freebsd-skq/contrib/compiler-rt/lib/asan/asan_allocator2.cc
dim ab328f15ce Update compiler-rt to trunk r224034. This brings a number of new
builtins, and also the various sanitizers.  Support for these will be
added in a later commit.
2015-01-08 19:47:10 +00:00

793 lines
27 KiB
C++

//===-- asan_allocator2.cc ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Implementation of ASan's memory allocator, 2-nd version.
// This variant uses the allocator from sanitizer_common, i.e. the one shared
// with ThreadSanitizer and MemorySanitizer.
//
//===----------------------------------------------------------------------===//
#include "asan_allocator.h"
#include "asan_mapping.h"
#include "asan_poisoning.h"
#include "asan_report.h"
#include "asan_stack.h"
#include "asan_thread.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_list.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_quarantine.h"
#include "lsan/lsan_common.h"
namespace __asan {
void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
// Statistics.
AsanStats &thread_stats = GetCurrentThreadStats();
thread_stats.mmaps++;
thread_stats.mmaped += size;
}
void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
PoisonShadow(p, size, 0);
// We are about to unmap a chunk of user memory.
// Mark the corresponding shadow memory as not needed.
FlushUnneededASanShadowMemory(p, size);
// Statistics.
AsanStats &thread_stats = GetCurrentThreadStats();
thread_stats.munmaps++;
thread_stats.munmaped += size;
}
// We can not use THREADLOCAL because it is not supported on some of the
// platforms we care about (OSX 10.6, Android).
// static THREADLOCAL AllocatorCache cache;
AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
CHECK(ms);
return &ms->allocator2_cache;
}
static Allocator allocator;
static const uptr kMaxAllowedMallocSize =
FIRST_32_SECOND_64(3UL << 30, 64UL << 30);
static const uptr kMaxThreadLocalQuarantine =
FIRST_32_SECOND_64(1 << 18, 1 << 20);
// Every chunk of memory allocated by this allocator can be in one of 3 states:
// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
enum {
CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it.
CHUNK_ALLOCATED = 2,
CHUNK_QUARANTINE = 3
};
// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
// We use adaptive redzones: for larger allocation larger redzones are used.
static u32 RZLog2Size(u32 rz_log) {
CHECK_LT(rz_log, 8);
return 16 << rz_log;
}
static u32 RZSize2Log(u32 rz_size) {
CHECK_GE(rz_size, 16);
CHECK_LE(rz_size, 2048);
CHECK(IsPowerOfTwo(rz_size));
u32 res = Log2(rz_size) - 4;
CHECK_EQ(rz_size, RZLog2Size(res));
return res;
}
static uptr ComputeRZLog(uptr user_requested_size) {
u32 rz_log =
user_requested_size <= 64 - 16 ? 0 :
user_requested_size <= 128 - 32 ? 1 :
user_requested_size <= 512 - 64 ? 2 :
user_requested_size <= 4096 - 128 ? 3 :
user_requested_size <= (1 << 14) - 256 ? 4 :
user_requested_size <= (1 << 15) - 512 ? 5 :
user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
return Min(Max(rz_log, RZSize2Log(flags()->redzone)),
RZSize2Log(flags()->max_redzone));
}
// The memory chunk allocated from the underlying allocator looks like this:
// L L L L L L H H U U U U U U R R
// L -- left redzone words (0 or more bytes)
// H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
// U -- user memory.
// R -- right redzone (0 or more bytes)
// ChunkBase consists of ChunkHeader and other bytes that overlap with user
// memory.
// If the left redzone is greater than the ChunkHeader size we store a magic
// value in the first uptr word of the memory block and store the address of
// ChunkBase in the next uptr.
// M B L L L L L L L L L H H U U U U U U
// | ^
// ---------------------|
// M -- magic value kAllocBegMagic
// B -- address of ChunkHeader pointing to the first 'H'
static const uptr kAllocBegMagic = 0xCC6E96B9;
struct ChunkHeader {
// 1-st 8 bytes.
u32 chunk_state : 8; // Must be first.
u32 alloc_tid : 24;
u32 free_tid : 24;
u32 from_memalign : 1;
u32 alloc_type : 2;
u32 rz_log : 3;
u32 lsan_tag : 2;
// 2-nd 8 bytes
// This field is used for small sizes. For large sizes it is equal to
// SizeClassMap::kMaxSize and the actual size is stored in the
// SecondaryAllocator's metadata.
u32 user_requested_size;
u32 alloc_context_id;
};
struct ChunkBase : ChunkHeader {
// Header2, intersects with user memory.
