freebsd-skq/sys/dev/dc/if_dc.c
Bill Paul 91cc2adb2e Fix some problems reported by Mike Pritchard:
- Add a flag DC_TX_INTR_ALWAYS which causes the transmit code to
  request a TX done interrupt for every packet. The PNIC seems to need
  this to insure that the sent TX buffers get reaped in a timely fashion.

- Try to unreset the SIA as soon as possible after resetting the whole
  chip.

- Change dcphy to support either 10/100 or 10Mbps only NICs. The
  built-in 21143 ethernet in Compaq Presario machines is 10Mbps only
  and it doesn't work right if we try to advertise 100Mbps modes during
  autoneg. When restricted to only 10mbps modes, it works fine.

  Note that for now, I detect this condition by checking the PCI
  subsystem ID on this NIC (which has a Compaq vendor/device ID).
  Yes, I know that's what the SROM is supposed to be for. I'm deliberately
  ignoring the SROM wherever possible. Sue me.

The latter two fixes allow if_dc to work correctly with the built-in
ethernet on certain Compaq Presario boxes. There are liable to be quite
a few people using these as their home systems who might want to try
FreeBSD; may as well be nice to them.

Now if anybody out there has an Alpha miata with 10Mbps ethernet and
can show me the output from pciconf -l on their system, I'd be grateful.
1999-12-13 21:45:13 +00:00

2703 lines
66 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
* series chips and several workalikes including the following:
*
* Macronix 98713/98715/98725 PMAC (www.macronix.com)
* Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
* Lite-On 82c168/82c169 PNIC (www.litecom.com)
* ASIX Electronics AX88140A (www.asix.com.tw)
* ASIX Electronics AX88141 (www.asix.com.tw)
* ADMtek AL981 (www.admtek.com.tw)
* ADMtek AN985 (www.admtek.com.tw)
* Davicom DM9100, DM9102 (www.davicom8.com)
*
* Datasheets for the 21143 are available at developer.intel.com.
* Datasheets for the clone parts can be found at their respective sites.
* (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
* The PNIC II is essentially a Macronix 98715A chip; the only difference
* worth noting is that its multicast hash table is only 128 bits wide
* instead of 512.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Intel 21143 is the successor to the DEC 21140. It is basically
* the same as the 21140 but with a few new features. The 21143 supports
* three kinds of media attachments:
*
* o MII port, for 10Mbps and 100Mbps support and NWAY
* autonegotiation provided by an external PHY.
* o SYM port, for symbol mode 100Mbps support.
* o 10baseT port.
* o AUI/BNC port.
*
* The 100Mbps SYM port and 10baseT port can be used together in
* combination with the internal NWAY support to create a 10/100
* autosensing configuration.
*
* Knowing which media is available on a given card is tough: you're
* supposed to go slogging through the EEPROM looking for media
* description structures. Unfortunately, some card vendors that use
* the 21143 don't obey the DEC SROM spec correctly, which means that
* what you find in the EEPROM may not agree with reality. Fortunately,
* the 21143 provides us a way to get around this issue: lurking in
* PCI configuration space is the Configuration Wake-Up Command Register.
* This register is loaded with a value from the EEPROM when wake on LAN
* mode is enabled; this value tells us quite clearly what kind of media
* is attached to the NIC. The main purpose of this register is to tell
* the NIC what media to scan when in wake on LAN mode, however by
* forcibly enabling wake on LAN mode, we can use to learn what kind of
* media a given NIC has available and adapt ourselves accordingly.
*
* Of course, if the media description blocks in the EEPROM are bogus.
* what are the odds that the CWUC aren't bogus as well, right? Well,
* the CWUC value is more likely to be correct since wake on LAN mode
* won't work correctly without it, and wake on LAN is a big selling
* point these days. It's also harder to screw up a single byte than
* a whole media descriptor block.
*
* Note that not all tulip workalikes are handled in this driver: we only
* deal with those which are relatively well behaved. The Winbond is
* handled separately due to its different register offsets and the
* special handling needed for its various bugs. The PNIC is handled
* here, but I'm not thrilled about it.
*
* All of the workalike chips use some form of MII transceiver support
* with the exception of the Macronix chips, which also have a SYM port.
* The ASIX AX88140A is also documented to have a SYM port, but all
* the cards I've seen use an MII transceiver, probably because the
* AX88140A doesn't support internal NWAY.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define DC_USEIOSPACE
#include <pci/if_dcreg.h>
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct dc_type dc_devs[] = {
{ DC_VENDORID_DEC, DC_DEVICEID_21143,
"Intel 21143 10/100BaseTX" },
{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
"Davicom DM9100 10/100BaseTX" },
{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
"Davicom DM9102 10/100BaseTX" },
{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
"ADMtek AL981 10/100BaseTX" },
{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
"ADMtek AN985 10/100BaseTX" },
{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
"ASIX AX88140A 10/100BaseTX" },
{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
"ASIX AX88141 10/100BaseTX" },
{ DC_VENDORID_MX, DC_DEVICEID_98713,
"Macronix 98713 10/100BaseTX" },
{ DC_VENDORID_MX, DC_DEVICEID_98713,
"Macronix 98713A 10/100BaseTX" },
{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
"Compex RL100-TX 10/100BaseTX" },
{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
"Compex RL100-TX 10/100BaseTX" },
{ DC_VENDORID_MX, DC_DEVICEID_987x5,
"Macronix 98715/98715A 10/100BaseTX" },
{ DC_VENDORID_MX, DC_DEVICEID_987x5,
"Macronix 98725 10/100BaseTX" },
{ DC_VENDORID_LO, DC_DEVICEID_82C115,
"LC82C115 PNIC II 10/100BaseTX" },
{ DC_VENDORID_LO, DC_DEVICEID_82C168,
"82c168 PNIC 10/100BaseTX" },
{ DC_VENDORID_LO, DC_DEVICEID_82C168,
"82c169 PNIC 10/100BaseTX" },
{ 0, 0, NULL }
};
static int dc_probe __P((device_t));
static int dc_attach __P((device_t));
static int dc_detach __P((device_t));
static void dc_acpi __P((device_t));
static struct dc_type *dc_devtype __P((device_t));
static int dc_newbuf __P((struct dc_softc *, int, struct mbuf *));
