ab328f15ce
builtins, and also the various sanitizers. Support for these will be added in a later commit.
1391 lines
44 KiB
C++
1391 lines
44 KiB
C++
//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SANITIZER_ALLOCATOR_H
|
|
#define SANITIZER_ALLOCATOR_H
|
|
|
|
#include "sanitizer_internal_defs.h"
|
|
#include "sanitizer_common.h"
|
|
#include "sanitizer_libc.h"
|
|
#include "sanitizer_list.h"
|
|
#include "sanitizer_mutex.h"
|
|
#include "sanitizer_lfstack.h"
|
|
|
|
namespace __sanitizer {
|
|
|
|
// Depending on allocator_may_return_null either return 0 or crash.
|
|
void *AllocatorReturnNull();
|
|
|
|
// SizeClassMap maps allocation sizes into size classes and back.
|
|
// Class 0 corresponds to size 0.
|
|
// Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
|
|
// Next 4 classes: 256 + i * 64 (i = 1 to 4).
|
|
// Next 4 classes: 512 + i * 128 (i = 1 to 4).
|
|
// ...
|
|
// Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
|
|
// Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
|
|
//
|
|
// This structure of the size class map gives us:
|
|
// - Efficient table-free class-to-size and size-to-class functions.
|
|
// - Difference between two consequent size classes is betweed 14% and 25%
|
|
//
|
|
// This class also gives a hint to a thread-caching allocator about the amount
|
|
// of chunks that need to be cached per-thread:
|
|
// - kMaxNumCached is the maximal number of chunks per size class.
|
|
// - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
|
|
//
|
|
// Part of output of SizeClassMap::Print():
|
|
// c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
|
|
// c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
|
|
// c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
|
|
// c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
|
|
// c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
|
|
// c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
|
|
// c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
|
|
// c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
|
|
//
|
|
// c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
|
|
// c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
|
|
// c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
|
|
// c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
|
|
// c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
|
|
// c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
|
|
// c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
|
|
// c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
|
|
//
|
|
// c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
|
|
// c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
|
|
// c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
|
|
// c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
|
|
//
|
|
// c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
|
|
// c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
|
|
// c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
|
|
// c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
|
|
//
|
|
// c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
|
|
// c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
|
|
// c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
|
|
// c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
|
|
//
|
|
// ...
|
|
//
|
|
// c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
|
|
// c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
|
|
// c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
|
|
// c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
|
|
//
|
|
// c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
|
|
|
|
template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
|
|
class SizeClassMap {
|
|
static const uptr kMinSizeLog = 4;
|
|
static const uptr kMidSizeLog = kMinSizeLog + 4;
|
|
static const uptr kMinSize = 1 << kMinSizeLog;
|
|
static const uptr kMidSize = 1 << kMidSizeLog;
|
|
static const uptr kMidClass = kMidSize / kMinSize;
|
|
static const uptr S = 2;
|
|
static const uptr M = (1 << S) - 1;
|
|
|
|
public:
|
|
static const uptr kMaxNumCached = kMaxNumCachedT;
|
|
// We transfer chunks between central and thread-local free lists in batches.
|
|
// For small size classes we allocate batches separately.
|
|
// For large size classes we use one of the chunks to store the batch.
|
|
struct TransferBatch {
|
|
TransferBatch *next;
|
|
uptr count;
|
|
void *batch[kMaxNumCached];
|
|
};
|
|
|
|
static const uptr kMaxSize = 1UL << kMaxSizeLog;
|
|
static const uptr kNumClasses =
|
|
kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
|
|
COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
|
|
static const uptr kNumClassesRounded =
|
|
kNumClasses == 32 ? 32 :
|
|
kNumClasses <= 64 ? 64 :
|
|
kNumClasses <= 128 ? 128 : 256;
|
|
|
|
static uptr Size(uptr class_id) {
|
|
if (class_id <= kMidClass)
|
|
return kMinSize * class_id;
|
|
class_id -= kMidClass;
|
|
uptr t = kMidSize << (class_id >> S);
