
for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
|
|
adw_outw(adw, ADW_RAM_DATA, 0);
|
|
|
|
/*
|
|
* Verify the microcode checksum.
|
|
*/
|
|
checksum = 0;
|
|
adw_outw(adw, ADW_RAM_ADDR, 0);
|
|
for (addr = 0; addr < bytes_downloaded; addr += 2)
|
|
checksum += adw_inw(adw, ADW_RAM_DATA);
|
|
|
|
if (checksum != adw->mcode_data->mcode_chksum) {
|
|
device_printf(adw->device, "Firmware load failed!\n");
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Restore the RISC memory BIOS region.
|
|
*/
|
|
for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
|
|
adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
|
|
|
|
/*
|
|
* Calculate and write the microcode code checksum to
|
|
* the microcode code checksum location.
|
|
*/
|
|
addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
|
|
end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
|
|
checksum = 0;
|
|
adw_outw(adw, ADW_RAM_ADDR, addr);
|
|
for (; addr < end_addr; addr += 2)
|
|
checksum += adw_inw(adw, ADW_RAM_DATA);
|
|
adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
|
|
|
|
/*
|
|
* Tell the microcode what kind of chip it's running on.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
|
|
|
|
/*
|
|
* Leave WDTR and SDTR negotiation disabled until the XPT has
|
|
* informed us of device capabilities, but do set the desired
|
|
* user rates in case we receive an SDTR request from the target
|
|
* before we negotiate. We turn on tagged queuing at the microcode
|
|
* level for all devices, and modulate this on a per command basis.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
|
|
adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
|
|
for (tid = 0; tid < ADW_MAX_TID; tid++) {
|
|
/* Cam limits the maximum number of commands for us */
|
|
adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
|
|
adw->max_acbs);
|
|
}
|
|
adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
|
|
|
|
/*
|
|
* Set SCSI_CFG0 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG0 register using this value
|
|
* after it is started.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
|
|
ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
|
|
ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
|
|
|
|
/*
|
|
* Tell the MC about the memory size that
|
|
* was setup by the probe code.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
|
|
adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
|
|
|
|
/*
|
|
* Determine SCSI_CFG1 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
|
|
|
|
/*
|
|
* If the internal narrow cable is reversed all of the SCSI_CTRL
|
|
* register signals will be set. Check for and return an error if
|
|
* this condition is found.
|
|
*/
|
|
if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
|
|
device_printf(adw->device, "Illegal Cable Config!\n");
|
|
device_printf(adw->device, "Internal cable is reversed!\n");
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* If this is a differential board and a single-ended device
|
|
* is attached to one of the connectors, return an error.
|
|
*/
|
|
if ((adw->features & ADW_ULTRA) != 0) {
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
|
|
&& (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
|
|
device_printf(adw->device, "A Single Ended Device is "
|
|
"attached to our differential bus!\n");
|
|
return (EIO);
|
|
}
|
|
} else {
|
|
if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
|
|
device_printf(adw->device,
|
|
"A High Voltage Differential Device "
|
|
"is attached to this controller.\n");
|
|
device_printf(adw->device,
|
|
"HVD devices are not supported.\n");
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform automatic termination control if desired.
|
|
*/
|
|
if ((adw->features & ADW_ULTRA2) != 0) {
|
|
u_int cable_det;
|
|
|
|
/*
|
|
* Ultra2 Chips require termination disabled to
|
|
* detect cable presence.
|
|
*/
|
|
adw_outw(adw, ADW_SCSI_CFG1,
|
|
scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
|
|
cable_det = adw_inw(adw, ADW_SCSI_CFG1);
|
|
adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
|
|
|
|
/* SE Termination first if auto-term has been specified */
|
|
if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
|
|
|
|
/*
|
|
* For all SE cable configurations, high byte
|
|
* termination is enabled.
|
|
*/
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
|
|
if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
|
|
|| (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
|
|
/*
|
|
* If either cable is not present, the
|
|
* low byte must be terminated as well.
