freebsd-skq/sys/cam/mmc/mmc_da.c
Scott Long 99e7a4ad9e Return a C errno for cam_periph_acquire().
There's no compelling reason to return a cam_status type for this
function and doing so only creates confusion with normal C
coding practices. It's technically an API change, but the periph API
isn't widely used. No efffective change to operation.

Reviewed by:	imp, mav, ken
Sponsored by:	Netflix
Differential Revision:	D14063
2018-02-06 06:42:25 +00:00

1430 lines
41 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 Bernd Walter <tisco@FreeBSD.org>
* Copyright (c) 2006 M. Warner Losh <imp@FreeBSD.org>
* Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org>
* Copyright (c) 2015-2017 Ilya Bakulin <kibab@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Some code derived from the sys/dev/mmc and sys/cam/ata
* Thanks to Warner Losh <imp@FreeBSD.org>, Alexander Motin <mav@FreeBSD.org>
* Bernd Walter <tisco@FreeBSD.org>, and other authors.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
//#include "opt_sdda.h"
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bio.h>
#include <sys/endian.h>
#include <sys/taskqueue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/conf.h>
#include <sys/devicestat.h>
#include <sys/eventhandler.h>
#include <sys/malloc.h>
#include <sys/cons.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <geom/geom_disk.h>
#include <machine/_inttypes.h> /* for PRIu64 */
#endif /* _KERNEL */
#ifndef _KERNEL
#include <stdio.h>
#include <string.h>
#endif /* _KERNEL */
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h>
#include <cam/cam_debug.h>
#include <cam/mmc/mmc_all.h>
#include <machine/md_var.h> /* geometry translation */
#ifdef _KERNEL
typedef enum {
SDDA_FLAG_OPEN = 0x0002,
SDDA_FLAG_DIRTY = 0x0004
} sdda_flags;
typedef enum {
SDDA_STATE_INIT,
SDDA_STATE_INVALID,
SDDA_STATE_NORMAL
} sdda_state;
struct sdda_softc {
struct bio_queue_head bio_queue;
int outstanding_cmds; /* Number of active commands */
int refcount; /* Active xpt_action() calls */
sdda_state state;
sdda_flags flags;
struct mmc_data *mmcdata;
// sdda_quirks quirks;
struct task start_init_task;
struct disk *disk;
uint32_t raw_csd[4];
uint8_t raw_ext_csd[512]; /* MMC only? */
struct mmc_csd csd;
struct mmc_cid cid;
struct mmc_scr scr;
/* Calculated from CSD */
uint64_t sector_count;
uint64_t mediasize;
/* Calculated from CID */
char card_id_string[64];/* Formatted CID info (serial, MFG, etc) */
char card_sn_string[16];/* Formatted serial # for disk->d_ident */
/* Determined from CSD + is highspeed card*/
uint32_t card_f_max;
};
#define ccb_bp ppriv_ptr1
static disk_strategy_t sddastrategy;
static periph_init_t sddainit;
static void sddaasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
static periph_ctor_t sddaregister;
static periph_dtor_t sddacleanup;
static periph_start_t sddastart;
static periph_oninv_t sddaoninvalidate;
static void sddadone(struct cam_periph *periph,
union ccb *done_ccb);
static int sddaerror(union ccb *ccb, u_int32_t cam_flags,
u_int32_t sense_flags);
static uint16_t get_rca(struct cam_periph *periph);
static cam_status sdda_hook_into_geom(struct cam_periph *periph);
static void sdda_start_init(void *context, union ccb *start_ccb);
static void sdda_start_init_task(void *context, int pending);
static struct periph_driver sddadriver =
{
sddainit, "sdda",
TAILQ_HEAD_INITIALIZER(sddadriver.units), /* generation */ 0
};
PERIPHDRIVER_DECLARE(sdda, sddadriver);
static MALLOC_DEFINE(M_SDDA, "sd_da", "sd_da buffers");
static const int exp[8] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
};
static const int mant[16] = {
0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80
};
static const int cur_min[8] = {
500, 1000, 5000, 10000, 25000, 35000, 60000, 100000
};
static const int cur_max[8] = {
1000, 5000, 10000, 25000, 35000, 45000, 800000, 200000
};
static uint16_t
get_rca(struct cam_periph *periph) {
return periph->path->device->mmc_ident_data.card_rca;
}
static uint32_t
mmc_get_bits(uint32_t *bits, int bit_len, int start, int size)
{
const int i = (bit_len / 32) - (start / 32) - 1;
const int shift = start & 31;
uint32_t retval = bits[i] >> shift;
if (size + shift > 32)
retval |= bits[i - 1] << (32 - shift);
return (retval & ((1llu << size) - 1));
}
static void
mmc_decode_csd_sd(uint32_t *raw_csd, struct mmc_csd *csd)