static int dc_encap __P((struct dc_softc *, struct mbuf *,
u_int32_t *));
static void dc_pnic_rx_bug_war __P((struct dc_softc *, int));
static void dc_rxeof __P((struct dc_softc *));
static void dc_txeof __P((struct dc_softc *));
static void dc_tick __P((void *));
static void dc_intr __P((void *));
static void dc_start __P((struct ifnet *));
static int dc_ioctl __P((struct ifnet *, u_long, caddr_t));
static void dc_init __P((void *));
static void dc_stop __P((struct dc_softc *));
static void dc_watchdog __P((struct ifnet *));
static void dc_shutdown __P((device_t));
static int dc_ifmedia_upd __P((struct ifnet *));
static void dc_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void dc_delay __P((struct dc_softc *));
static void dc_eeprom_idle __P((struct dc_softc *));
static void dc_eeprom_putbyte __P((struct dc_softc *, int));
static void dc_eeprom_getword __P((struct dc_softc *, int, u_int16_t *));
static void dc_eeprom_getword_pnic
__P((struct dc_softc *, int, u_int16_t *));
static void dc_read_eeprom __P((struct dc_softc *, caddr_t, int,
int, int));
static void dc_mii_writebit __P((struct dc_softc *, int));
static int dc_mii_readbit __P((struct dc_softc *));
static void dc_mii_sync __P((struct dc_softc *));
static void dc_mii_send __P((struct dc_softc *, u_int32_t, int));
static int dc_mii_readreg __P((struct dc_softc *, struct dc_mii_frame *));
static int dc_mii_writereg __P((struct dc_softc *, struct dc_mii_frame *));
static int dc_miibus_readreg __P((device_t, int, int));
static int dc_miibus_writereg __P((device_t, int, int, int));
static void dc_miibus_statchg __P((device_t));
static void dc_setcfg __P((struct dc_softc *, int));
static u_int32_t dc_crc_le __P((struct dc_softc *, caddr_t));
static u_int32_t dc_crc_be __P((caddr_t));
static void dc_setfilt_21143 __P((struct dc_softc *));
static void dc_setfilt_asix __P((struct dc_softc *));
static void dc_setfilt_admtek __P((struct dc_softc *));
static void dc_setfilt __P((struct dc_softc *));
static void dc_reset __P((struct dc_softc *));
static int dc_list_rx_init __P((struct dc_softc *));
static int dc_list_tx_init __P((struct dc_softc *));
#ifdef DC_USEIOSPACE
#define DC_RES SYS_RES_IOPORT
#define DC_RID DC_PCI_CFBIO
#else
#define DC_RES SYS_RES_MEMORY
#define DC_RID DC_PCI_CFBMA
#endif
static device_method_t dc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, dc_probe),
DEVMETHOD(device_attach, dc_attach),
DEVMETHOD(device_detach, dc_detach),
DEVMETHOD(device_shutdown, dc_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, dc_miibus_readreg),
DEVMETHOD(miibus_writereg, dc_miibus_writereg),
DEVMETHOD(miibus_statchg, dc_miibus_statchg),
{ 0, 0 }
};
static driver_t dc_driver = {
"dc",
dc_methods,
sizeof(struct dc_softc)
};
static devclass_t dc_devclass;
DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
#define DC_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
#define DC_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x))
#define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x))
static void dc_delay(sc)
struct dc_softc *sc;
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, DC_BUSCTL);
}
static void dc_eeprom_idle(sc)
struct dc_softc *sc;
{
register int i;
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
for (i = 0; i < 25; i++) {
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
}
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
CSR_WRITE_4(sc, DC_SIO, 0x00000000);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void dc_eeprom_putbyte(sc, addr)
struct dc_softc *sc;
int addr;
{
register int d, i;
/*
* The AN985 has a 93C66 EEPROM on it instead of
* a 93C46. It uses a different bit sequence for
* specifying the "read" opcode.
*/
if (DC_IS_CENTAUR(sc))
d = addr | (DC_EECMD_READ << 2);
else
d = addr | DC_EECMD_READ;
/*
* Feed in each bit and strobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(DC_SIO_EE_DATAIN);
} else {
SIO_CLR(DC_SIO_EE_DATAIN);
}
dc_delay(sc);
SIO_SET(DC_SIO_EE_CLK);
dc_delay(sc);
SIO_CLR(DC_SIO_EE_CLK);
dc_delay(sc);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
* The PNIC 82c168/82c169 has its own non-standard way to read
* the EEPROM.
*/
static void dc_eeprom_getword_pnic(sc, addr, dest)
struct dc_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int32_t r;
CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(1);
r = CSR_READ_4(sc, DC_SIO);
if (!(r & DC_PN_SIOCTL_BUSY)) {
*dest = (u_int16_t)(r & 0xFFFF);
return;
}
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void dc_eeprom_getword(sc, addr, dest)
struct dc_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
dc_eeprom_idle(sc);
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
/*
* Send address of word we want to read.
*/
dc_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(DC_SIO_EE_CLK);
dc_delay(sc);
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
word |= i;
dc_delay(sc);
SIO_CLR(DC_SIO_EE_CLK);
dc_delay(sc);
}
/* Turn off EEPROM access mode. */
dc_eeprom_idle(sc);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void dc_read_eeprom(sc, dest, off, cnt, swap)
struct dc_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
if (DC_IS_PNIC(sc))
dc_eeprom_getword_pnic(sc, off + i, &word);
else
dc_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* The following two routines are taken from the Macronix 98713
* Application Notes pp.19-21.
*/
/*
* Write a bit to the MII bus.
*/
static void dc_mii_writebit(sc, bit)
struct dc_softc *sc;
int bit;
{
if (bit)
CSR_WRITE_4(sc, DC_SIO,
DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
else
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
return;
}
/*
* Read a bit from the MII bus.
*/
static int dc_mii_readbit(sc)
struct dc_softc *sc;
{
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
CSR_READ_4(sc, DC_SIO);
DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
return(1);
return(0);
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void dc_mii_sync(sc)
struct dc_softc *sc;
{
register int i;
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
for (i = 0; i < 32; i++)
dc_mii_writebit(sc, 1);
return;
}
/*
* Clock a series of bits through the MII.
*/
static void dc_mii_send(sc, bits, cnt)
struct dc_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
for (i = (0x1 << (cnt - 1)); i; i >>= 1)
dc_mii_writebit(sc, bits & i);
}
/*
* Read an PHY register through the MII.