u32 free_context_id;
};
static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
COMPILER_CHECK(kChunkHeaderSize == 16);
COMPILER_CHECK(kChunkHeader2Size <= 16);
struct AsanChunk: ChunkBase {
uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
uptr UsedSize(bool locked_version = false) {
if (user_requested_size != SizeClassMap::kMaxSize)
return user_requested_size;
return *reinterpret_cast<uptr *>(
allocator.GetMetaData(AllocBeg(locked_version)));
}
void *AllocBeg(bool locked_version = false) {
if (from_memalign) {
if (locked_version)
return allocator.GetBlockBeginFastLocked(
reinterpret_cast<void *>(this));
return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
}
return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
}
bool AddrIsInside(uptr addr, bool locked_version = false) {
return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
}
};
bool AsanChunkView::IsValid() {
return chunk_ != 0 && chunk_->chunk_state != CHUNK_AVAILABLE;
}
uptr AsanChunkView::Beg() { return chunk_->Beg(); }
uptr AsanChunkView::End() { return Beg() + UsedSize(); }
uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
static StackTrace GetStackTraceFromId(u32 id) {
CHECK(id);
StackTrace res = StackDepotGet(id);
CHECK(res.trace);
return res;
}
StackTrace AsanChunkView::GetAllocStack() {
return GetStackTraceFromId(chunk_->alloc_context_id);
}
StackTrace AsanChunkView::GetFreeStack() {
return GetStackTraceFromId(chunk_->free_context_id);
}
struct QuarantineCallback;
typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
typedef AsanQuarantine::Cache QuarantineCache;
static AsanQuarantine quarantine(LINKER_INITIALIZED);
static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;
QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
}
struct QuarantineCallback {
explicit QuarantineCallback(AllocatorCache *cache)
: cache_(cache) {
}
void Recycle(AsanChunk *m) {
CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
CHECK_NE(m->alloc_tid, kInvalidTid);
CHECK_NE(m->free_tid, kInvalidTid);
PoisonShadow(m->Beg(),
RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
kAsanHeapLeftRedzoneMagic);
void *p = reinterpret_cast<void *>(m->AllocBeg());
if (p != m) {
uptr *alloc_magic = reinterpret_cast<uptr *>(p);
CHECK_EQ(alloc_magic[0], kAllocBegMagic);
// Clear the magic value, as allocator internals may overwrite the
// contents of deallocated chunk, confusing GetAsanChunk lookup.
alloc_magic[0] = 0;
CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
}
// Statistics.
AsanStats &thread_stats = GetCurrentThreadStats();
thread_stats.real_frees++;
thread_stats.really_freed += m->UsedSize();
allocator.Deallocate(cache_, p);
}
void *Allocate(uptr size) {
return allocator.Allocate(cache_, size, 1, false);
}
void Deallocate(void *p) {
allocator.Deallocate(cache_, p);
}
AllocatorCache *cache_;
};
void InitializeAllocator() {
allocator.Init();
quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
}
void ReInitializeAllocator() {
quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
}
static void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
AllocType alloc_type, bool can_fill) {
if (UNLIKELY(!asan_inited))
AsanInitFromRtl();
Flags &fl = *flags();
CHECK(stack);
const uptr min_alignment = SHADOW_GRANULARITY;
if (alignment < min_alignment)
alignment = min_alignment;
if (size == 0) {
// We'd be happy to avoid allocating memory for zero-size requests, but
// some programs/tests depend on this behavior and assume that malloc would
// not return NULL even for zero-size allocations. Moreover, it looks like
// operator new should never return NULL, and results of consecutive "new"
// calls must be different even if the allocated size is zero.
size = 1;
}
CHECK(IsPowerOfTwo(alignment));
uptr rz_log = ComputeRZLog(size);
uptr rz_size = RZLog2Size(rz_log);
uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
uptr needed_size = rounded_size + rz_size;
if (alignment > min_alignment)
needed_size += alignment;
bool using_primary_allocator = true;
// If we are allocating from the secondary allocator, there will be no
// automatic right redzone, so add the right redzone manually.
if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
needed_size += rz_size;
using_primary_allocator = false;
}
CHECK(IsAligned(needed_size, min_alignment));
if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
(void*)size);
return AllocatorReturnNull();
}
AsanThread *t = GetCurrentThread();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, needed_size, 8, false);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, needed_size, 8, false);
}
if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && flags()->poison_heap) {
// Heap poisoning is enabled, but the allocator provides an unpoisoned
// chunk. This is possible if flags()->poison_heap was disabled for some
// time, for example, due to flags()->start_disabled.
