1a019f2377
Approved by: jkh
1005 lines
25 KiB
C
1005 lines
25 KiB
C
/*-
|
|
* Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_ntp.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/dkstat.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/timex.h>
|
|
#include <sys/timepps.h>
|
|
#include <vm/vm.h>
|
|
#include <sys/lock.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/limits.h>
|
|
|
|
#ifdef GPROF
|
|
#include <sys/gmon.h>
|
|
#endif
|
|
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
#include <machine/smp.h>
|
|
#endif
|
|
|
|
/*
|
|
* Number of timecounters used to implement stable storage
|
|
*/
|
|
#ifndef NTIMECOUNTER
|
|
#define NTIMECOUNTER 5
|
|
#endif
|
|
|
|
static MALLOC_DEFINE(M_TIMECOUNTER, "timecounter",
|
|
"Timecounter stable storage");
|
|
|
|
static void initclocks __P((void *dummy));
|
|
SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
|
|
|
|
static void tco_forward __P((int force));
|
|
static void tco_setscales __P((struct timecounter *tc));
|
|
static __inline unsigned tco_delta __P((struct timecounter *tc));
|
|
|
|
/* Some of these don't belong here, but it's easiest to concentrate them. */
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
long cp_time[CPUSTATES];
|
|
#else
|
|
static long cp_time[CPUSTATES];
|
|
#endif
|
|
|
|
long tk_cancc;
|
|
long tk_nin;
|
|
long tk_nout;
|
|
long tk_rawcc;
|
|
|
|
time_t time_second;
|
|
|
|
struct timeval boottime;
|
|
SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
|
|
&boottime, timeval, "System boottime");
|
|
|
|
/*
|
|
* Which update policy to use.
|
|
* 0 - every tick, bad hardware may fail with "calcru negative..."
|
|
* 1 - more resistent to the above hardware, but less efficient.
|
|
*/
|
|
static int tco_method;
|
|
|
|
/*
|
|
* Implement a dummy timecounter which we can use until we get a real one
|
|
* in the air. This allows the console and other early stuff to use
|
|
* timeservices.
|
|
*/
|
|
|
|
static unsigned
|
|
dummy_get_timecount(struct timecounter *tc)
|
|
{
|
|
static unsigned now;
|
|
return (++now);
|
|
}
|
|
|
|
static struct timecounter dummy_timecounter = {
|
|
dummy_get_timecount,
|
|
0,
|
|
~0u,
|
|
1000000,
|
|
"dummy"
|
|
};
|
|
|
|
struct timecounter *timecounter = &dummy_timecounter;
|
|
|
|
/*
|
|
* Clock handling routines.
|
|
*
|
|
* This code is written to operate with two timers that run independently of
|
|
* each other.
|
|
*
|
|
* The main timer, running hz times per second, is used to trigger interval
|
|
* timers, timeouts and rescheduling as needed.
|
|
*
|
|
* The second timer handles kernel and user profiling,
|
|
* and does resource use estimation. If the second timer is programmable,
|
|
* it is randomized to avoid aliasing between the two clocks. For example,
|
|
* the randomization prevents an adversary from always giving up the cpu
|
|
* just before its quantum expires. Otherwise, it would never accumulate
|
|
* cpu ticks. The mean frequency of the second timer is stathz.
|
|
*
|
|
* If no second timer exists, stathz will be zero; in this case we drive
|
|
* profiling and statistics off the main clock. This WILL NOT be accurate;
|
|
* do not do it unless absolutely necessary.
|
|
*
|
|
* The statistics clock may (or may not) be run at a higher rate while
|
|
* profiling. This profile clock runs at profhz. We require that profhz
|
|
* be an integral multiple of stathz.
|
|
*
|
|
* If the statistics clock is running fast, it must be divided by the ratio
|
|
* profhz/stathz for statistics. (For profiling, every tick counts.)
|
|
*
|
|
* Time-of-day is maintained using a "timecounter", which may or may
|
|
* not be related to the hardware generating the above mentioned
|
|
* interrupts.