*/
static int dc_mii_readreg(sc, frame)
struct dc_softc *sc;
struct dc_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = DC_MII_STARTDELIM;
frame->mii_opcode = DC_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Sync the PHYs.
*/
dc_mii_sync(sc);
/*
* Send command/address info.
*/
dc_mii_send(sc, frame->mii_stdelim, 2);
dc_mii_send(sc, frame->mii_opcode, 2);
dc_mii_send(sc, frame->mii_phyaddr, 5);
dc_mii_send(sc, frame->mii_regaddr, 5);
#ifdef notdef
/* Idle bit */
dc_mii_writebit(sc, 1);
dc_mii_writebit(sc, 0);
#endif
/* Check for ack */
ack = dc_mii_readbit(sc);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
dc_mii_readbit(sc);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
if (!ack) {
if (dc_mii_readbit(sc))
frame->mii_data |= i;
}
}
fail:
dc_mii_writebit(sc, 0);
dc_mii_writebit(sc, 0);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int dc_mii_writereg(sc, frame)
struct dc_softc *sc;
struct dc_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = DC_MII_STARTDELIM;
frame->mii_opcode = DC_MII_WRITEOP;
frame->mii_turnaround = DC_MII_TURNAROUND;
/*
* Sync the PHYs.
*/
dc_mii_sync(sc);
dc_mii_send(sc, frame->mii_stdelim, 2);
dc_mii_send(sc, frame->mii_opcode, 2);
dc_mii_send(sc, frame->mii_phyaddr, 5);
dc_mii_send(sc, frame->mii_regaddr, 5);
dc_mii_send(sc, frame->mii_turnaround, 2);
dc_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
dc_mii_writebit(sc, 0);
dc_mii_writebit(sc, 0);
splx(s);
return(0);
}
static int dc_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct dc_mii_frame frame;
struct dc_softc *sc;
int i, rval, phy_reg;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
/*
* Note: both the AL981 and AN985 have internal PHYs,
* however the AL981 provides direct access to the PHY
* registers while the AN985 uses a serial MII interface.
* The AN985's MII interface is also buggy in that you
* can read from any MII address (0 to 31), but only address 1
* behaves normally. To deal with both cases, we pretend
* that the PHY is at MII address 1.
*/
if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
return(0);
if (sc->dc_pmode == DC_PMODE_SYM) {
if (phy == (MII_NPHY - 1)) {
switch(reg) {
case MII_BMSR:
/*
* Fake something to make the probe
* code think there's a PHY here.
*/
return(BMSR_MEDIAMASK);
break;
case MII_PHYIDR1:
if (DC_IS_PNIC(sc))
return(DC_VENDORID_LO);
return(DC_VENDORID_DEC);
break;
case MII_PHYIDR2:
if (DC_IS_PNIC(sc))
return(DC_DEVICEID_82C168);
return(DC_DEVICEID_21143);
break;
default:
return(0);
break;
}
} else
return(0);
}
if (DC_IS_PNIC(sc)) {
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
(phy << 23) | (reg << 18));
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(1);
rval = CSR_READ_4(sc, DC_PN_MII);
if (!(rval & DC_PN_MII_BUSY)) {
rval &= 0xFFFF;
return(rval == 0xFFFF ? 0 : rval);
}
}
return(0);
}
if (DC_IS_COMET(sc)) {
switch(reg) {
case MII_BMCR:
phy_reg = DC_AL_BMCR;
break;
case MII_BMSR:
phy_reg = DC_AL_BMSR;
break;
case MII_PHYIDR1:
phy_reg = DC_AL_VENID;
break;
case MII_PHYIDR2:
phy_reg = DC_AL_DEVID;
break;
case MII_ANAR:
phy_reg = DC_AL_ANAR;
break;
case MII_ANLPAR:
phy_reg = DC_AL_LPAR;
break;
case MII_ANER:
phy_reg = DC_AL_ANER;
break;
default:
printf("dc%d: phy_read: bad phy register %x\n",
sc->dc_unit, reg);
return(0);
break;
}
rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
if (rval == 0xFFFF)
return(0);
return(rval);
}
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
dc_mii_readreg(sc, &frame);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
return(frame.mii_data);
}
static int dc_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct dc_softc *sc;
struct dc_mii_frame frame;
int i, phy_reg;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
return(0);
if (DC_IS_PNIC(sc)) {
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
(phy << 23) | (reg << 10) | data);
for (i = 0; i < DC_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
break;
}
return(0);
}
if (DC_IS_COMET(sc)) {
switch(reg) {
case MII_BMCR:
phy_reg = DC_AL_BMCR;
break;
case MII_BMSR:
phy_reg = DC_AL_BMSR;
break;
case MII_PHYIDR1:
phy_reg = DC_AL_VENID;
break;
case MII_PHYIDR2:
phy_reg = DC_AL_DEVID;
break;
case MII_ANAR:
phy_reg = DC_AL_ANAR;
break;
case MII_ANLPAR:
phy_reg = DC_AL_LPAR;
break;
case MII_ANER:
phy_reg = DC_AL_ANER;
break;
default:
printf("dc%d: phy_write: bad phy register %x\n",
sc->dc_unit, reg);
return(0);
break;
}
CSR_WRITE_4(sc, phy_reg, data);
return(0);
}
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
dc_mii_writereg(sc, &frame);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
return(0);
}
static void dc_miibus_statchg(dev)
device_t dev;
{
struct dc_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
if (DC_IS_ADMTEK(sc))
return;
mii = device_get_softc(sc->dc_miibus);
dc_setcfg(sc, mii->mii_media_active);
sc->dc_if_media = mii->mii_media_active;
return;
}
#define DC_POLY 0xEDB88320
#define DC_BITS 9
#define DC_BITS_PNIC_II 7
static u_int32_t dc_crc_le(sc, addr)
struct dc_softc *sc;
caddr_t addr;
{
u_int32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
}
/* The hash table on the PNIC II is only 128 bits wide. */
if (DC_IS_PNICII(sc))
return (crc & ((1 << DC_BITS_PNIC_II) - 1));
return (crc & ((1 << DC_BITS) - 1));
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
static u_int32_t dc_crc_be(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return((crc >> 26) & 0x0000003F);
}
/*
* 21143-style RX filter setup routine. Filter programming is done by
* downloading a special setup frame into the TX engine. 21143, Macronix,
* PNIC, PNIC II and Davicom chips are programmed this way.