|
|
*/
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
|
|
}
|
|
}
|
|
|
|
/* LVD auto-term */
|
|
if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
|
|
&& (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
|
|
/*
|
|
* If both cables are installed, termination
|
|
* is disabled. Otherwise it is enabled.
|
|
*/
|
|
if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
|
|
|| (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
|
|
|
|
term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
|
|
}
|
|
}
|
|
term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
|
|
} else {
|
|
/* Ultra Controller Termination */
|
|
if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
|
|
int cable_count;
|
|
int wide_cable_count;
|
|
|
|
cable_count = 0;
|
|
wide_cable_count = 0;
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
|
|
cable_count++;
|
|
wide_cable_count++;
|
|
}
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
|
|
cable_count++;
|
|
|
|
/* There is only one external port */
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
|
|
cable_count++;
|
|
wide_cable_count++;
|
|
} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
|
|
cable_count++;
|
|
|
|
if (cable_count == 3) {
|
|
device_printf(adw->device,
|
|
"Illegal Cable Config!\n");
|
|
device_printf(adw->device,
|
|
"Only Two Ports may be used at a time!\n");
|
|
} else if (cable_count <= 1) {
|
|
/*
|
|
* At least two out of three cables missing.
|
|
* Terminate both bytes.
|
|
*/
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
|
|
| ADW_SCSI_CFG1_TERM_CTL_L;
|
|
} else if (wide_cable_count <= 1) {
|
|
/* No two 16bit cables present. High on. */
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Tell the user about our decission */
|
|
switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
|
|
case ADW_SCSI_CFG1_TERM_CTL_MASK:
|
|
printf("High & Low SE Term Enabled, ");
|
|
break;
|
|
case ADW_SCSI_CFG1_TERM_CTL_H:
|
|
printf("High SE Termination Enabled, ");
|
|
break;
|
|
case ADW_SCSI_CFG1_TERM_CTL_L:
|
|
printf("Low SE Term Enabled, ");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ((adw->features & ADW_ULTRA2) != 0
|
|
&& (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
|
|
printf("LVD Term Enabled, ");
|
|
|
|
/*
|
|
* Invert the TERM_CTL_H and TERM_CTL_L bits and then
|
|
* set 'scsicfg1'. The TERM_POL bit does not need to be
|
|
* referenced, because the hardware internally inverts
|
|
* the Termination High and Low bits if TERM_POL is set.
|
|
*/
|
|
if ((adw->features & ADW_ULTRA2) != 0) {
|
|
term_scsicfg1 = ~term_scsicfg1;
|
|
term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
|
|
| ADW2_SCSI_CFG1_TERM_CTL_LVD;
|
|
scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
|
|
|ADW2_SCSI_CFG1_TERM_CTL_LVD
|
|
|ADW_SCSI_CFG1_BIG_ENDIAN
|
|
|ADW_SCSI_CFG1_TERM_POL
|
|
|ADW2_SCSI_CFG1_DEV_DETECT);
|
|
scsicfg1 |= term_scsicfg1;
|
|
} else {
|
|
term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
|
|
scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
|
|
scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
|
|
scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
|
|
}
|
|
|
|
/*
|
|
* Set SCSI_CFG1 Microcode Default Value
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
|
|
|
|
/*
|
|
* Only accept selections on our initiator target id.
|
|
* This may change in target mode scenarios...
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
|
|
(0x01 << adw->initiator_id));
|
|
|
|
/*
|
|
* Tell the microcode where it can find our
|
|
* Initiator Command Queue (ICQ). It is
|
|
* currently empty hence the "stopper" address.
|
|
*/
|
|
adw->commandq = adw->free_carriers;
|
|
adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
|
|
adw->commandq->next_ba = ADW_CQ_STOPPER;
|
|
adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
|
|
|
|
/*
|
|
* Tell the microcode where it can find our
|
|
* Initiator Response Queue (IRQ). It too
|
|
* is currently empty.