|
|
*/
|
|
|
|
int stathz;
|
|
int profhz;
|
|
static int profprocs;
|
|
int ticks;
|
|
static int psdiv, pscnt; /* prof => stat divider */
|
|
int psratio; /* ratio: prof / stat */
|
|
|
|
/*
|
|
* Initialize clock frequencies and start both clocks running.
|
|
*/
|
|
/* ARGSUSED*/
|
|
static void
|
|
initclocks(dummy)
|
|
void *dummy;
|
|
{
|
|
register int i;
|
|
|
|
/*
|
|
* Set divisors to 1 (normal case) and let the machine-specific
|
|
* code do its bit.
|
|
*/
|
|
psdiv = pscnt = 1;
|
|
cpu_initclocks();
|
|
|
|
/*
|
|
* Compute profhz/stathz, and fix profhz if needed.
|
|
*/
|
|
i = stathz ? stathz : hz;
|
|
if (profhz == 0)
|
|
profhz = i;
|
|
psratio = profhz / i;
|
|
}
|
|
|
|
/*
|
|
* The real-time timer, interrupting hz times per second.
|
|
*/
|
|
void
|
|
hardclock(frame)
|
|
register struct clockframe *frame;
|
|
{
|
|
register struct proc *p;
|
|
|
|
p = curproc;
|
|
if (p) {
|
|
register struct pstats *pstats;
|
|
|
|
/*
|
|
* Run current process's virtual and profile time, as needed.
|
|
*/
|
|
pstats = p->p_stats;
|
|
if (CLKF_USERMODE(frame) &&
|
|
timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
|
|
itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
|
|
psignal(p, SIGVTALRM);
|
|
if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
|
|
itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
|
|
psignal(p, SIGPROF);
|
|
}
|
|
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
forward_hardclock(pscnt);
|
|
#endif
|
|
|
|
/*
|
|
* If no separate statistics clock is available, run it from here.
|
|
*/
|
|
if (stathz == 0)
|
|
statclock(frame);
|
|
|
|
tco_forward(0);
|
|
ticks++;
|
|
|
|
/*
|
|
* Process callouts at a very low cpu priority, so we don't keep the
|
|
* relatively high clock interrupt priority any longer than necessary.
|
|
*/
|
|
if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
|
|
if (CLKF_BASEPRI(frame)) {
|
|
/*
|
|
* Save the overhead of a software interrupt;
|
|
* it will happen as soon as we return, so do it now.
|
|
*/
|
|
(void)splsoftclock();
|
|
softclock();
|
|
} else
|
|
setsoftclock();
|
|
} else if (softticks + 1 == ticks)
|
|
++softticks;
|
|
}
|
|
|
|
/*
|
|
* Compute number of ticks in the specified amount of time.
|
|
*/
|
|
int
|
|
tvtohz(tv)
|
|
struct timeval *tv;
|
|
{
|
|
register unsigned long ticks;
|
|
register long sec, usec;
|
|
|
|
/*
|
|
* If the number of usecs in the whole seconds part of the time
|
|
* difference fits in a long, then the total number of usecs will
|
|
* fit in an unsigned long. Compute the total and convert it to
|
|
* ticks, rounding up and adding 1 to allow for the current tick
|
|
* to expire. Rounding also depends on unsigned long arithmetic
|
|
* to avoid overflow.
|
|
*
|
|
* Otherwise, if the number of ticks in the whole seconds part of
|
|
* the time difference fits in a long, then convert the parts to
|
|
* ticks separately and add, using similar rounding methods and
|
|
* overflow avoidance. This method would work in the previous
|
|
* case but it is slightly slower and assumes that hz is integral.
|
|
*
|
|
* Otherwise, round the time difference down to the maximum
|
|
* representable value.
|
|
*
|
|
* If ints have 32 bits, then the maximum value for any timeout in
|
|
* 10ms ticks is 248 days.