*
* We always program the chip using 'hash perfect' mode, i.e. one perfect
* address (our node address) and a 512-bit hash filter for multicast
* frames. We also sneak the broadcast address into the hash filter since
* we need that too.
*/
void dc_setfilt_21143(sc)
struct dc_softc *sc;
{
struct dc_desc *sframe;
u_int32_t h, *sp;
struct ifmultiaddr *ifma;
struct ifnet *ifp;
int i;
ifp = &sc->arpcom.ac_if;
i = sc->dc_cdata.dc_tx_prod;
DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
sc->dc_cdata.dc_tx_cnt++;
sframe = &sc->dc_ldata->dc_tx_list[i];
sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
bzero((char *)sp, DC_SFRAME_LEN);
sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
DC_FILTER_HASHPERF | DC_TXCTL_FINT;
sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
if (ifp->if_flags & IFF_ALLMULTI)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = dc_crc_le(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
sp[h >> 4] |= 1 << (h & 0xF);
}
if (ifp->if_flags & IFF_BROADCAST) {
h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
sp[h >> 4] |= 1 << (h & 0xF);
}
/* Set our MAC address */
sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
sframe->dc_status = DC_TXSTAT_OWN;
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
/*
* The PNIC takes an exceedingly long time to process its
* setup frame; wait 10ms after posting the setup frame
* before proceeding, just so it has time to swallow its
* medicine.
*/
DELAY(10000);
ifp->if_timer = 5;
return;
}
void dc_setfilt_admtek(sc)
struct dc_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
ifp = &sc->arpcom.ac_if;
/* Init our MAC address */
CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
if (ifp->if_flags & IFF_ALLMULTI)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, DC_AL_MAR0, 0);
CSR_WRITE_4(sc, DC_AL_MAR1, 0);
/*
* If we're already in promisc or allmulti mode, we
* don't have to bother programming the multicast filter.
*/
if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
return;
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
return;
}
void dc_setfilt_asix(sc)
struct dc_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
ifp = &sc->arpcom.ac_if;
/* Init our MAC address */
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
CSR_WRITE_4(sc, DC_AX_FILTDATA,
*(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
CSR_WRITE_4(sc, DC_AX_FILTDATA,
*(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
if (ifp->if_flags & IFF_ALLMULTI)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
/*
* The ASIX chip has a special bit to enable reception
* of broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST)
DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
else
DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
/*
* If we're already in promisc or allmulti mode, we
* don't have to bother programming the multicast filter.
*/
if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
return;
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
return;
}
static void dc_setfilt(sc)
struct dc_softc *sc;
{
if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc))
dc_setfilt_21143(sc);
if (DC_IS_ASIX(sc))
dc_setfilt_asix(sc);
if (DC_IS_ADMTEK(sc))
dc_setfilt_admtek(sc);
return;
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void dc_setcfg(sc, media)
struct dc_softc *sc;
int media;
{
int i, restart = 0;
u_int32_t isr;
if (IFM_SUBTYPE(media) == IFM_NONE)
return;
if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
restart = 1;
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(10);
isr = CSR_READ_4(sc, DC_ISR);
if (isr & DC_ISR_TX_IDLE ||
(isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
break;
}
if (i == DC_TIMEOUT)
printf("dc%d: failed to force tx and "
"rx to idle state\n", sc->dc_unit);
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
if (sc->dc_pmode == DC_PMODE_MII) {
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
if (sc->dc_type == DC_TYPE_98713)
DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
DC_NETCFG_SCRAMBLER));
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
} else {
if (DC_IS_PNIC(sc)) {
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
}
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL|
DC_NETCFG_PCS|DC_NETCFG_SCRAMBLER);
}
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
if (sc->dc_pmode == DC_PMODE_MII) {
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
if (sc->dc_type == DC_TYPE_98713)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
} else {
if (DC_IS_PNIC(sc)) {
DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
}
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
}
}
if ((media & IFM_GMASK) == IFM_FDX) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
} else {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
}
if (restart)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
return;
}
static void dc_reset(sc)
struct dc_softc *sc;
{
register int i;
DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
break;
}
if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc)) {
DELAY(10000);
DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
i = 0;
}
if (i == DC_TIMEOUT)
printf("dc%d: reset never completed!\n", sc->dc_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
/*
* Bring the SIA out of reset. In some cases, it looks
* like failing to unreset the SIA soon enough gets it
* into a state where it will never come out of reset
* until we reset the whole chip again.
*/
if (DC_IS_INTEL(sc))
DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
return;
}
static struct dc_type *dc_devtype(dev)
device_t dev;
{
struct dc_type *t;
u_int32_t rev;
t = dc_devs;
while(t->dc_name != NULL) {
if ((pci_get_vendor(dev) == t->dc_vid) &&
(pci_get_device(dev) == t->dc_did)) {
/* Check the PCI revision */
rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
if (t->dc_did == DC_DEVICEID_98713 &&
rev >= DC_REVISION_98713A)
t++;
if (t->dc_did == DC_DEVICEID_98713_CP &&
rev >= DC_REVISION_98713A)
t++;
if (t->dc_did == DC_DEVICEID_987x5 &&
rev >= DC_REVISION_98725)
t++;
if (t->dc_did == DC_DEVICEID_AX88140A &&
rev >= DC_REVISION_88141)
t++;
if (t->dc_did == DC_DEVICEID_82C168 &&
rev >= DC_REVISION_82C169)
t++;
return(t);
}
t++;
}
return(NULL);
}
/*
* Probe for a 21143 or clone chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
* We do a little bit of extra work to identify the exact type of
* chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
* but different revision IDs. The same is true for 98715/98715A
* chips and the 98725, as well as the ASIX and ADMtek chips. In some
* cases, the exact chip revision affects driver behavior.