|
|
*/
|
|
adw->responseq = adw->free_carriers;
|
|
adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
|
|
adw->responseq->next_ba = ADW_CQ_STOPPER;
|
|
adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
|
|
|
|
adw_outb(adw, ADW_INTR_ENABLES,
|
|
ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
|
|
|
|
adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
|
|
{
|
|
adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
|
|
adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
|
|
mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
|
|
}
|
|
|
|
u_int
|
|
adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
|
|
{
|
|
u_int mc_sdtr;
|
|
|
|
mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
|
|
mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
|
|
mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
|
|
return (mc_sdtr);
|
|
}
|
|
|
|
void
|
|
adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
|
|
{
|
|
u_int mc_sdtr_offset;
|
|
u_int mc_sdtr;
|
|
|
|
mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
|
|
mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
|
|
mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
|
|
mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
|
|
mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
|
|
adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
|
|
}
|
|
|
|
u_int
|
|
adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
|
|
{
|
|
u_int mc_sdtr_offset;
|
|
u_int mc_sdtr;
|
|
|
|
mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
|
|
mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
|
|
mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
|
|
mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
|
|
mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
|
|
return (mc_sdtr);
|
|
}
|
|
|
|
u_int
|
|
adw_find_sdtr(struct adw_softc *adw, u_int period)
|
|
{
|
|
int i;
|
|
|
|
i = 0;
|
|
if ((adw->features & ADW_DT) == 0)
|
|
i = ADW_MC_SDTR_OFFSET_ULTRA2;
|
|
if ((adw->features & ADW_ULTRA2) == 0)
|
|
i = ADW_MC_SDTR_OFFSET_ULTRA;
|
|
if (period == 0)
|
|
return ADW_MC_SDTR_ASYNC;
|
|
|
|
for (; i < nitems(adw_syncrates); i++) {
|
|
if (period <= adw_syncrates[i].period)
|
|
return (adw_syncrates[i].mc_sdtr);
|
|
}
|
|
return ADW_MC_SDTR_ASYNC;
|
|
}
|
|
|
|
u_int
|
|
adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nitems(adw_syncrates); i++) {
|
|
if (mc_sdtr == adw_syncrates[i].mc_sdtr)
|
|
break;
|
|
}
|
|
return (adw_syncrates[i].period);
|
|
}
|
|
|
|
u_int
|
|
adw_hshk_cfg_period_factor(u_int tinfo)
|
|
{
|
|
tinfo &= ADW_HSHK_CFG_RATE_MASK;
|
|
tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
|
|
if (tinfo == 0x11)
|
|
/* 80MHz/DT */
|
|
return (9);
|
|
else if (tinfo == 0x10)
|
|
/* 40MHz */
|
|
return (10);
|
|
else
|
|
return (((tinfo * 25) + 50) / 4);
|
|
}
|
|
|
|
/*
|
|
* Send an idle command to the chip and wait for completion.
|
|
*/
|
|
adw_idle_cmd_status_t
|
|
adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
|
|
{
|
|
u_int timeout;
|
|
adw_idle_cmd_status_t status;
|
|
|
|
if (!dumping)
|
|
mtx_assert(&adw->lock, MA_OWNED);
|
|
|
|
/*
|
|
* Clear the idle command status which is set by the microcode
|
|
* to a non-zero value to indicate when the command is completed.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
|
|
|
|
/*
|
|
* Write the idle command value after the idle command parameter
|
|
* has been written to avoid a race condition. If the order is not
|
|
* followed, the microcode may process the idle command before the
|
|
* parameters have been written to LRAM.
|
|
*/
|
|
adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
|
|
adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
|
|
|
|
/*
|
|
* Tickle the RISC to tell it to process the idle command.
|
|
*/
|
|
adw_tickle_risc(adw, ADW_TICKLE_B);
|
|
|
|
/* Wait for up to 10 seconds for the command to complete */
|
|
timeout = 5000000;
|
|
while (--timeout) {
|
|
status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
|
|
if (status != 0)
|
|
break;
|
|
DELAY(20);
|
|
}
|
|
|
|
if (timeout == 0)
|
|
panic("%s: Idle Command Timed Out!",
|
|
device_get_nameunit(adw->device));
|
|
return (status);
|
|
}
|