{
int v;
int m;
int e;
memset(csd, 0, sizeof(*csd));
csd->csd_structure = v = mmc_get_bits(raw_csd, 128, 126, 2);
if (v == 0) {
m = mmc_get_bits(raw_csd, 128, 115, 4);
e = mmc_get_bits(raw_csd, 128, 112, 3);
csd->tacc = (exp[e] * mant[m] + 9) / 10;
csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
m = mmc_get_bits(raw_csd, 128, 99, 4);
e = mmc_get_bits(raw_csd, 128, 96, 3);
csd->tran_speed = exp[e] * 10000 * mant[m];
csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
m = mmc_get_bits(raw_csd, 128, 62, 12);
e = mmc_get_bits(raw_csd, 128, 47, 3);
csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1);
csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1;
csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7);
csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
} else if (v == 1) {
m = mmc_get_bits(raw_csd, 128, 115, 4);
e = mmc_get_bits(raw_csd, 128, 112, 3);
csd->tacc = (exp[e] * mant[m] + 9) / 10;
csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
m = mmc_get_bits(raw_csd, 128, 99, 4);
e = mmc_get_bits(raw_csd, 128, 96, 3);
csd->tran_speed = exp[e] * 10000 * mant[m];
csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
csd->capacity = ((uint64_t)mmc_get_bits(raw_csd, 128, 48, 22) + 1) *
512 * 1024;
csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1);
csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1;
csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7);
csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
} else
panic("unknown SD CSD version");
}
static void
mmc_decode_csd_mmc(uint32_t *raw_csd, struct mmc_csd *csd)
{
int m;
int e;
memset(csd, 0, sizeof(*csd));
csd->csd_structure = mmc_get_bits(raw_csd, 128, 126, 2);
csd->spec_vers = mmc_get_bits(raw_csd, 128, 122, 4);
m = mmc_get_bits(raw_csd, 128, 115, 4);
e = mmc_get_bits(raw_csd, 128, 112, 3);
csd->tacc = exp[e] * mant[m] + 9 / 10;
csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
m = mmc_get_bits(raw_csd, 128, 99, 4);
e = mmc_get_bits(raw_csd, 128, 96, 3);
csd->tran_speed = exp[e] * 10000 * mant[m];
csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
m = mmc_get_bits(raw_csd, 128, 62, 12);
e = mmc_get_bits(raw_csd, 128, 47, 3);
csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
csd->erase_blk_en = 0;
csd->erase_sector = (mmc_get_bits(raw_csd, 128, 42, 5) + 1) *
(mmc_get_bits(raw_csd, 128, 37, 5) + 1);
csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 5);
csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
}
static void
mmc_decode_cid_sd(uint32_t *raw_cid, struct mmc_cid *cid)
{
int i;
/* There's no version info, so we take it on faith */
memset(cid, 0, sizeof(*cid));
cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
cid->oid = mmc_get_bits(raw_cid, 128, 104, 16);
for (i = 0; i < 5; i++)
cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
cid->pnm[5] = 0;
cid->prv = mmc_get_bits(raw_cid, 128, 56, 8);
cid->psn = mmc_get_bits(raw_cid, 128, 24, 32);
cid->mdt_year = mmc_get_bits(raw_cid, 128, 12, 8) + 2000;
cid->mdt_month = mmc_get_bits(raw_cid, 128, 8, 4);
}
static void
mmc_decode_cid_mmc(uint32_t *raw_cid, struct mmc_cid *cid)
{
int i;
/* There's no version info, so we take it on faith */
memset(cid, 0, sizeof(*cid));
cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
cid->oid = mmc_get_bits(raw_cid, 128, 104, 8);
for (i = 0; i < 6; i++)
cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
cid->pnm[6] = 0;
cid->prv = mmc_get_bits(raw_cid, 128, 48, 8);
cid->psn = mmc_get_bits(raw_cid, 128, 16, 32);
cid->mdt_month = mmc_get_bits(raw_cid, 128, 12, 4);
cid->mdt_year = mmc_get_bits(raw_cid, 128, 8, 4) + 1997;
}
static void
mmc_format_card_id_string(struct sdda_softc *sc, struct mmc_params *mmcp)
{
char oidstr[8];
uint8_t c1;
uint8_t c2;
/*
* Format a card ID string for use by the mmcsd driver, it's what
* appears between the <> in the following:
* mmcsd0: 968MB <SD SD01G 8.0 SN 2686905 Mfg 08/2008 by 3 TN> at mmc0
* 22.5MHz/4bit/128-block
*
* Also format just the card serial number, which the mmcsd driver will
* use as the disk->d_ident string.
*
* The card_id_string in mmc_ivars is currently allocated as 64 bytes,
* and our max formatted length is currently 55 bytes if every field
* contains the largest value.
*
* Sometimes the oid is two printable ascii chars; when it's not,
* format it as 0xnnnn instead.