*/
static int dc_probe(dev)
device_t dev;
{
struct dc_type *t;
t = dc_devtype(dev);
if (t != NULL) {
device_set_desc(dev, t->dc_name);
return(0);
}
return(ENXIO);
}
static void dc_acpi(dev)
device_t dev;
{
u_int32_t r, cptr;
int unit;
unit = device_get_unit(dev);
/* Find the location of the capabilities block */
cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
r = pci_read_config(dev, cptr, 4) & 0xFF;
if (r == 0x01) {
r = pci_read_config(dev, cptr + 4, 4);
if (r & DC_PSTATE_D3) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
irq = pci_read_config(dev, DC_PCI_CFIT, 4);
/* Reset the power state. */
printf("dc%d: chip is in D%d power mode "
"-- setting to D0\n", unit, r & DC_PSTATE_D3);
r &= 0xFFFFFFFC;
pci_write_config(dev, cptr + 4, r, 4);
/* Restore PCI config data. */
pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
pci_write_config(dev, DC_PCI_CFIT, irq, 4);
}
}
return;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int dc_attach(dev)
device_t dev;
{
int s;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct dc_softc *sc;
struct ifnet *ifp;
u_int32_t revision;
int unit, error = 0, rid, mac_offset;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct dc_softc));
/*
* Handle power management nonsense.
*/
dc_acpi(dev);
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
#ifdef DC_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("dc%d: failed to enable I/O ports!\n", unit);
error = ENXIO;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("dc%d: failed to enable memory mapping!\n", unit);
error = ENXIO;
goto fail;
}
#endif
rid = DC_RID;
sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->dc_res == NULL) {
printf("dc%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->dc_btag = rman_get_bustag(sc->dc_res);
sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
/* Allocate interrupt */
rid = 0;
sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->dc_irq == NULL) {
printf("dc%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
dc_intr, sc, &sc->dc_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
printf("dc%d: couldn't set up irq\n", unit);
goto fail;
}
/* Need this info to decide on a chip type. */
sc->dc_info = dc_devtype(dev);
revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
switch(sc->dc_info->dc_did) {
case DC_DEVICEID_21143:
sc->dc_type = DC_TYPE_21143;
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
sc->dc_flags |= DC_REDUCED_MII_POLL;
break;
case DC_DEVICEID_DM9100:
case DC_DEVICEID_DM9102:
sc->dc_type = DC_TYPE_DM9102;
sc->dc_flags |= DC_TX_USE_TX_INTR;
sc->dc_flags |= DC_REDUCED_MII_POLL;
sc->dc_pmode = DC_PMODE_MII;
break;
case DC_DEVICEID_AL981:
sc->dc_type = DC_TYPE_AL981;
sc->dc_flags |= DC_TX_USE_TX_INTR;
sc->dc_flags |= DC_TX_ADMTEK_WAR;
sc->dc_pmode = DC_PMODE_MII;
break;
case DC_DEVICEID_AN985:
sc->dc_type = DC_TYPE_AN985;
sc->dc_flags |= DC_TX_USE_TX_INTR;
sc->dc_flags |= DC_TX_ADMTEK_WAR;
sc->dc_pmode = DC_PMODE_MII;
break;
case DC_DEVICEID_98713:
case DC_DEVICEID_98713_CP:
if (revision < DC_REVISION_98713A) {
sc->dc_type = DC_TYPE_98713;
sc->dc_flags |= DC_REDUCED_MII_POLL;
}
if (revision >= DC_REVISION_98713A)
sc->dc_type = DC_TYPE_98713A;
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
break;
case DC_DEVICEID_987x5:
sc->dc_type = DC_TYPE_987x5;
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
break;
case DC_DEVICEID_82C115:
sc->dc_type = DC_TYPE_PNICII;
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
break;
case DC_DEVICEID_82C168:
sc->dc_type = DC_TYPE_PNIC;
sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
if (revision < DC_REVISION_82C169)
sc->dc_pmode = DC_PMODE_SYM;
break;
case DC_DEVICEID_AX88140A:
sc->dc_type = DC_TYPE_ASIX;
sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
sc->dc_flags |= DC_REDUCED_MII_POLL;
sc->dc_pmode = DC_PMODE_MII;
break;
default:
printf("dc%d: unknown device: %x\n", sc->dc_unit,
sc->dc_info->dc_did);
break;
}
/* Save the cache line size. */
sc->dc_cachesize = pci_read_config(dev, DC_PCI_CFLT, 4) & 0xFF;
/* Reset the adapter. */
dc_reset(sc);
/* Take 21143 out of snooze mode */
if (DC_IS_INTEL(sc)) {
command = pci_read_config(dev, DC_PCI_CFDD, 4);
command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
pci_write_config(dev, DC_PCI_CFDD, command, 4);
}
/*
* Try to learn something about the supported media.
* We know that ASIX and ADMtek and Davicom devices
* will *always* be using MII media, so that's a no-brainer.
* The tricky ones are the Macronix/PNIC II and the
* Intel 21143.
*/
if (DC_IS_INTEL(sc)) {
u_int32_t media, cwuc;
cwuc = pci_read_config(dev, DC_PCI_CWUC, 4);
cwuc |= DC_CWUC_FORCE_WUL;
pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
DELAY(10000);
media = pci_read_config(dev, DC_PCI_CWUC, 4);
cwuc &= ~DC_CWUC_FORCE_WUL;
pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
DELAY(10000);
if (media & DC_CWUC_MII_ABILITY)
sc->dc_pmode = DC_PMODE_MII;
if (media & DC_CWUC_SYM_ABILITY)
sc->dc_pmode = DC_PMODE_SYM;
/*
* If none of the bits are set, then this NIC
* isn't meant to support 'wake up LAN' mode.
* This is usually only the case on multiport
* cards, and these cards almost always have
* MII transceivers.
*/
if (media == 0)
sc->dc_pmode = DC_PMODE_MII;
} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
if (sc->dc_type == DC_TYPE_98713)
sc->dc_pmode = DC_PMODE_MII;
else
sc->dc_pmode = DC_PMODE_SYM;
} else if (!sc->dc_pmode)
sc->dc_pmode = DC_PMODE_MII;
/*
* Get station address from the EEPROM.
*/
switch(sc->dc_type) {
case DC_TYPE_98713:
case DC_TYPE_98713A:
case DC_TYPE_987x5:
case DC_TYPE_PNICII:
dc_read_eeprom(sc, (caddr_t)&mac_offset,
(DC_EE_NODEADDR_OFFSET / 2), 1, 0);
dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
break;
case DC_TYPE_PNIC:
dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
break;
case DC_TYPE_DM9102:
case DC_TYPE_21143:
case DC_TYPE_ASIX:
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
break;
case DC_TYPE_AL981:
case DC_TYPE_AN985:
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
break;
default:
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
break;
}
/*
* A 21143 or clone chip was detected. Inform the world.