|
|
*/
|
|
sec = tv->tv_sec;
|
|
usec = tv->tv_usec;
|
|
if (usec < 0) {
|
|
sec--;
|
|
usec += 1000000;
|
|
}
|
|
if (sec < 0) {
|
|
#ifdef DIAGNOSTIC
|
|
if (usec > 0) {
|
|
sec++;
|
|
usec -= 1000000;
|
|
}
|
|
printf("tvotohz: negative time difference %ld sec %ld usec\n",
|
|
sec, usec);
|
|
#endif
|
|
ticks = 1;
|
|
} else if (sec <= LONG_MAX / 1000000)
|
|
ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
|
|
/ tick + 1;
|
|
else if (sec <= LONG_MAX / hz)
|
|
ticks = sec * hz
|
|
+ ((unsigned long)usec + (tick - 1)) / tick + 1;
|
|
else
|
|
ticks = LONG_MAX;
|
|
if (ticks > INT_MAX)
|
|
ticks = INT_MAX;
|
|
return ((int)ticks);
|
|
}
|
|
|
|
/*
|
|
* Start profiling on a process.
|
|
*
|
|
* Kernel profiling passes proc0 which never exits and hence
|
|
* keeps the profile clock running constantly.
|
|
*/
|
|
void
|
|
startprofclock(p)
|
|
register struct proc *p;
|
|
{
|
|
int s;
|
|
|
|
if ((p->p_flag & P_PROFIL) == 0) {
|
|
p->p_flag |= P_PROFIL;
|
|
if (++profprocs == 1 && stathz != 0) {
|
|
s = splstatclock();
|
|
psdiv = pscnt = psratio;
|
|
setstatclockrate(profhz);
|
|
splx(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop profiling on a process.
|
|
*/
|
|
void
|
|
stopprofclock(p)
|
|
register struct proc *p;
|
|
{
|
|
int s;
|
|
|
|
if (p->p_flag & P_PROFIL) {
|
|
p->p_flag &= ~P_PROFIL;
|
|
if (--profprocs == 0 && stathz != 0) {
|
|
s = splstatclock();
|
|
psdiv = pscnt = 1;
|
|
setstatclockrate(stathz);
|
|
splx(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Statistics clock. Grab profile sample, and if divider reaches 0,
|
|
* do process and kernel statistics. Most of the statistics are only
|
|
* used by user-level statistics programs. The main exceptions are
|
|
* p->p_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu.
|
|
*/
|
|
void
|
|
statclock(frame)
|
|
register struct clockframe *frame;
|
|
{
|
|
#ifdef GPROF
|
|
register struct gmonparam *g;
|
|
int i;
|
|
#endif
|
|
register struct proc *p;
|
|
struct pstats *pstats;
|
|
long rss;
|
|
struct rusage *ru;
|
|
struct vmspace *vm;
|
|
|
|
if (curproc != NULL && CLKF_USERMODE(frame)) {
|
|
/*
|
|
* Came from user mode; CPU was in user state.
|
|
* If this process is being profiled, record the tick.
|
|
*/
|
|
p = curproc;
|
|
if (p->p_flag & P_PROFIL)
|
|
addupc_intr(p, CLKF_PC(frame), 1);
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
if (stathz != 0)
|
|
forward_statclock(pscnt);
|
|
#endif
|
|
if (--pscnt > 0)
|
|
return;
|
|
/*
|
|
* Charge the time as appropriate.
|
|
*/
|
|
p->p_uticks++;
|
|
if (p->p_nice > NZERO)
|
|
cp_time[CP_NICE]++;
|
|
else
|
|
cp_time[CP_USER]++;
|
|
} else {
|
|
#ifdef GPROF
|
|
/*
|
|
* Kernel statistics are just like addupc_intr, only easier.
|
|
*/
|
|
g = &_gmonparam;
|
|
if (g->state == GMON_PROF_ON) {
|
|
i = CLKF_PC(frame) - g->lowpc;
|
|
if (i < g->textsize) {
|
|
i /= HISTFRACTION * sizeof(*g->kcount);
|
|
g->kcount[i]++;
|
|
}
|
|
}
|
|
#endif
|
|
#if defined(SMP) && defined(BETTER_CLOCK)
|
|
if (stathz != 0)
|
|
forward_statclock(pscnt);
|
|
#endif
|
|
if (--pscnt > 0)
|
|
return;
|
|
/*
|
|
* Came from kernel mode, so we were:
|
|
* - handling an interrupt,
|
|
* - doing syscall or trap work on behalf of the current
|
|
* user process, or
|
|
* - spinning in the idle loop.
