Centralize the fdctl_wr() function by adding the offset in the resource to the softc structure. Bugfix: Read the drive-change signal from the correct place: same place as the ctl register. Remove the cdevsw{} related code and implement a GEOM class. Ditch the state-engine and park a thread on each controller to service the queue. Make the interrupt FAST & MPSAFE since it is just a simple wakeup(9) call. Rely on a per controller mutex to protect the bioqueues. Grab GEOMs topology lock when we have to and Giant when ISADMA needs it. Since all access to the hardware is isolated in the per controller thread, the rest of the driver is lock & Giant free. Create a per-drive queue where requests are parked while the motor spins up. When the motor is running the requests are purged to the per controller queue. This allows requests to other drives to be serviced during spin-up. Only setup the motor-off timeout when we finish the last request on the queue and cancel it when a new request arrives. This fixes the bug in the old code where the motor turned off while we were still retrying a request. Make the "drive-change" work reliably. Probe the drive on first opens. Probe with a recal and a seek to cyl=1 to reset the drive change line and check again to see if we have a media. When we see the media disappear we destroy the geom provider, create a new one, and flag that autodetection should happen next time we see a media (unless a specific format is configured). Add sysctl tunables for a lot of drive related parameters. If you spend a lot of time waiting for floppies you can grab the i82078 pdf from Intels web-page and try tuning these. Add sysctl debug.fdc.debugflags which will enable various kinds of debugging printfs. Add central definitions of our well known floppy formats. Simplify datastructures for autoselection of format and call the code at the right times. Bugfix: Remove at least one piece of code which would have made 2.88M floppies not work. Use implied seeks on enhanced controllers. Use multisector transfers on all controllers. Increase ISADMA bounce buffers accordingly. Fall back to single sector when retrying. Reset retry count on every successful transaction. Sort functions in a more sensible order and generally tidy up a fair bit here and there. Assorted related fixes and adjustments in userland utilities. WORKAROUNDS: Do allow r/w opens of r/o media but refuse actual write operations. This is necessary until the p4::phk_bufwork branch gets integrated (This problem relates to remounting not reopening devices, see sys/*/*/${fs}_vfsops.c for details). Keep PC98's private copy of the old floppy driver compiling and presumably working (see below). TODO (planned) Move probing of drives until after interrupts/timeouts work (like for ATA/SCSI drives). TODO (unplanned) This driver should be made to work on PC98 as well. Test on YE-DATA PCMCIA floppy drive. Fix 2.88M media. This is a MT5 candidate (depends on the bioq_takefirst() addition).
…
This is the top level of the FreeBSD source directory. This file was last revised on: $FreeBSD$ For copyright information, please see the file COPYRIGHT in this directory (additional copyright information also exists for some sources in this tree - please see the specific source directories for more information). The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree, the most commonly used one being ``world'', which rebuilds and installs everything in the FreeBSD system from the source tree except the kernel, the kernel-modules and the contents of /etc. The ``buildkernel'' and ``installkernel'' targets build and install the kernel and the modules (see below). Please see the top of the Makefile in this directory for more information on the standard build targets and compile-time flags. Building a kernel is a somewhat more involved process, documentation for which can be found at: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html And in the config(8) man page. Note: If you want to build and install the kernel with the ``buildkernel'' and ``installkernel'' targets, you might need to build world before. More information is available in the handbook. The sample kernel configuration files reside in the sys/<arch>/conf sub-directory (assuming that you've installed the kernel sources), the file named GENERIC being the one used to build your initial installation kernel. The file NOTES contains entries and documentation for all possible devices, not just those commonly used. It is the successor of the ancient LINT file, but in contrast to LINT, it is not buildable as a kernel but a pure reference and documentation file. Source Roadmap: --------------- bin System/user commands. contrib Packages contributed by 3rd parties. crypto Cryptography stuff (see crypto/README). etc Template files for /etc. games Amusements. gnu Various commands and libraries under the GNU Public License. Please see gnu/COPYING* for more information. include System include files. kerberos5 Kerberos5 (Heimdal) package. lib System libraries. libexec System daemons. release Release building Makefile & associated tools. sbin System commands. secure Cryptographic libraries and commands. share Shared resources. sys Kernel sources. tools Utilities for regression testing and miscellaneous tasks. usr.bin User commands. usr.sbin System administration commands. For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html
Description
Languages
C
63.3%
C++
23.3%
Roff
5.1%
Shell
2.9%
Makefile
1.5%
Other
3.4%