// Anyway, poison the block before using it for anything else.
uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
}
uptr alloc_beg = reinterpret_cast<uptr>(allocated);
uptr alloc_end = alloc_beg + needed_size;
uptr beg_plus_redzone = alloc_beg + rz_size;
uptr user_beg = beg_plus_redzone;
if (!IsAligned(user_beg, alignment))
user_beg = RoundUpTo(user_beg, alignment);
uptr user_end = user_beg + size;
CHECK_LE(user_end, alloc_end);
uptr chunk_beg = user_beg - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
m->alloc_type = alloc_type;
m->rz_log = rz_log;
u32 alloc_tid = t ? t->tid() : 0;
m->alloc_tid = alloc_tid;
CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield?
m->free_tid = kInvalidTid;
m->from_memalign = user_beg != beg_plus_redzone;
if (alloc_beg != chunk_beg) {
CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
}
if (using_primary_allocator) {
CHECK(size);
m->user_requested_size = size;
CHECK(allocator.FromPrimary(allocated));
} else {
CHECK(!allocator.FromPrimary(allocated));
m->user_requested_size = SizeClassMap::kMaxSize;
uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
meta[0] = size;
meta[1] = chunk_beg;
}
m->alloc_context_id = StackDepotPut(*stack);
uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
// Unpoison the bulk of the memory region.
if (size_rounded_down_to_granularity)
PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
// Deal with the end of the region if size is not aligned to granularity.
if (size != size_rounded_down_to_granularity && fl.poison_heap) {
u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
*shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
}
AsanStats &thread_stats = GetCurrentThreadStats();
thread_stats.mallocs++;
thread_stats.malloced += size;
thread_stats.malloced_redzones += needed_size - size;
uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
thread_stats.malloced_by_size[class_id]++;
if (needed_size > SizeClassMap::kMaxSize)
thread_stats.malloc_large++;
void *res = reinterpret_cast<void *>(user_beg);
if (can_fill && fl.max_malloc_fill_size) {
uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
REAL(memset)(res, fl.malloc_fill_byte, fill_size);
}
#if CAN_SANITIZE_LEAKS
m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
: __lsan::kDirectlyLeaked;
#endif
// Must be the last mutation of metadata in this function.
atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
ASAN_MALLOC_HOOK(res, size);
return res;
}
static void ReportInvalidFree(void *ptr, u8 chunk_state,
BufferedStackTrace *stack) {
if (chunk_state == CHUNK_QUARANTINE)
ReportDoubleFree((uptr)ptr, stack);
else
ReportFreeNotMalloced((uptr)ptr, stack);
}
static void AtomicallySetQuarantineFlag(AsanChunk *m, void *ptr,
BufferedStackTrace *stack) {
u8 old_chunk_state = CHUNK_ALLOCATED;
// Flip the chunk_state atomically to avoid race on double-free.
if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
CHUNK_QUARANTINE, memory_order_acquire))
ReportInvalidFree(ptr, old_chunk_state, stack);
CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
}
// Expects the chunk to already be marked as quarantined by using
// AtomicallySetQuarantineFlag.
static void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack,
AllocType alloc_type) {
CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
ReportAllocTypeMismatch((uptr)ptr, stack,
(AllocType)m->alloc_type, (AllocType)alloc_type);
CHECK_GE(m->alloc_tid, 0);
if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area.
CHECK_EQ(m->free_tid, kInvalidTid);
AsanThread *t = GetCurrentThread();
m->free_tid = t ? t->tid() : 0;
m->free_context_id = StackDepotPut(*stack);
// Poison the region.
PoisonShadow(m->Beg(),
RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
kAsanHeapFreeMagic);
AsanStats &thread_stats = GetCurrentThreadStats();
thread_stats.frees++;
thread_stats.freed += m->UsedSize();
// Push into quarantine.
if (t) {
AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
AllocatorCache *ac = GetAllocatorCache(ms);
quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
m, m->UsedSize());
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *ac = &fallback_allocator_cache;
quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
m, m->UsedSize());
}
}
static void Deallocate(void *ptr, uptr delete_size, BufferedStackTrace *stack,
AllocType alloc_type) {
uptr p = reinterpret_cast<uptr>(ptr);
if (p == 0) return;
uptr chunk_beg = p - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
if (delete_size && flags()->new_delete_type_mismatch &&
delete_size != m->UsedSize()) {
ReportNewDeleteSizeMismatch(p, delete_size, stack);
}
ASAN_FREE_HOOK(ptr);
// Must mark the chunk as quarantined before any changes to its metadata.