*/
c1 = (sc->cid.oid >> 8) & 0x0ff;
c2 = sc->cid.oid & 0x0ff;
if (c1 > 0x1f && c1 < 0x7f && c2 > 0x1f && c2 < 0x7f)
snprintf(oidstr, sizeof(oidstr), "%c%c", c1, c2);
else
snprintf(oidstr, sizeof(oidstr), "0x%04x", sc->cid.oid);
snprintf(sc->card_sn_string, sizeof(sc->card_sn_string),
"%08X", sc->cid.psn);
snprintf(sc->card_id_string, sizeof(sc->card_id_string),
"%s%s %s %d.%d SN %08X MFG %02d/%04d by %d %s",
mmcp->card_features & CARD_FEATURE_MMC ? "MMC" : "SD",
mmcp->card_features & CARD_FEATURE_SDHC ? "HC" : "",
sc->cid.pnm, sc->cid.prv >> 4, sc->cid.prv & 0x0f,
sc->cid.psn, sc->cid.mdt_month, sc->cid.mdt_year,
sc->cid.mid, oidstr);
}
static int
sddaopen(struct disk *dp)
{
struct cam_periph *periph;
struct sdda_softc *softc;
int error;
periph = (struct cam_periph *)dp->d_drv1;
if (cam_periph_acquire(periph) != 0) {
return(ENXIO);
}
cam_periph_lock(periph);
if ((error = cam_periph_hold(periph, PRIBIO|PCATCH)) != 0) {
cam_periph_unlock(periph);
cam_periph_release(periph);
return (error);
}
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaopen\n"));
softc = (struct sdda_softc *)periph->softc;
softc->flags |= SDDA_FLAG_OPEN;
cam_periph_unhold(periph);
cam_periph_unlock(periph);
return (0);
}
static int
sddaclose(struct disk *dp)
{
struct cam_periph *periph;
struct sdda_softc *softc;
// union ccb *ccb;
// int error;
periph = (struct cam_periph *)dp->d_drv1;
softc = (struct sdda_softc *)periph->softc;
softc->flags &= ~SDDA_FLAG_OPEN;
cam_periph_lock(periph);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaclose\n"));
while (softc->refcount != 0)
cam_periph_sleep(periph, &softc->refcount, PRIBIO, "sddaclose", 1);
cam_periph_unlock(periph);
cam_periph_release(periph);
return (0);
}
static void
sddaschedule(struct cam_periph *periph)
{
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
/* Check if we have more work to do. */
if (bioq_first(&softc->bio_queue)) {
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
}
}
/*
* Actually translate the requested transfer into one the physical driver
* can understand. The transfer is described by a buf and will include
* only one physical transfer.
*/
static void
sddastrategy(struct bio *bp)
{
struct cam_periph *periph;
struct sdda_softc *softc;
periph = (struct cam_periph *)bp->bio_disk->d_drv1;
softc = (struct sdda_softc *)periph->softc;
cam_periph_lock(periph);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddastrategy(%p)\n", bp));
/*
* If the device has been made invalid, error out
*/
if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
cam_periph_unlock(periph);
biofinish(bp, NULL, ENXIO);
return;
}
/*
* Place it in the queue of disk activities for this disk
*/
bioq_disksort(&softc->bio_queue, bp);
/*
* Schedule ourselves for performing the work.
*/
sddaschedule(periph);
cam_periph_unlock(periph);
return;
}
static void
sddainit(void)
{
cam_status status;
/*
* Install a global async callback. This callback will
* receive async callbacks like "new device found".
*/
status = xpt_register_async(AC_FOUND_DEVICE, sddaasync, NULL, NULL);
if (status != CAM_REQ_CMP) {
printf("sdda: Failed to attach master async callback "
"due to status 0x%x!\n", status);
}
}
/*
* Callback from GEOM, called when it has finished cleaning up its
* resources.
*/
static void
sddadiskgonecb(struct disk *dp)
{
struct cam_periph *periph;
periph = (struct cam_periph *)dp->d_drv1;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddadiskgonecb\n"));
cam_periph_release(periph);
}
static void
sddaoninvalidate(struct cam_periph *periph)
{
struct sdda_softc *softc;
softc = (struct sdda_softc *)periph->softc;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaoninvalidate\n"));
/*
* De-register any async callbacks.
*/
xpt_register_async(0, sddaasync, periph, periph->path);
/*
* Return all queued I/O with ENXIO.
* XXX Handle any transactions queued to the card
* with XPT_ABORT_CCB.
*/
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("bioq_flush start\n"));
bioq_flush(&softc->bio_queue, NULL, ENXIO);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("bioq_flush end\n"));
disk_gone(softc->disk);
}
static void
sddacleanup(struct cam_periph *periph)
{
struct sdda_softc *softc;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddacleanup\n"));
softc = (struct sdda_softc *)periph->softc;
cam_periph_unlock(periph);
disk_destroy(softc->disk);
free(softc, M_DEVBUF);
cam_periph_lock(periph);
}
static void
sddaasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg)
{
struct ccb_getdev cgd;
struct cam_periph *periph;
struct sdda_softc *softc;
periph = (struct cam_periph *)callback_arg;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sddaasync(code=%d)\n", code));
switch (code) {
case AC_FOUND_DEVICE:
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_FOUND_DEVICE\n"));
struct ccb_getdev *cgd;
cam_status status;
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL)
break;
if (cgd->protocol != PROTO_MMCSD)
break;
if (!(path->device->mmc_ident_data.card_features & CARD_FEATURE_MEMORY)) {
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("No memory on the card!\n"));
break;
}
/*
* Allocate a peripheral instance for
* this device and start the probe
* process.