|
|
* Whichever it is, charge the time as appropriate.
|
|
* Note that we charge interrupts to the current process,
|
|
* regardless of whether they are ``for'' that process,
|
|
* so that we know how much of its real time was spent
|
|
* in ``non-process'' (i.e., interrupt) work.
|
|
*/
|
|
p = curproc;
|
|
if (CLKF_INTR(frame)) {
|
|
if (p != NULL)
|
|
p->p_iticks++;
|
|
cp_time[CP_INTR]++;
|
|
} else if (p != NULL) {
|
|
p->p_sticks++;
|
|
cp_time[CP_SYS]++;
|
|
} else
|
|
cp_time[CP_IDLE]++;
|
|
}
|
|
pscnt = psdiv;
|
|
|
|
if (p != NULL) {
|
|
schedclock(p);
|
|
|
|
/* Update resource usage integrals and maximums. */
|
|
if ((pstats = p->p_stats) != NULL &&
|
|
(ru = &pstats->p_ru) != NULL &&
|
|
(vm = p->p_vmspace) != NULL) {
|
|
ru->ru_ixrss += pgtok(vm->vm_tsize);
|
|
ru->ru_idrss += pgtok(vm->vm_dsize);
|
|
ru->ru_isrss += pgtok(vm->vm_ssize);
|
|
rss = pgtok(vmspace_resident_count(vm));
|
|
if (ru->ru_maxrss < rss)
|
|
ru->ru_maxrss = rss;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return information about system clocks.
|
|
*/
|
|
static int
|
|
sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
|
|
{
|
|
struct clockinfo clkinfo;
|
|
/*
|
|
* Construct clockinfo structure.
|
|
*/
|
|
clkinfo.hz = hz;
|
|
clkinfo.tick = tick;
|
|
clkinfo.tickadj = tickadj;
|
|
clkinfo.profhz = profhz;
|
|
clkinfo.stathz = stathz ? stathz : hz;
|
|
return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
|
|
0, 0, sysctl_kern_clockrate, "S,clockinfo","");
|
|
|
|
static __inline unsigned
|
|
tco_delta(struct timecounter *tc)
|
|
{
|
|
|
|
return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) &
|
|
tc->tc_counter_mask);
|
|
}
|
|
|
|
/*
|
|
* We have eight functions for looking at the clock, four for
|
|
* microseconds and four for nanoseconds. For each there is fast
|
|
* but less precise version "get{nano|micro}[up]time" which will
|
|
* return a time which is up to 1/HZ previous to the call, whereas
|
|
* the raw version "{nano|micro}[up]time" will return a timestamp
|
|
* which is as precise as possible. The "up" variants return the
|
|
* time relative to system boot, these are well suited for time
|
|
* interval measurements.
|
|
*/
|
|
|
|
void
|
|
getmicrotime(struct timeval *tvp)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
if (!tco_method) {
|
|
tc = timecounter;
|
|
*tvp = tc->tc_microtime;
|
|
} else {
|
|
microtime(tvp);
|
|
}
|
|
}
|
|
|
|
void
|
|
getnanotime(struct timespec *tsp)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
if (!tco_method) {
|
|
tc = timecounter;
|
|
*tsp = tc->tc_nanotime;
|
|
} else {
|
|
nanotime(tsp);
|
|
}
|
|
}
|
|
|
|
void
|
|
microtime(struct timeval *tv)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
tc = timecounter;
|
|
tv->tv_sec = tc->tc_offset_sec;
|
|
tv->tv_usec = tc->tc_offset_micro;
|
|
tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
|
|
tv->tv_usec += boottime.tv_usec;