*/
printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->dc_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->dc_ldata == NULL) {
printf("dc%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
error = ENXIO;
goto fail;
}
bzero(sc->dc_ldata, sizeof(struct dc_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "dc";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = dc_ioctl;
ifp->if_output = ether_output;
ifp->if_start = dc_start;
ifp->if_watchdog = dc_watchdog;
ifp->if_init = dc_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
/*
* Do MII setup.
*/
error = mii_phy_probe(dev, &sc->dc_miibus,
dc_ifmedia_upd, dc_ifmedia_sts);
if (error && DC_IS_INTEL(sc)) {
sc->dc_pmode = DC_PMODE_SYM;
mii_phy_probe(dev, &sc->dc_miibus,
dc_ifmedia_upd, dc_ifmedia_sts);
error = 0;
}
if (error) {
printf("dc%d: MII without any PHY!\n", sc->dc_unit);
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
error = ENXIO;
goto fail;
}
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
callout_handle_init(&sc->dc_stat_ch);
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
fail:
splx(s);
return(error);
}
static int dc_detach(dev)
device_t dev;
{
struct dc_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
dc_stop(sc);
if_detach(ifp);
bus_generic_detach(dev);
device_delete_child(dev, sc->dc_miibus);
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
if (sc->dc_pnic_rx_buf != NULL)
free(sc->dc_pnic_rx_buf, M_DEVBUF);
splx(s);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int dc_list_tx_init(sc)
struct dc_softc *sc;
{
struct dc_chain_data *cd;
struct dc_list_data *ld;
int i;
cd = &sc->dc_cdata;
ld = sc->dc_ldata;
for (i = 0; i < DC_TX_LIST_CNT; i++) {
if (i == (DC_TX_LIST_CNT - 1)) {
ld->dc_tx_list[i].dc_next =
vtophys(&ld->dc_tx_list[0]);
} else {
ld->dc_tx_list[i].dc_next =
vtophys(&ld->dc_tx_list[i + 1]);
}
cd->dc_tx_chain[i] = NULL;
ld->dc_tx_list[i].dc_data = 0;
ld->dc_tx_list[i].dc_ctl = 0;
}
cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int dc_list_rx_init(sc)
struct dc_softc *sc;
{
struct dc_chain_data *cd;
struct dc_list_data *ld;
int i;
cd = &sc->dc_cdata;
ld = sc->dc_ldata;
for (i = 0; i < DC_RX_LIST_CNT; i++) {
if (dc_newbuf(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (DC_RX_LIST_CNT - 1)) {
ld->dc_rx_list[i].dc_next =
vtophys(&ld->dc_rx_list[0]);
} else {
ld->dc_rx_list[i].dc_next =
vtophys(&ld->dc_rx_list[i + 1]);
}
}
cd->dc_rx_prod = 0;
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int dc_newbuf(sc, i, m)
struct dc_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct dc_desc *c;
c = &sc->dc_ldata->dc_rx_list[i];
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("dc%d: no memory for rx list "
"-- packet dropped!\n", sc->dc_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("dc%d: no memory for rx list "
"-- packet dropped!\n", sc->dc_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
/*
* If this is a PNIC chip, zero the buffer. This is part
* of the workaround for the receive bug in the 82c168 and
* 82c169 chips.
*/
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
bzero((char *)mtod(m_new, char *), m_new->m_len);
sc->dc_cdata.dc_rx_chain[i] = m_new;
c->dc_data = vtophys(mtod(m_new, caddr_t));
c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
c->dc_status = DC_RXSTAT_OWN;
return(0);
}
/*
* Grrrrr.
* The PNIC chip has a terrible bug in it that manifests itself during
* periods of heavy activity. The exact mode of failure if difficult to
* pinpoint: sometimes it only happens in promiscuous mode, sometimes it
* will happen on slow machines. The bug is that sometimes instead of
* uploading one complete frame during reception, it uploads what looks
* like the entire contents of its FIFO memory. The frame we want is at
* the end of the whole mess, but we never know exactly how much data has
* been uploaded, so salvaging the frame is hard.
*
* There is only one way to do it reliably, and it's disgusting.
* Here's what we know:
*
* - We know there will always be somewhere between one and three extra
* descriptors uploaded.
*
* - We know the desired received frame will always be at the end of the
* total data upload.
*
* - We know the size of the desired received frame because it will be
* provided in the length field of the status word in the last descriptor.
*
* Here's what we do:
*
* - When we allocate buffers for the receive ring, we bzero() them.
* This means that we know that the buffer contents should be all
* zeros, except for data uploaded by the chip.
*
* - We also force the PNIC chip to upload frames that include the
* ethernet CRC at the end.
*
* - We gather all of the bogus frame data into a single buffer.
*
* - We then position a pointer at the end of this buffer and scan
* backwards until we encounter the first non-zero byte of data.
* This is the end of the received frame. We know we will encounter
* some data at the end of the frame because the CRC will always be
* there, so even if the sender transmits a packet of all zeros,
* we won't be fooled.
*
* - We know the size of the actual received frame, so we subtract
* that value from the current pointer location. This brings us
* to the start of the actual received packet.
*
* - We copy this into an mbuf and pass it on, along with the actual
* frame length.
*
* The performance hit is tremendous, but it beats dropping frames all
* the time.
*/
#define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
static void dc_pnic_rx_bug_war(sc, idx)
struct dc_softc *sc;
int idx;
{
struct dc_desc *cur_rx;
struct dc_desc *c = NULL;
struct mbuf *m = NULL;
unsigned char *ptr;
int i, total_len;
u_int32_t rxstat = 0;
i = sc->dc_pnic_rx_bug_save;
cur_rx = &sc->dc_ldata->dc_rx_list[idx];
ptr = sc->dc_pnic_rx_buf;
bzero(ptr, sizeof(DC_RXLEN * 5));
/* Copy all the bytes from the bogus buffers. */
while (1) {
c = &sc->dc_ldata->dc_rx_list[i];
rxstat = c->dc_status;
m = sc->dc_cdata.dc_rx_chain[i];
bcopy(mtod(m, char *), ptr, DC_RXLEN);
ptr += DC_RXLEN;
/* If this is the last buffer, break out. */
if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
break;
dc_newbuf(sc, i, m);
DC_INC(i, DC_RX_LIST_CNT);
}
/* Find the length of the actual receive frame. */
total_len = DC_RXBYTES(rxstat);
/* Scan backwards until we hit a non-zero byte. */
while(*ptr == 0x00)
ptr--;
/* Round off. */
if ((uintptr_t)(ptr) & 0x3)
ptr -= 1;
/* Now find the start of the frame. */
ptr -= total_len;
if (ptr < sc->dc_pnic_rx_buf)
ptr = sc->dc_pnic_rx_buf;
/*
* Now copy the salvaged frame to the last mbuf and fake up
* the status word to make it look like a successful
* frame reception.