*/
status = cam_periph_alloc(sddaregister, sddaoninvalidate,
sddacleanup, sddastart,
"sdda", CAM_PERIPH_BIO,
path, sddaasync,
AC_FOUND_DEVICE, cgd);
if (status != CAM_REQ_CMP
&& status != CAM_REQ_INPROG)
printf("sddaasync: Unable to attach to new device "
"due to status 0x%x\n", status);
break;
}
case AC_GETDEV_CHANGED:
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_GETDEV_CHANGED\n"));
softc = (struct sdda_softc *)periph->softc;
xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
cam_periph_async(periph, code, path, arg);
break;
}
case AC_ADVINFO_CHANGED:
{
uintptr_t buftype;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_ADVINFO_CHANGED\n"));
buftype = (uintptr_t)arg;
if (buftype == CDAI_TYPE_PHYS_PATH) {
struct sdda_softc *softc;
softc = periph->softc;
disk_attr_changed(softc->disk, "GEOM::physpath",
M_NOWAIT);
}
break;
}
case AC_SENT_BDR:
case AC_BUS_RESET:
{
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("AC_BUS_RESET"));
}
default:
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> default?!\n"));
cam_periph_async(periph, code, path, arg);
break;
}
}
static int
sddagetattr(struct bio *bp)
{
int ret;
struct cam_periph *periph;
periph = (struct cam_periph *)bp->bio_disk->d_drv1;
cam_periph_lock(periph);
ret = xpt_getattr(bp->bio_data, bp->bio_length, bp->bio_attribute,
periph->path);
cam_periph_unlock(periph);
if (ret == 0)
bp->bio_completed = bp->bio_length;
return ret;
}
static cam_status
sddaregister(struct cam_periph *periph, void *arg)
{
struct sdda_softc *softc;
// struct ccb_pathinq cpi;
struct ccb_getdev *cgd;
// char announce_buf[80], buf1[32];
// caddr_t match;
union ccb *request_ccb; /* CCB representing the probe request */
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaregister\n"));
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL) {
printf("sddaregister: no getdev CCB, can't register device\n");
return(CAM_REQ_CMP_ERR);
}
softc = (struct sdda_softc *)malloc(sizeof(*softc), M_DEVBUF,
M_NOWAIT|M_ZERO);
if (softc == NULL) {
printf("sddaregister: Unable to probe new device. "
"Unable to allocate softc\n");
return(CAM_REQ_CMP_ERR);
}
bioq_init(&softc->bio_queue);
softc->state = SDDA_STATE_INIT;
softc->mmcdata =
(struct mmc_data *) malloc(sizeof(struct mmc_data), M_DEVBUF, M_NOWAIT|M_ZERO);
periph->softc = softc;
request_ccb = (union ccb*) arg;
xpt_schedule(periph, CAM_PRIORITY_XPT);
TASK_INIT(&softc->start_init_task, 0, sdda_start_init_task, periph);
taskqueue_enqueue(taskqueue_thread, &softc->start_init_task);
return (CAM_REQ_CMP);
}
static cam_status
sdda_hook_into_geom(struct cam_periph *periph)
{
struct sdda_softc *softc;
struct ccb_pathinq cpi;
struct ccb_getdev cgd;
u_int maxio;
softc = (struct sdda_softc*) periph->softc;
xpt_path_inq(&cpi, periph->path);
bzero(&cgd, sizeof(cgd));
xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NONE);
cpi.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
/*
* Register this media as a disk
*/
(void)cam_periph_hold(periph, PRIBIO);
cam_periph_unlock(periph);
softc->disk = disk_alloc();
softc->disk->d_rotation_rate = 0;
softc->disk->d_devstat = devstat_new_entry(periph->periph_name,
periph->unit_number, 512,
DEVSTAT_ALL_SUPPORTED,
DEVSTAT_TYPE_DIRECT |
XPORT_DEVSTAT_TYPE(cpi.transport),
DEVSTAT_PRIORITY_DISK);
softc->disk->d_open = sddaopen;
softc->disk->d_close = sddaclose;
softc->disk->d_strategy = sddastrategy;
softc->disk->d_getattr = sddagetattr;
// softc->disk->d_dump = sddadump;
softc->disk->d_gone = sddadiskgonecb;
softc->disk->d_name = "sdda";
softc->disk->d_drv1 = periph;
maxio = cpi.maxio; /* Honor max I/O size of SIM */
if (maxio == 0)
maxio = DFLTPHYS; /* traditional default */
else if (maxio > MAXPHYS)
maxio = MAXPHYS; /* for safety */
softc->disk->d_maxsize = maxio;
softc->disk->d_unit = periph->unit_number;
softc->disk->d_flags = DISKFLAG_CANDELETE;
strlcpy(softc->disk->d_descr, softc->card_id_string,
MIN(sizeof(softc->disk->d_descr), sizeof(softc->card_id_string)));
strlcpy(softc->disk->d_ident, softc->card_sn_string,
MIN(sizeof(softc->disk->d_ident), sizeof(softc->card_sn_string)));
softc->disk->d_hba_vendor = cpi.hba_vendor;
softc->disk->d_hba_device = cpi.hba_device;
softc->disk->d_hba_subvendor = cpi.hba_subvendor;
softc->disk->d_hba_subdevice = cpi.hba_subdevice;
softc->disk->d_sectorsize = 512;
softc->disk->d_mediasize = softc->mediasize;
softc->disk->d_stripesize = 0;
softc->disk->d_fwsectors = 0;
softc->disk->d_fwheads = 0;
/*
* Acquire a reference to the periph before we register with GEOM.
* We'll release this reference once GEOM calls us back (via
* sddadiskgonecb()) telling us that our provider has been freed.