AtomicallySetQuarantineFlag(m, ptr, stack);
QuarantineChunk(m, ptr, stack, alloc_type);
}
static void *Reallocate(void *old_ptr, uptr new_size,
BufferedStackTrace *stack) {
CHECK(old_ptr && new_size);
uptr p = reinterpret_cast<uptr>(old_ptr);
uptr chunk_beg = p - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
AsanStats &thread_stats = GetCurrentThreadStats();
thread_stats.reallocs++;
thread_stats.realloced += new_size;
void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
if (new_ptr) {
u8 chunk_state = m->chunk_state;
if (chunk_state != CHUNK_ALLOCATED)
ReportInvalidFree(old_ptr, chunk_state, stack);
CHECK_NE(REAL(memcpy), (void*)0);
uptr memcpy_size = Min(new_size, m->UsedSize());
// If realloc() races with free(), we may start copying freed memory.
// However, we will report racy double-free later anyway.
REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
Deallocate(old_ptr, 0, stack, FROM_MALLOC);
}
return new_ptr;
}
// Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
static AsanChunk *GetAsanChunk(void *alloc_beg) {
if (!alloc_beg) return 0;
if (!allocator.FromPrimary(alloc_beg)) {
uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
return m;
}
uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
if (alloc_magic[0] == kAllocBegMagic)
return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
return reinterpret_cast<AsanChunk *>(alloc_beg);
}
static AsanChunk *GetAsanChunkByAddr(uptr p) {
void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
return GetAsanChunk(alloc_beg);
}
// Allocator must be locked when this function is called.
static AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
void *alloc_beg =
allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
return GetAsanChunk(alloc_beg);
}
static uptr AllocationSize(uptr p) {
AsanChunk *m = GetAsanChunkByAddr(p);
if (!m) return 0;
if (m->chunk_state != CHUNK_ALLOCATED) return 0;
if (m->Beg() != p) return 0;
return m->UsedSize();
}
// We have an address between two chunks, and we want to report just one.
AsanChunk *ChooseChunk(uptr addr,
AsanChunk *left_chunk, AsanChunk *right_chunk) {
// Prefer an allocated chunk over freed chunk and freed chunk
// over available chunk.
if (left_chunk->chunk_state != right_chunk->chunk_state) {
if (left_chunk->chunk_state == CHUNK_ALLOCATED)
return left_chunk;
if (right_chunk->chunk_state == CHUNK_ALLOCATED)
return right_chunk;
if (left_chunk->chunk_state == CHUNK_QUARANTINE)
return left_chunk;
if (right_chunk->chunk_state == CHUNK_QUARANTINE)
return right_chunk;
}
// Same chunk_state: choose based on offset.
sptr l_offset = 0, r_offset = 0;
CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
if (l_offset < r_offset)
return left_chunk;
return right_chunk;
}
AsanChunkView FindHeapChunkByAddress(uptr addr) {
AsanChunk *m1 = GetAsanChunkByAddr(addr);
if (!m1) return AsanChunkView(m1);
sptr offset = 0;
if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
// The address is in the chunk's left redzone, so maybe it is actually
// a right buffer overflow from the other chunk to the left.
// Search a bit to the left to see if there is another chunk.
AsanChunk *m2 = 0;
for (uptr l = 1; l < GetPageSizeCached(); l++) {
m2 = GetAsanChunkByAddr(addr - l);
if (m2 == m1) continue; // Still the same chunk.
break;
}
if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
m1 = ChooseChunk(addr, m2, m1);
}
return AsanChunkView(m1);
}
void AsanThreadLocalMallocStorage::CommitBack() {
AllocatorCache *ac = GetAllocatorCache(this);
quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
allocator.SwallowCache(GetAllocatorCache(this));
}
void PrintInternalAllocatorStats() {
allocator.PrintStats();
}
void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
AllocType alloc_type) {
return Allocate(size, alignment, stack, alloc_type, true);
}
void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
Deallocate(ptr, 0, stack, alloc_type);
}
void asan_sized_free(void *ptr, uptr size, BufferedStackTrace *stack,
AllocType alloc_type) {
Deallocate(ptr, size, stack, alloc_type);
}
void *asan_malloc(uptr size, BufferedStackTrace *stack) {
return Allocate(size, 8, stack, FROM_MALLOC, true);
}
void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
if (CallocShouldReturnNullDueToOverflow(size, nmemb))
return AllocatorReturnNull();
void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
// If the memory comes from the secondary allocator no need to clear it
// as it comes directly from mmap.