|
|
tv->tv_sec += boottime.tv_sec;
|
|
while (tv->tv_usec >= 1000000) {
|
|
tv->tv_usec -= 1000000;
|
|
tv->tv_sec++;
|
|
}
|
|
}
|
|
|
|
void
|
|
nanotime(struct timespec *ts)
|
|
{
|
|
unsigned count;
|
|
u_int64_t delta;
|
|
struct timecounter *tc;
|
|
|
|
tc = timecounter;
|
|
ts->tv_sec = tc->tc_offset_sec;
|
|
count = tco_delta(tc);
|
|
delta = tc->tc_offset_nano;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_f);
|
|
delta >>= 32;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_i);
|
|
delta += boottime.tv_usec * 1000;
|
|
ts->tv_sec += boottime.tv_sec;
|
|
while (delta >= 1000000000) {
|
|
delta -= 1000000000;
|
|
ts->tv_sec++;
|
|
}
|
|
ts->tv_nsec = delta;
|
|
}
|
|
|
|
void
|
|
getmicrouptime(struct timeval *tvp)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
if (!tco_method) {
|
|
tc = timecounter;
|
|
tvp->tv_sec = tc->tc_offset_sec;
|
|
tvp->tv_usec = tc->tc_offset_micro;
|
|
} else {
|
|
microuptime(tvp);
|
|
}
|
|
}
|
|
|
|
void
|
|
getnanouptime(struct timespec *tsp)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
if (!tco_method) {
|
|
tc = timecounter;
|
|
tsp->tv_sec = tc->tc_offset_sec;
|
|
tsp->tv_nsec = tc->tc_offset_nano >> 32;
|
|
} else {
|
|
nanouptime(tsp);
|
|
}
|
|
}
|
|
|
|
void
|
|
microuptime(struct timeval *tv)
|
|
{
|
|
struct timecounter *tc;
|
|
|
|
tc = timecounter;
|
|
tv->tv_sec = tc->tc_offset_sec;
|
|
tv->tv_usec = tc->tc_offset_micro;
|
|
tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
|
|
if (tv->tv_usec >= 1000000) {
|
|
tv->tv_usec -= 1000000;
|
|
tv->tv_sec++;
|
|
}
|
|
}
|
|
|
|
void
|
|
nanouptime(struct timespec *ts)
|
|
{
|
|
unsigned count;
|
|
u_int64_t delta;
|
|
struct timecounter *tc;
|
|
|
|
tc = timecounter;
|
|
ts->tv_sec = tc->tc_offset_sec;
|
|
count = tco_delta(tc);
|
|
delta = tc->tc_offset_nano;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_f);
|
|
delta >>= 32;
|
|
delta += ((u_int64_t)count * tc->tc_scale_nano_i);
|
|
if (delta >= 1000000000) {
|
|
delta -= 1000000000;
|
|
ts->tv_sec++;
|
|
}
|
|
ts->tv_nsec = delta;
|
|
}
|
|
|
|
static void
|
|
tco_setscales(struct timecounter *tc)
|
|
{
|
|
u_int64_t scale;
|
|
|
|
scale = 1000000000LL << 32;
|
|
scale += tc->tc_adjustment;
|
|
scale /= tc->tc_tweak->tc_frequency;
|
|
tc->tc_scale_micro = scale / 1000;
|
|
tc->tc_scale_nano_f = scale & 0xffffffff;
|
|
tc->tc_scale_nano_i = scale >> 32;
|
|
}
|
|
|
|
void
|
|
update_timecounter(struct timecounter *tc)
|
|
{
|
|
tco_setscales(tc);
|
|
}
|
|
|
|
void
|
|
init_timecounter(struct timecounter *tc)
|
|
{
|
|
struct timespec ts1;
|
|
struct timecounter *t1, *t2, *t3;
|
|
int i;
|
|
|
|
tc->tc_adjustment = 0;
|
|
tc->tc_tweak = tc;
|
|
tco_setscales(tc);
|
|
tc->tc_offset_count = tc->tc_get_timecount(tc);
|
|
if (timecounter == &dummy_timecounter)
|
|
tc->tc_avail = tc;
|
|
else {
|
|
tc->tc_avail = timecounter->tc_tweak->tc_avail;
|
|