*/
if (cam_periph_acquire(periph) != 0) {
xpt_print(periph->path, "%s: lost periph during "
"registration!\n", __func__);
cam_periph_lock(periph);
return (CAM_REQ_CMP_ERR);
}
disk_create(softc->disk, DISK_VERSION);
cam_periph_lock(periph);
cam_periph_unhold(periph);
xpt_announce_periph(periph, softc->card_id_string);
/*
* Add async callbacks for bus reset and
* bus device reset calls. I don't bother
* checking if this fails as, in most cases,
* the system will function just fine without
* them and the only alternative would be to
* not attach the device on failure.
*/
xpt_register_async(AC_SENT_BDR | AC_BUS_RESET | AC_LOST_DEVICE |
AC_GETDEV_CHANGED | AC_ADVINFO_CHANGED,
sddaasync, periph, periph->path);
return(CAM_REQ_CMP);
}
static int
mmc_exec_app_cmd(struct cam_periph *periph, union ccb *ccb,
struct mmc_command *cmd) {
int err;
/* Send APP_CMD first */
memset(&ccb->mmcio.cmd, 0, sizeof(struct mmc_command));
memset(&ccb->mmcio.stop, 0, sizeof(struct mmc_command));
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_NONE,
/*mmc_opcode*/ MMC_APP_CMD,
/*mmc_arg*/ get_rca(periph) << 16,
/*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_AC,
/*mmc_data*/ NULL,
/*timeout*/ 0);
err = cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
if (err != 0)
return err;
if (!(ccb->mmcio.cmd.resp[0] & R1_APP_CMD))
return MMC_ERR_FAILED;
/* Now exec actual command */
int flags = 0;
if (cmd->data != NULL) {
ccb->mmcio.cmd.data = cmd->data;
if (cmd->data->flags & MMC_DATA_READ)
flags |= CAM_DIR_IN;
if (cmd->data->flags & MMC_DATA_WRITE)
flags |= CAM_DIR_OUT;
} else flags = CAM_DIR_NONE;
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ flags,
/*mmc_opcode*/ cmd->opcode,
/*mmc_arg*/ cmd->arg,
/*mmc_flags*/ cmd->flags,
/*mmc_data*/ cmd->data,
/*timeout*/ 0);
err = cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
memcpy(cmd->resp, ccb->mmcio.cmd.resp, sizeof(cmd->resp));
cmd->error = ccb->mmcio.cmd.error;
if (err != 0)
return err;
return 0;
}
static int
mmc_app_get_scr(struct cam_periph *periph, union ccb *ccb, uint32_t *rawscr) {
int err;
struct mmc_command cmd;
struct mmc_data d;
memset(&cmd, 0, sizeof(cmd));
memset(rawscr, 0, 8);
cmd.opcode = ACMD_SEND_SCR;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.arg = 0;
d.data = rawscr;
d.len = 8;
d.flags = MMC_DATA_READ;
cmd.data = &d;
err = mmc_exec_app_cmd(periph, ccb, &cmd);
rawscr[0] = be32toh(rawscr[0]);
rawscr[1] = be32toh(rawscr[1]);
return (err);
}
static int
mmc_send_ext_csd(struct cam_periph *periph, union ccb *ccb,
uint8_t *rawextcsd, size_t buf_len) {
int err;
struct mmc_data d;
KASSERT(buf_len == 512, ("Buffer for ext csd must be 512 bytes"));
d.data = rawextcsd;
d.len = buf_len;
d.flags = MMC_DATA_READ;
memset(d.data, 0, d.len);
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_IN,
/*mmc_opcode*/ MMC_SEND_EXT_CSD,
/*mmc_arg*/ 0,
/*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_ADTC,
/*mmc_data*/ &d,
/*timeout*/ 0);
err = cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
if (err != 0)
return err;
if (!(ccb->mmcio.cmd.resp[0] & R1_APP_CMD))
return MMC_ERR_FAILED;
return MMC_ERR_NONE;
}
static void
mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr)
{
unsigned int scr_struct;
memset(scr, 0, sizeof(*scr));
scr_struct = mmc_get_bits(raw_scr, 64, 60, 4);
if (scr_struct != 0) {
printf("Unrecognised SCR structure version %d\n",
scr_struct);
return;
}
scr->sda_vsn = mmc_get_bits(raw_scr, 64, 56, 4);
scr->bus_widths = mmc_get_bits(raw_scr, 64, 48, 4);
}
static int
mmc_switch(struct cam_periph *periph, union ccb *ccb,
uint8_t set, uint8_t index, uint8_t value)
{
int arg = (MMC_SWITCH_FUNC_WR << 24) |
(index << 16) |
(value << 8) |
set;
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_NONE,
/*mmc_opcode*/ MMC_SWITCH_FUNC,
/*mmc_arg*/ arg,
/*mmc_flags*/ MMC_RSP_R1B | MMC_CMD_AC,
/*mmc_data*/ NULL,
/*timeout*/ 0);
cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)) {
if (ccb->mmcio.cmd.error != 0) {
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: MMC command failed", __func__));
return EIO;
}
return 0; /* Normal return */
} else {
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: CAM request failed\n", __func__));
return EIO;
}
}
static int
mmc_sd_switch(struct cam_periph *periph, union ccb *ccb,
uint8_t mode, uint8_t grp, uint8_t value,
uint8_t *res) {
struct mmc_data mmc_d;
memset(res, 0, 64);
mmc_d.len = 64;
mmc_d.data = res;