if (ptr && allocator.FromPrimary(ptr))
REAL(memset)(ptr, 0, nmemb * size);
return ptr;
}
void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
if (p == 0)
return Allocate(size, 8, stack, FROM_MALLOC, true);
if (size == 0) {
Deallocate(p, 0, stack, FROM_MALLOC);
return 0;
}
return Reallocate(p, size, stack);
}
void *asan_valloc(uptr size, BufferedStackTrace *stack) {
return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
}
void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
uptr PageSize = GetPageSizeCached();
size = RoundUpTo(size, PageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
size = PageSize;
}
return Allocate(size, PageSize, stack, FROM_MALLOC, true);
}
int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
BufferedStackTrace *stack) {
void *ptr = Allocate(size, alignment, stack, FROM_MALLOC, true);
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
uptr asan_malloc_usable_size(void *ptr, uptr pc, uptr bp) {
if (ptr == 0) return 0;
uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
if (flags()->check_malloc_usable_size && (usable_size == 0)) {
GET_STACK_TRACE_FATAL(pc, bp);
ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
}
return usable_size;
}
uptr asan_mz_size(const void *ptr) {
return AllocationSize(reinterpret_cast<uptr>(ptr));
}
void asan_mz_force_lock() {
allocator.ForceLock();
fallback_mutex.Lock();
}
void asan_mz_force_unlock() {
fallback_mutex.Unlock();
allocator.ForceUnlock();
}
} // namespace __asan
// --- Implementation of LSan-specific functions --- {{{1
namespace __lsan {
void LockAllocator() {
__asan::allocator.ForceLock();
}
void UnlockAllocator() {
__asan::allocator.ForceUnlock();
}
void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
*begin = (uptr)&__asan::allocator;
*end = *begin + sizeof(__asan::allocator);
}
uptr PointsIntoChunk(void* p) {
uptr addr = reinterpret_cast<uptr>(p);
__asan::AsanChunk *m = __asan::GetAsanChunkByAddrFastLocked(addr);
if (!m) return 0;
uptr chunk = m->Beg();
if (m->chunk_state != __asan::CHUNK_ALLOCATED)
return 0;
if (m->AddrIsInside(addr, /*locked_version=*/true))
return chunk;
if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true),
addr))
return chunk;
return 0;
}
uptr GetUserBegin(uptr chunk) {
__asan::AsanChunk *m =
__asan::GetAsanChunkByAddrFastLocked(chunk);
CHECK(m);
return m->Beg();
}
LsanMetadata::LsanMetadata(uptr chunk) {
metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
}
bool LsanMetadata::allocated() const {
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
return m->chunk_state == __asan::CHUNK_ALLOCATED;
}
ChunkTag LsanMetadata::tag() const {
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
return static_cast<ChunkTag>(m->lsan_tag);
}
void LsanMetadata::set_tag(ChunkTag value) {
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
m->lsan_tag = value;
}
uptr LsanMetadata::requested_size() const {
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
return m->UsedSize(/*locked_version=*/true);
}
u32 LsanMetadata::stack_trace_id() const {
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
return m->alloc_context_id;
}
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
__asan::allocator.ForEachChunk(callback, arg);
}
IgnoreObjectResult IgnoreObjectLocked(const void *p) {
uptr addr = reinterpret_cast<uptr>(p);
__asan::AsanChunk *m = __asan::GetAsanChunkByAddr(addr);
if (!m) return kIgnoreObjectInvalid;
if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
if (m->lsan_tag == kIgnored)
return kIgnoreObjectAlreadyIgnored;
m->lsan_tag = __lsan::kIgnored;
return kIgnoreObjectSuccess;
} else {
return kIgnoreObjectInvalid;
}
}
} // namespace __lsan
// ---------------------- Interface ---------------- {{{1
using namespace __asan; // NOLINT
// ASan allocator doesn't reserve extra bytes, so normally we would
// just return "size". We don't want to expose our redzone sizes, etc here.
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
return size;
}
int __sanitizer_get_ownership(const void *p) {
uptr ptr = reinterpret_cast<uptr>(p);
return (AllocationSize(ptr) > 0);
}
uptr __sanitizer_get_allocated_size(const void *p) {
if (p == 0) return 0;
uptr ptr = reinterpret_cast<uptr>(p);
uptr allocated_size = AllocationSize(ptr);
// Die if p is not malloced or if it is already freed.
if (allocated_size == 0) {
GET_STACK_TRACE_FATAL_HERE;
ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
}
return allocated_size;
}
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default (no-op) implementation of malloc hooks.
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
void __sanitizer_malloc_hook(void *ptr, uptr size) {
(void)ptr;
(void)size;
}
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
void __sanitizer_free_hook(void *ptr) {
(void)ptr;
}
} // extern "C"
#endif