*/
dc_newbuf(sc, i, m);
bcopy(ptr, mtod(m, char *), total_len);
cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
return;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void dc_rxeof(sc)
struct dc_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct dc_desc *cur_rx;
int i, total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
i = sc->dc_cdata.dc_rx_prod;
while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = &sc->dc_ldata->dc_rx_list[i];
rxstat = cur_rx->dc_status;
m = sc->dc_cdata.dc_rx_chain[i];
total_len = DC_RXBYTES(rxstat);
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
if (rxstat & DC_RXSTAT_FIRSTFRAG)
sc->dc_pnic_rx_bug_save = i;
if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
DC_INC(i, DC_RX_LIST_CNT);
continue;
}
dc_pnic_rx_bug_war(sc, i);
rxstat = cur_rx->dc_status;
total_len = DC_RXBYTES(rxstat);
}
}
sc->dc_cdata.dc_rx_chain[i] = NULL;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & DC_RXSTAT_RXERR) {
ifp->if_ierrors++;
if (rxstat & DC_RXSTAT_COLLSEEN)
ifp->if_collisions++;
dc_newbuf(sc, i, m);
if (rxstat & DC_RXSTAT_CRCERR) {
DC_INC(i, DC_RX_LIST_CNT);
continue;
} else {
dc_init(sc);
return;
}
}
/* No errors; receive the packet. */
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
dc_newbuf(sc, i, m);
DC_INC(i, DC_RX_LIST_CNT);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
sc->dc_cdata.dc_rx_prod = i;
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void dc_txeof(sc)
struct dc_softc *sc;
{
struct dc_desc *cur_tx = NULL;
struct ifnet *ifp;
int idx;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
idx = sc->dc_cdata.dc_tx_cons;
while(idx != sc->dc_cdata.dc_tx_prod) {
u_int32_t txstat;
cur_tx = &sc->dc_ldata->dc_tx_list[idx];
txstat = cur_tx->dc_status;
if (txstat & DC_TXSTAT_OWN)
break;
if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
cur_tx->dc_ctl & DC_TXCTL_SETUP) {
sc->dc_cdata.dc_tx_cnt--;
if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
/*
* Yes, the PNIC is so brain damaged
* that it will sometimes generate a TX
* underrun error while DMAing the RX
* filter setup frame. If we detect this,
* we have to send the setup frame again,
* or else the filter won't be programmed
* correctly.
*/
if (DC_IS_PNIC(sc)) {
if (txstat & DC_TXSTAT_ERRSUM)
dc_setfilt(sc);
}
sc->dc_cdata.dc_tx_chain[idx] = NULL;
}
DC_INC(idx, DC_TX_LIST_CNT);
continue;
}
if (/*sc->dc_type == DC_TYPE_21143 &&*/
sc->dc_pmode == DC_PMODE_MII &&
((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
txstat &= ~DC_TXSTAT_ERRSUM;
if (txstat & DC_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & DC_TXSTAT_EXCESSCOLL)
ifp->if_collisions++;
if (txstat & DC_TXSTAT_LATECOLL)
ifp->if_collisions++;
if (!(txstat & DC_TXSTAT_UNDERRUN)) {
dc_init(sc);
return;
}
}
ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
m_freem(sc->dc_cdata.dc_tx_chain[idx]);
sc->dc_cdata.dc_tx_chain[idx] = NULL;
}
sc->dc_cdata.dc_tx_cnt--;
DC_INC(idx, DC_TX_LIST_CNT);
}
sc->dc_cdata.dc_tx_cons = idx;
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
static void dc_tick(xsc)
void *xsc;
{
struct dc_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
int s;
u_int32_t r;
s = splimp();
sc = xsc;
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->dc_miibus);
if (sc->dc_flags & DC_REDUCED_MII_POLL) {
r = CSR_READ_4(sc, DC_ISR);
if (DC_IS_INTEL(sc)) {
if (r & DC_ISR_LINKFAIL)
sc->dc_link = 0;
if (sc->dc_link == 0)
mii_tick(mii);
} else {
if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
sc->dc_cdata.dc_tx_prod == 0)
mii_tick(mii);
}
} else
mii_tick(mii);
/*
* When the init routine completes, we expect to be able to send
* packets right away, and in fact the network code will send a
* gratuitous ARP the moment the init routine marks the interface
* as running. However, even though the MAC may have been initialized,
* there may be a delay of a few seconds before the PHY completes
* autonegotiation and the link is brought up. Any transmissions
* made during that delay will be lost. Dealing with this is tricky:
* we can't just pause in the init routine while waiting for the
* PHY to come ready since that would bring the whole system to
* a screeching halt for several seconds.
*
* What we do here is prevent the TX start routine from sending
* any packets until a link has been established. After the
* interface has been initialized, the tick routine will poll
* the state of the PHY until the IFM_ACTIVE flag is set. Until
* that time, packets will stay in the send queue, and once the
* link comes up, they will be flushed out to the wire.