mmc_d.flags = MMC_DATA_READ;
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_IN,
/*mmc_opcode*/ SD_SWITCH_FUNC,
/*mmc_arg*/ mode << 31,
/*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_ADTC,
/*mmc_data*/ &mmc_d,
/*timeout*/ 0);
cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)) {
if (ccb->mmcio.cmd.error != 0) {
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: MMC command failed", __func__));
return EIO;
}
return 0; /* Normal return */
} else {
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_PERIPH,
("%s: CAM request failed\n", __func__));
return EIO;
}
}
static int
mmc_set_timing(struct cam_periph *periph,
union ccb *ccb,
enum mmc_bus_timing timing)
{
u_char switch_res[64];
int err;
uint8_t value;
struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
("mmc_set_timing(timing=%d)", timing));
switch (timing) {
case bus_timing_normal:
value = 0;
break;
case bus_timing_hs:
value = 1;
break;
default:
return (MMC_ERR_INVALID);
}
if (mmcp->card_features & CARD_FEATURE_MMC) {
err = mmc_switch(periph, ccb, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, value);
} else {
err = mmc_sd_switch(periph, ccb, SD_SWITCH_MODE_SET, SD_SWITCH_GROUP1, value, switch_res);
}
/* Set high-speed timing on the host */
struct ccb_trans_settings_mmc *cts;
cts = &ccb->cts.proto_specific.mmc;
ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
ccb->ccb_h.flags = CAM_DIR_NONE;
ccb->ccb_h.retry_count = 0;
ccb->ccb_h.timeout = 100;
ccb->ccb_h.cbfcnp = NULL;
cts->ios.timing = timing;
cts->ios_valid = MMC_BT;
xpt_action(ccb);
return (err);
}
static void
sdda_start_init_task(void *context, int pending) {
union ccb *new_ccb;
struct cam_periph *periph;
periph = (struct cam_periph *)context;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_start_init_task\n"));
new_ccb = xpt_alloc_ccb();
xpt_setup_ccb(&new_ccb->ccb_h, periph->path,
CAM_PRIORITY_NONE);
cam_periph_lock(periph);
sdda_start_init(context, new_ccb);
cam_periph_unlock(periph);
xpt_free_ccb(new_ccb);
}
static void
sdda_set_bus_width(struct cam_periph *periph, union ccb *ccb, int width) {
struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
int err;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_set_bus_width\n"));
/* First set for the card, then for the host */
if (mmcp->card_features & CARD_FEATURE_MMC) {
uint8_t value;
switch (width) {
case bus_width_1:
value = EXT_CSD_BUS_WIDTH_1;
break;
case bus_width_4:
value = EXT_CSD_BUS_WIDTH_4;
break;
case bus_width_8:
value = EXT_CSD_BUS_WIDTH_8;
break;
default:
panic("Invalid bus width %d", width);
}
err = mmc_switch(periph, ccb, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, value);
} else {
/* For SD cards we send ACMD6 with the required bus width in arg */
struct mmc_command cmd;
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = ACMD_SET_BUS_WIDTH;
cmd.arg = width;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_exec_app_cmd(periph, ccb, &cmd);
}
if (err != MMC_ERR_NONE) {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Error %d when setting bus width on the card\n", err));
return;
}
/* Now card is done, set the host to the same width */
struct ccb_trans_settings_mmc *cts;
cts = &ccb->cts.proto_specific.mmc;
ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
ccb->ccb_h.flags = CAM_DIR_NONE;
ccb->ccb_h.retry_count = 0;
ccb->ccb_h.timeout = 100;
ccb->ccb_h.cbfcnp = NULL;
cts->ios.bus_width = width;
cts->ios_valid = MMC_BW;
xpt_action(ccb);
}
static inline const char *bus_width_str(enum mmc_bus_width w) {
switch (w) {
case bus_width_1:
return "1-bit";
case bus_width_4:
return "4-bit";
case bus_width_8:
return "8-bit";
}
}
static void
sdda_start_init(void *context, union ccb *start_ccb) {
struct cam_periph *periph;
periph = (struct cam_periph *)context;
int err;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_start_init\n"));
/* periph was held for us when this task was enqueued */
if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
cam_periph_release(periph);
return;
}
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
//struct ccb_mmcio *mmcio = &start_ccb->mmcio;
struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
struct cam_ed *device = periph->path->device;
if (mmcp->card_features & CARD_FEATURE_MMC) {
mmc_decode_csd_mmc(mmcp->card_csd, &softc->csd);
mmc_decode_cid_mmc(mmcp->card_cid, &softc->cid);
if (softc->csd.spec_vers >= 4)