timecounter->tc_tweak->tc_avail = tc;
|
|
}
|
|
MALLOC(t1, struct timecounter *, sizeof *t1, M_TIMECOUNTER, M_WAITOK);
|
|
tc->tc_other = t1;
|
|
*t1 = *tc;
|
|
t2 = t1;
|
|
for (i = 1; i < NTIMECOUNTER; i++) {
|
|
MALLOC(t3, struct timecounter *, sizeof *t3,
|
|
M_TIMECOUNTER, M_WAITOK);
|
|
*t3 = *tc;
|
|
t3->tc_other = t2;
|
|
t2 = t3;
|
|
}
|
|
t1->tc_other = t3;
|
|
tc = t1;
|
|
|
|
printf("Timecounter \"%s\" frequency %lu Hz\n",
|
|
tc->tc_name, (u_long)tc->tc_frequency);
|
|
|
|
/* XXX: For now always start using the counter. */
|
|
tc->tc_offset_count = tc->tc_get_timecount(tc);
|
|
nanouptime(&ts1);
|
|
tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
|
|
tc->tc_offset_micro = ts1.tv_nsec / 1000;
|
|
tc->tc_offset_sec = ts1.tv_sec;
|
|
timecounter = tc;
|
|
}
|
|
|
|
void
|
|
set_timecounter(struct timespec *ts)
|
|
{
|
|
struct timespec ts2;
|
|
|
|
nanouptime(&ts2);
|
|
boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
|
|
boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
|
|
if (boottime.tv_usec < 0) {
|
|
boottime.tv_usec += 1000000;
|
|
boottime.tv_sec--;
|
|
}
|
|
/* fiddle all the little crinkly bits around the fiords... */
|
|
tco_forward(1);
|
|
}
|
|
|
|
static void
|
|
switch_timecounter(struct timecounter *newtc)
|
|
{
|
|
int s;
|
|
struct timecounter *tc;
|
|
struct timespec ts;
|
|
|
|
s = splclock();
|
|
tc = timecounter;
|
|
if (newtc->tc_tweak == tc->tc_tweak) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
newtc = newtc->tc_tweak->tc_other;
|
|
nanouptime(&ts);
|
|
newtc->tc_offset_sec = ts.tv_sec;
|
|
newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
|
|
newtc->tc_offset_micro = ts.tv_nsec / 1000;
|
|
newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
|
|
tco_setscales(newtc);
|
|
timecounter = newtc;
|
|
splx(s);
|
|
}
|
|
|
|
static struct timecounter *
|
|
sync_other_counter(void)
|
|
{
|
|
struct timecounter *tc, *tcn, *tco;
|
|
unsigned delta;
|
|
|
|
tco = timecounter;
|
|
tc = tco->tc_other;
|
|
tcn = tc->tc_other;
|
|
*tc = *tco;
|
|
tc->tc_other = tcn;
|
|
delta = tco_delta(tc);
|
|
tc->tc_offset_count += delta;
|
|
tc->tc_offset_count &= tc->tc_counter_mask;
|
|
tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
|
|
tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
|
|
return (tc);
|
|
}
|
|
|
|
static void
|
|
tco_forward(int force)
|
|
{
|
|
struct timecounter *tc, *tco;
|
|
struct timeval tvt;
|
|
|
|
tco = timecounter;
|
|
tc = sync_other_counter();
|
|
/*
|
|
* We may be inducing a tiny error here, the tc_poll_pps() may
|
|
* process a latched count which happens after the tco_delta()
|
|
* in sync_other_counter(), which would extend the previous
|
|
* counters parameters into the domain of this new one.
|
|
* Since the timewindow is very small for this, the error is
|
|
* going to be only a few weenieseconds (as Dave Mills would
|
|
* say), so lets just not talk more about it, OK ?