*/
if (!sc->dc_link) {
mii_pollstat(mii);
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->dc_link++;
if (ifp->if_snd.ifq_head != NULL)
dc_start(ifp);
}
}
sc->dc_stat_ch = timeout(dc_tick, sc, hz);
splx(s);
return;
}
static void dc_intr(arg)
void *arg;
{
struct dc_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
dc_stop(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
CSR_WRITE_4(sc, DC_ISR, status);
if (status & DC_ISR_RX_OK)
dc_rxeof(sc);
if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
dc_txeof(sc);
if (status & DC_ISR_TX_IDLE) {
dc_txeof(sc);
if (sc->dc_cdata.dc_tx_cnt) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
}
}
if (status & DC_ISR_TX_UNDERRUN) {
u_int32_t cfg;
printf("dc%d: TX underrun -- ", sc->dc_unit);
if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc))
dc_init(sc);
cfg = CSR_READ_4(sc, DC_NETCFG);
cfg &= ~DC_NETCFG_TX_THRESH;
if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
printf("using store and forward mode\n");
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
} else if (sc->dc_flags & DC_TX_STORENFWD) {
printf("resetting\n");
} else {
sc->dc_txthresh += 0x4000;
printf("increasing TX threshold\n");
CSR_WRITE_4(sc, DC_NETCFG, cfg);
DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
}
}
if ((status & DC_ISR_RX_WATDOGTIMEO)
|| (status & DC_ISR_RX_NOBUF))
dc_rxeof(sc);
if (status & DC_ISR_BUS_ERR) {
dc_reset(sc);
dc_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
if (ifp->if_snd.ifq_head != NULL)
dc_start(ifp);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int dc_encap(sc, m_head, txidx)
struct dc_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct dc_desc *f = NULL;
struct mbuf *m;
int frag, cur, cnt = 0;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
cur = frag = *txidx;
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
if (*txidx != sc->dc_cdata.dc_tx_prod &&
frag == (DC_TX_LIST_CNT - 1))
return(ENOBUFS);
}
if ((DC_TX_LIST_CNT -
(sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
return(ENOBUFS);
f = &sc->dc_ldata->dc_tx_list[frag];
f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
if (cnt == 0) {
f->dc_status = 0;
f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
} else
f->dc_status = DC_TXSTAT_OWN;
f->dc_data = vtophys(mtod(m, vm_offset_t));
cur = frag;
DC_INC(frag, DC_TX_LIST_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
sc->dc_cdata.dc_tx_cnt += cnt;
sc->dc_cdata.dc_tx_chain[cur] = m_head;
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
if (sc->dc_flags & DC_TX_INTR_ALWAYS)
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
*txidx = frag;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void dc_start(ifp)
struct ifnet *ifp;
{
struct dc_softc *sc;
struct mbuf *m_head = NULL;
int idx;
sc = ifp->if_softc;
if (!sc->dc_link)
return;
if (ifp->if_flags & IFF_OACTIVE)
return;
idx = sc->dc_cdata.dc_tx_prod;
while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (dc_encap(sc, m_head, &idx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m_head);
}
/* Transmit */
sc->dc_cdata.dc_tx_prod = idx;
if (!(sc->dc_flags & DC_TX_POLL))
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void dc_init(xsc)
void *xsc;
{
struct dc_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int s;
s = splimp();
mii = device_get_softc(sc->dc_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
dc_stop(sc);
dc_reset(sc);
/*
* Set cache alignment and burst length.
*/
if (DC_IS_ASIX(sc))
CSR_WRITE_4(sc, DC_BUSCTL, 0);
else
CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
} else {
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
}
if (sc->dc_flags & DC_TX_POLL)
DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
switch(sc->dc_cachesize) {
case 32:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
break;
case 16:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
break;
case 8:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
break;
case 0:
default:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
break;
}
if (sc->dc_flags & DC_TX_STORENFWD)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
else {
if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
} else {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
}
}
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
/*
* The app notes for the 98713 and 98715A say that
* in order to have the chips operate properly, a magic
* number must be written to CSR16. Macronix does not
* document the meaning of these bits so there's no way
* to know exactly what they do. The 98713 has a magic
* number all its own; the rest all use a different one.
*/
DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
if (sc->dc_type == DC_TYPE_98713)
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
else
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
}
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_72BYTES);
/* Init circular RX list. */
if (dc_list_rx_init(sc) == ENOBUFS) {
printf("dc%d: initialization failed: no "
"memory for rx buffers\n", sc->dc_unit);
dc_stop(sc);
(void)splx(s);
return;
}
/*
* Init tx descriptors.
*/
dc_list_tx_init(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
/* Enable transmitter. */
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
/*
* Load the RX/multicast filter. We do this sort of late
* because the filter programming scheme on the 21143 and
* some clones requires DMAing a setup frame via the TX
* engine, and we need the transmitter enabled for that.
*/
dc_setfilt(sc);
/* Enable receiver. */
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
mii_mediachg(mii);
dc_setcfg(sc, sc->dc_if_media);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
sc->dc_stat_ch = timeout(dc_tick, sc, hz);
return;
}
/*
* Set media options.
*/
static int dc_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct dc_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->dc_miibus);
mii_mediachg(mii);
sc->dc_link = 0;
return(0);
}
/*
* Report current media status.
*/
static void dc_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct dc_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->dc_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int dc_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct dc_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->dc_if_flags & IFF_PROMISC)) {
dc_setfilt(sc);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->dc_if_flags & IFF_PROMISC) {
dc_setfilt(sc);
} else if (!(ifp->if_flags & IFF_RUNNING)) {
sc->dc_txthresh = 0;
dc_init(sc);
}
} else {
if (ifp->if_flags & IFF_RUNNING)
dc_stop(sc);
}
sc->dc_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
dc_setfilt(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->dc_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void dc_watchdog(ifp)
struct ifnet *ifp;
{
struct dc_softc *sc;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("dc%d: watchdog timeout\n", sc->dc_unit);
dc_stop(sc);
dc_reset(sc);
dc_init(sc);
if (ifp->if_snd.ifq_head != NULL)
dc_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void dc_stop(sc)
struct dc_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
untimeout(dc_tick, sc, sc->dc_stat_ch);
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
sc->dc_link = 0;
/*
* Free data in the RX lists.
*/
for (i = 0; i < DC_RX_LIST_CNT; i++) {
if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
m_freem(sc->dc_cdata.dc_rx_chain[i]);
sc->dc_cdata.dc_rx_chain[i] = NULL;
}
}
bzero((char *)&sc->dc_ldata->dc_rx_list,
sizeof(sc->dc_ldata->dc_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < DC_TX_LIST_CNT; i++) {
if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
DC_TXCTL_SETUP) {
sc->dc_cdata.dc_tx_chain[i] = NULL;
continue;
}
m_freem(sc->dc_cdata.dc_tx_chain[i]);
sc->dc_cdata.dc_tx_chain[i] = NULL;
}
}
bzero((char *)&sc->dc_ldata->dc_tx_list,
sizeof(sc->dc_ldata->dc_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void dc_shutdown(dev)
device_t dev;
{
struct dc_softc *sc;
sc = device_get_softc(dev);
dc_stop(sc);
return;
}