err = mmc_send_ext_csd(periph, start_ccb,
(uint8_t *)&softc->raw_ext_csd,
sizeof(softc->raw_ext_csd));
} else {
mmc_decode_csd_sd(mmcp->card_csd, &softc->csd);
mmc_decode_cid_sd(mmcp->card_cid, &softc->cid);
}
softc->sector_count = softc->csd.capacity / 512;
softc->mediasize = softc->csd.capacity;
/* MMC >= 4.x have EXT_CSD that has its own opinion about capacity */
if (softc->csd.spec_vers >= 4) {
uint32_t sec_count = softc->raw_ext_csd[EXT_CSD_SEC_CNT] +
(softc->raw_ext_csd[EXT_CSD_SEC_CNT + 1] << 8) +
(softc->raw_ext_csd[EXT_CSD_SEC_CNT + 2] << 16) +
(softc->raw_ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
if (sec_count != 0) {
softc->sector_count = sec_count;
softc->mediasize = softc->sector_count * 512;
/* FIXME: there should be a better name for this option...*/
mmcp->card_features |= CARD_FEATURE_SDHC;
}
}
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("Capacity: %"PRIu64", sectors: %"PRIu64"\n",
softc->mediasize,
softc->sector_count));
mmc_format_card_id_string(softc, mmcp);
/* Update info for CAM */
device->serial_num_len = strlen(softc->card_sn_string);
device->serial_num =
(u_int8_t *)malloc((device->serial_num_len + 1),
M_CAMXPT, M_NOWAIT);
strlcpy(device->serial_num, softc->card_sn_string, device->serial_num_len);
device->device_id_len = strlen(softc->card_id_string);
device->device_id =
(u_int8_t *)malloc((device->device_id_len + 1),
M_CAMXPT, M_NOWAIT);
strlcpy(device->device_id, softc->card_id_string, device->device_id_len);
strlcpy(mmcp->model, softc->card_id_string, sizeof(mmcp->model));
/* Set the clock frequency that the card can handle */
struct ccb_trans_settings_mmc *cts;
cts = &start_ccb->cts.proto_specific.mmc;
/* First, get the host's max freq */
start_ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
start_ccb->ccb_h.flags = CAM_DIR_NONE;
start_ccb->ccb_h.retry_count = 0;
start_ccb->ccb_h.timeout = 100;
start_ccb->ccb_h.cbfcnp = NULL;
xpt_action(start_ccb);
if (start_ccb->ccb_h.status != CAM_REQ_CMP)
panic("Cannot get max host freq");
int host_f_max = cts->host_f_max;
uint32_t host_caps = cts->host_caps;
if (cts->ios.bus_width != bus_width_1)
panic("Bus width in ios is not 1-bit");
/* Now check if the card supports High-speed */
softc->card_f_max = softc->csd.tran_speed;
if (host_caps & MMC_CAP_HSPEED) {
/* Find out if the card supports High speed timing */
if (mmcp->card_features & CARD_FEATURE_SD20) {
/* Get and decode SCR */
uint32_t rawscr;
uint8_t res[64];
if (mmc_app_get_scr(periph, start_ccb, &rawscr)) {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Cannot get SCR\n"));
goto finish_hs_tests;
}
mmc_app_decode_scr(&rawscr, &softc->scr);
if ((softc->scr.sda_vsn >= 1) && (softc->csd.ccc & (1<<10))) {
mmc_sd_switch(periph, start_ccb, SD_SWITCH_MODE_CHECK,
SD_SWITCH_GROUP1, SD_SWITCH_NOCHANGE, res);
if (res[13] & 2) {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports HS\n"));
softc->card_f_max = SD_HS_MAX;
}
} else {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Not trying the switch\n"));
goto finish_hs_tests;
}
}
if (mmcp->card_features & CARD_FEATURE_MMC && softc->csd.spec_vers >= 4) {
if (softc->raw_ext_csd[EXT_CSD_CARD_TYPE]
& EXT_CSD_CARD_TYPE_HS_52)
softc->card_f_max = MMC_TYPE_HS_52_MAX;
else if (softc->raw_ext_csd[EXT_CSD_CARD_TYPE]
& EXT_CSD_CARD_TYPE_HS_26)
softc->card_f_max = MMC_TYPE_HS_26_MAX;
}
}
int f_max;
finish_hs_tests:
f_max = min(host_f_max, softc->card_f_max);
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Set SD freq to %d MHz (min out of host f=%d MHz and card f=%d MHz)\n", f_max / 1000000, host_f_max / 1000000, softc->card_f_max / 1000000));
start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
start_ccb->ccb_h.flags = CAM_DIR_NONE;
start_ccb->ccb_h.retry_count = 0;
start_ccb->ccb_h.timeout = 100;
start_ccb->ccb_h.cbfcnp = NULL;
cts->ios.clock = f_max;
cts->ios_valid = MMC_CLK;
xpt_action(start_ccb);
/* Set bus width */
enum mmc_bus_width desired_bus_width = bus_width_1;
enum mmc_bus_width max_host_bus_width =
(host_caps & MMC_CAP_8_BIT_DATA ? bus_width_8 :
host_caps & MMC_CAP_4_BIT_DATA ? bus_width_4 : bus_width_1);
enum mmc_bus_width max_card_bus_width = bus_width_1;
if (mmcp->card_features & CARD_FEATURE_SD20 &&
softc->scr.bus_widths & SD_SCR_BUS_WIDTH_4)
max_card_bus_width = bus_width_4;
/*
* Unlike SD, MMC cards don't have any information about supported bus width...
* So we need to perform read/write test to find out the width.