|
|
*/
|
|
if (tco->tc_poll_pps)
|
|
tco->tc_poll_pps(tco);
|
|
if (timedelta != 0) {
|
|
tvt = boottime;
|
|
tvt.tv_usec += tickdelta;
|
|
if (tvt.tv_usec >= 1000000) {
|
|
tvt.tv_sec++;
|
|
tvt.tv_usec -= 1000000;
|
|
} else if (tvt.tv_usec < 0) {
|
|
tvt.tv_sec--;
|
|
tvt.tv_usec += 1000000;
|
|
}
|
|
boottime = tvt;
|
|
timedelta -= tickdelta;
|
|
}
|
|
|
|
while (tc->tc_offset_nano >= 1000000000ULL << 32) {
|
|
tc->tc_offset_nano -= 1000000000ULL << 32;
|
|
tc->tc_offset_sec++;
|
|
ntp_update_second(tc); /* XXX only needed if xntpd runs */
|
|
tco_setscales(tc);
|
|
force++;
|
|
}
|
|
|
|
if (tco_method && !force)
|
|
return;
|
|
|
|
tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;
|
|
|
|
/* Figure out the wall-clock time */
|
|
tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
|
|
tc->tc_nanotime.tv_nsec =
|
|
(tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
|
|
tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
|
|
if (tc->tc_nanotime.tv_nsec >= 1000000000) {
|
|
tc->tc_nanotime.tv_nsec -= 1000000000;
|
|
tc->tc_microtime.tv_usec -= 1000000;
|
|
tc->tc_nanotime.tv_sec++;
|
|
}
|
|
time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;
|
|
|
|
timecounter = tc;
|
|
}
|
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
|
|
|
|
SYSCTL_INT(_kern_timecounter, OID_AUTO, method, CTLFLAG_RW, &tco_method, 0,
|
|
"This variable determines the method used for updating timecounters. "
|
|
"If the default algorithm (0) fails with \"calcru negative...\" messages "
|
|
"try the alternate algorithm (1) which handles bad hardware better."
|
|
|
|
);
|
|
|
|
static int
|
|
sysctl_kern_timecounter_hardware SYSCTL_HANDLER_ARGS
|
|
{
|
|
char newname[32];
|
|
struct timecounter *newtc, *tc;
|
|
int error;
|
|
|
|
tc = timecounter->tc_tweak;
|
|
strncpy(newname, tc->tc_name, sizeof(newname));
|
|
error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
|
|
if (error == 0 && req->newptr != NULL &&
|
|
strcmp(newname, tc->tc_name) != 0) {
|
|
for (newtc = tc->tc_avail; newtc != tc;
|
|
newtc = newtc->tc_avail) {
|
|
if (strcmp(newname, newtc->tc_name) == 0) {
|
|
/* Warm up new timecounter. */
|
|
(void)newtc->tc_get_timecount(newtc);
|
|
|
|
switch_timecounter(newtc);
|
|
return (0);
|
|
}
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
|
|
0, 0, sysctl_kern_timecounter_hardware, "A", "");
|
|
|
|
|
|
int
|
|
pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
|
|
{
|
|
pps_params_t *app;
|
|
struct pps_fetch_args *fapi;
|
|
#ifdef PPS_SYNC
|
|
struct pps_kcbind_args *kapi;
|
|
#endif
|
|
|
|
switch (cmd) {
|
|
case PPS_IOC_CREATE:
|
|
return (0);
|
|
case PPS_IOC_DESTROY:
|
|
return (0);
|
|
case PPS_IOC_SETPARAMS:
|
|
app = (pps_params_t *)data;
|
|
if (app->mode & ~pps->ppscap)
|
|
return (EINVAL);
|
|
pps->ppsparam = *app;
|
|
return (0);
|
|
case PPS_IOC_GETPARAMS:
|
|
app = (pps_params_t *)data;
|
|
*app = pps->ppsparam;
|
|
app->api_version = PPS_API_VERS_1;
|
|
return (0);
|
|
case PPS_IOC_GETCAP:
|
|
*(int*)data = pps->ppscap;
|
|
return (0);
|
|
case PPS_IOC_FETCH:
|
|
fapi = (struct pps_fetch_args *)data;
|
|
if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
|
|