*/
/* TODO: figure out bus width for MMC; use 8-bit for now (to test on BBB) */
if (mmcp->card_features & CARD_FEATURE_MMC)
max_card_bus_width = bus_width_8;
desired_bus_width = min(max_host_bus_width, max_card_bus_width);
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("Set bus width to %s (min of host %s and card %s)\n",
bus_width_str(desired_bus_width),
bus_width_str(max_host_bus_width),
bus_width_str(max_card_bus_width)));
sdda_set_bus_width(periph, start_ccb, desired_bus_width);
if (f_max > 25000000) {
err = mmc_set_timing(periph, start_ccb, bus_timing_hs);
if (err != MMC_ERR_NONE)
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("Cannot switch card to high-speed mode"));
}
softc->state = SDDA_STATE_NORMAL;
sdda_hook_into_geom(periph);
}
/* Called with periph lock held! */
static void
sddastart(struct cam_periph *periph, union ccb *start_ccb)
{
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddastart\n"));
if (softc->state != SDDA_STATE_NORMAL) {
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("device is not in SDDA_STATE_NORMAL yet"));
xpt_release_ccb(start_ccb);
return;
}
struct bio *bp;
/* Run regular command. */
bp = bioq_first(&softc->bio_queue);
if (bp == NULL) {
xpt_release_ccb(start_ccb);
return;
}
bioq_remove(&softc->bio_queue, bp);
switch (bp->bio_cmd) {
case BIO_WRITE:
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_WRITE\n"));
softc->flags |= SDDA_FLAG_DIRTY;
/* FALLTHROUGH */
case BIO_READ:
{
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_READ\n"));
uint64_t blockno = bp->bio_pblkno;
uint16_t count = bp->bio_bcount / 512;
uint16_t opcode;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("Block %"PRIu64" cnt %u\n", blockno, count));
/* Construct new MMC command */
if (bp->bio_cmd == BIO_READ) {
if (count > 1)
opcode = MMC_READ_MULTIPLE_BLOCK;
else
opcode = MMC_READ_SINGLE_BLOCK;
} else {
if (count > 1)
opcode = MMC_WRITE_MULTIPLE_BLOCK;
else
opcode = MMC_WRITE_BLOCK;
}
start_ccb->ccb_h.func_code = XPT_MMC_IO;
start_ccb->ccb_h.flags = (bp->bio_cmd == BIO_READ ? CAM_DIR_IN : CAM_DIR_OUT);
start_ccb->ccb_h.retry_count = 0;
start_ccb->ccb_h.timeout = 15 * 1000;
start_ccb->ccb_h.cbfcnp = sddadone;
struct ccb_mmcio *mmcio;
mmcio = &start_ccb->mmcio;
mmcio->cmd.opcode = opcode;
mmcio->cmd.arg = blockno;
if (!(mmcp->card_features & CARD_FEATURE_SDHC))
mmcio->cmd.arg <<= 9;
mmcio->cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
mmcio->cmd.data = softc->mmcdata;
mmcio->cmd.data->data = bp->bio_data;
mmcio->cmd.data->len = 512 * count;
mmcio->cmd.data->flags = (bp->bio_cmd == BIO_READ ? MMC_DATA_READ : MMC_DATA_WRITE);
/* Direct h/w to issue CMD12 upon completion */
if (count > 1) {
mmcio->stop.opcode = MMC_STOP_TRANSMISSION;
mmcio->stop.flags = MMC_RSP_R1B | MMC_CMD_AC;
mmcio->stop.arg = 0;
}
break;
}
case BIO_FLUSH:
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_FLUSH\n"));
sddaschedule(periph);
break;
case BIO_DELETE:
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_DELETE\n"));
sddaschedule(periph);
break;
}
start_ccb->ccb_h.ccb_bp = bp;
softc->outstanding_cmds++;
softc->refcount++;
cam_periph_unlock(periph);
xpt_action(start_ccb);
cam_periph_lock(periph);
softc->refcount--;
/* May have more work to do, so ensure we stay scheduled */
sddaschedule(periph);
}
static void
sddadone(struct cam_periph *periph, union ccb *done_ccb)
{
struct sdda_softc *softc;
struct ccb_mmcio *mmcio;
// struct ccb_getdev *cgd;
struct cam_path *path;
// int state;
softc = (struct sdda_softc *)periph->softc;
mmcio = &done_ccb->mmcio;
path = done_ccb->ccb_h.path;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sddadone\n"));
struct bio *bp;
int error = 0;
// cam_periph_lock(periph);
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Error!!!\n"));
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
cam_release_devq(path,
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
error = 5; /* EIO */
} else {
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
panic("REQ_CMP with QFRZN");
error = 0;
}
bp = (struct bio *)done_ccb->ccb_h.ccb_bp;
bp->bio_error = error;
if (error != 0) {
bp->bio_resid = bp->bio_bcount;
bp->bio_flags |= BIO_ERROR;
} else {
/* XXX: How many bytes remaining? */
bp->bio_resid = 0;
if (bp->bio_resid > 0)
bp->bio_flags |= BIO_ERROR;
}
uint32_t card_status = mmcio->cmd.resp[0];
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("Card status: %08x\n", R1_STATUS(card_status)));
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("Current state: %d\n", R1_CURRENT_STATE(card_status)));
softc->outstanding_cmds--;
xpt_release_ccb(done_ccb);
biodone(bp);
}
static int
sddaerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
{
return(cam_periph_error(ccb, cam_flags, sense_flags));
}
#endif /* _KERNEL */