return (EINVAL);
|
|
if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
|
|
return (EOPNOTSUPP);
|
|
pps->ppsinfo.current_mode = pps->ppsparam.mode;
|
|
fapi->pps_info_buf = pps->ppsinfo;
|
|
return (0);
|
|
case PPS_IOC_KCBIND:
|
|
#ifdef PPS_SYNC
|
|
kapi = (struct pps_kcbind_args *)data;
|
|
/* XXX Only root should be able to do this */
|
|
if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
|
|
return (EINVAL);
|
|
if (kapi->kernel_consumer != PPS_KC_HARDPPS)
|
|
return (EINVAL);
|
|
if (kapi->edge & ~pps->ppscap)
|
|
return (EINVAL);
|
|
pps->kcmode = kapi->edge;
|
|
return (0);
|
|
#else
|
|
return (EOPNOTSUPP);
|
|
#endif
|
|
default:
|
|
return (ENOTTY);
|
|
}
|
|
}
|
|
|
|
void
|
|
pps_init(struct pps_state *pps)
|
|
{
|
|
pps->ppscap |= PPS_TSFMT_TSPEC;
|
|
if (pps->ppscap & PPS_CAPTUREASSERT)
|
|
pps->ppscap |= PPS_OFFSETASSERT;
|
|
if (pps->ppscap & PPS_CAPTURECLEAR)
|
|
pps->ppscap |= PPS_OFFSETCLEAR;
|
|
}
|
|
|
|
void
|
|
pps_event(struct pps_state *pps, struct timecounter *tc, unsigned count, int event)
|
|
{
|
|
struct timespec ts, *tsp, *osp;
|
|
u_int64_t delta;
|
|
unsigned tcount, *pcount;
|
|
int foff, fhard;
|
|
pps_seq_t *pseq;
|
|
|
|
/* Things would be easier with arrays... */
|
|
if (event == PPS_CAPTUREASSERT) {
|
|
tsp = &pps->ppsinfo.assert_timestamp;
|
|
osp = &pps->ppsparam.assert_offset;
|
|
foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
|
|
fhard = pps->kcmode & PPS_CAPTUREASSERT;
|
|
pcount = &pps->ppscount[0];
|
|
pseq = &pps->ppsinfo.assert_sequence;
|
|
} else {
|
|
tsp = &pps->ppsinfo.clear_timestamp;
|
|
osp = &pps->ppsparam.clear_offset;
|
|
foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
|
|
fhard = pps->kcmode & PPS_CAPTURECLEAR;
|
|
pcount = &pps->ppscount[1];
|
|
pseq = &pps->ppsinfo.clear_sequence;
|
|
}
|
|
|
|
/* The timecounter changed: bail */
|
|
if (!pps->ppstc ||
|
|
pps->ppstc->tc_name != tc->tc_name ||
|
|
tc->tc_name != timecounter->tc_name) {
|
|
pps->ppstc = tc;
|
|
*pcount = count;
|
|
return;
|
|
}
|
|
|
|
/* Nothing really happened */
|
|
if (*pcount == count)
|
|
return;
|
|
|
|
*pcount = count;
|
|
|
|
/* Convert the count to timespec */
|
|
ts.tv_sec = tc->tc_offset_sec;
|
|
tcount = count - tc->tc_offset_count;
|
|
tcount &= tc->tc_counter_mask;
|
|
delta = tc->tc_offset_nano;
|
|
delta += ((u_int64_t)tcount * tc->tc_scale_nano_f);
|
|
delta >>= 32;
|
|
delta += ((u_int64_t)tcount * tc->tc_scale_nano_i);
|
|
delta += boottime.tv_usec * 1000;
|
|
ts.tv_sec += boottime.tv_sec;
|
|
while (delta >= 1000000000) {
|
|
delta -= 1000000000;
|
|
ts.tv_sec++;
|
|
}
|
|
ts.tv_nsec = delta;
|
|
|
|
(*pseq)++;
|
|
*tsp = ts;
|
|
|
|
if (foff) {
|
|
timespecadd(tsp, osp);
|
|
if (tsp->tv_nsec < 0) {
|
|
tsp->tv_nsec += 1000000000;
|
|
tsp->tv_sec -= 1;
|
|
}
|
|
}
|
|
#ifdef PPS_SYNC
|
|
if (fhard) {
|
|
/* magic, at its best... */
|
|
tcount = count - pps->ppscount[2];
|
|
pps->ppscount[2] = count;
|
|
tcount &= tc->tc_counter_mask;
|
|
delta = ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_f);
|
|
delta >>= 32;
|
|
delta += ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_i);
|
|
hardpps(tsp, delta);
|
|
}
|
|
#endif
|
|
}
|