|
|
return t + (t >> S) * (class_id & M);
|
|
}
|
|
|
|
static uptr ClassID(uptr size) {
|
|
if (size <= kMidSize)
|
|
return (size + kMinSize - 1) >> kMinSizeLog;
|
|
if (size > kMaxSize) return 0;
|
|
uptr l = MostSignificantSetBitIndex(size);
|
|
uptr hbits = (size >> (l - S)) & M;
|
|
uptr lbits = size & ((1 << (l - S)) - 1);
|
|
uptr l1 = l - kMidSizeLog;
|
|
return kMidClass + (l1 << S) + hbits + (lbits > 0);
|
|
}
|
|
|
|
static uptr MaxCached(uptr class_id) {
|
|
if (class_id == 0) return 0;
|
|
uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
|
|
return Max<uptr>(1, Min(kMaxNumCached, n));
|
|
}
|
|
|
|
static void Print() {
|
|
uptr prev_s = 0;
|
|
uptr total_cached = 0;
|
|
for (uptr i = 0; i < kNumClasses; i++) {
|
|
uptr s = Size(i);
|
|
if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
|
|
Printf("\n");
|
|
uptr d = s - prev_s;
|
|
uptr p = prev_s ? (d * 100 / prev_s) : 0;
|
|
uptr l = s ? MostSignificantSetBitIndex(s) : 0;
|
|
uptr cached = MaxCached(i) * s;
|
|
Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
|
|
"cached: %zd %zd; id %zd\n",
|
|
i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
|
|
total_cached += cached;
|
|
prev_s = s;
|
|
}
|
|
Printf("Total cached: %zd\n", total_cached);
|
|
}
|
|
|
|
static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
|
|
return Size(class_id) < sizeof(TransferBatch) -
|
|
sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
|
|
}
|
|
|
|
static void Validate() {
|
|
for (uptr c = 1; c < kNumClasses; c++) {
|
|
// Printf("Validate: c%zd\n", c);
|
|
uptr s = Size(c);
|
|
CHECK_NE(s, 0U);
|
|
CHECK_EQ(ClassID(s), c);
|
|
if (c != kNumClasses - 1)
|
|
CHECK_EQ(ClassID(s + 1), c + 1);
|
|
CHECK_EQ(ClassID(s - 1), c);
|
|
if (c)
|
|
CHECK_GT(Size(c), Size(c-1));
|
|
}
|
|
CHECK_EQ(ClassID(kMaxSize + 1), 0);
|
|
|
|
for (uptr s = 1; s <= kMaxSize; s++) {
|
|
uptr c = ClassID(s);
|
|
// Printf("s%zd => c%zd\n", s, c);
|
|
CHECK_LT(c, kNumClasses);
|
|
CHECK_GE(Size(c), s);
|
|
if (c > 0)
|
|
CHECK_LT(Size(c-1), s);
|
|
}
|
|
}
|
|
};
|
|
|
|
typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
|
|
typedef SizeClassMap<17, 64, 14> CompactSizeClassMap;
|
|
template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
|
|
|
|
// Memory allocator statistics
|
|
enum AllocatorStat {
|
|
AllocatorStatAllocated,
|
|
AllocatorStatMapped,
|
|
AllocatorStatCount
|
|
};
|
|
|
|
typedef uptr AllocatorStatCounters[AllocatorStatCount];
|
|
|
|
// Per-thread stats, live in per-thread cache.
|
|
class AllocatorStats {
|
|
public:
|
|
void Init() {
|
|
internal_memset(this, 0, sizeof(*this));
|
|
}
|
|
|
|
void Add(AllocatorStat i, uptr v) {
|
|
v += atomic_load(&stats_[i], memory_order_relaxed);
|
|
atomic_store(&stats_[i], v, memory_order_relaxed);
|
|
}
|
|
|
|
void Sub(AllocatorStat i, uptr v) {
|
|
v = atomic_load(&stats_[i], memory_order_relaxed) - v;
|
|
atomic_store(&stats_[i], v, memory_order_relaxed);
|
|
}
|
|
|
|
void Set(AllocatorStat i, uptr v) {
|
|
atomic_store(&stats_[i], v, memory_order_relaxed);
|
|
}
|
|
|
|
uptr Get(AllocatorStat i) const {
|
|
return atomic_load(&stats_[i], memory_order_relaxed);
|
|
}
|
|
|
|
private:
|
|
friend class AllocatorGlobalStats;
|
|
AllocatorStats *next_;
|
|
AllocatorStats *prev_;
|
|
atomic_uintptr_t stats_[AllocatorStatCount];
|
|
};
|
|
|
|
// Global stats, used for aggregation and querying.
|
|
class AllocatorGlobalStats : public AllocatorStats {
|
|
public:
|
|
void Init() {
|
|
internal_memset(this, 0, sizeof(*this));
|
|
next_ = this;
|
|
prev_ = this;
|
|
}
|
|
|
|
void Register(AllocatorStats *s) {
|
|
SpinMutexLock l(&mu_);
|
|
s->next_ = next_;
|
|
s->prev_ = this;
|
|
next_->prev_ = s;
|
|
next_ = s;
|
|
}
|
|
|
|
void Unregister(AllocatorStats *s) {
|
|
SpinMutexLock l(&mu_);
|
|
s->prev_->next_ = s->next_;
|
|
s->next_->prev_ = s->prev_;
|
|
for (int i = 0; i < AllocatorStatCount; i++)
|
|
Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
|
|
}
|
|
|
|
void Get(AllocatorStatCounters s) const {
|
|
internal_memset(s, 0, AllocatorStatCount * sizeof(uptr));
|
|
SpinMutexLock l(&mu_);
|
|
const AllocatorStats *stats = this;
|
|
for (;;) {
|
|
for (int i = 0; i < AllocatorStatCount; i++)
|
|
s[i] += stats->Get(AllocatorStat(i));
|
|
stats = stats->next_;
|
|
if (stats == this)
|
|
break;
|
|
}
|
|
// All stats must be non-negative.
|
|
for (int i = 0; i < AllocatorStatCount; i++)
|
|
s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0;
|
|
}
|
|
|
|
private:
|
|
mutable SpinMutex mu_;
|
|
};
|
|
|
|
// Allocators call these callbacks on mmap/munmap.
|
|
struct NoOpMapUnmapCallback {
|
|
void OnMap(uptr p, uptr size) const { }
|
|
void OnUnmap(uptr p, uptr size) const { }
|
|
};
|
|
|
|
// Callback type for iterating over chunks.
|
|
typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
|
|
|
|
// SizeClassAllocator64 -- allocator for 64-bit address space.
|
|
//
|
|
// Space: a portion of address space of kSpaceSize bytes starting at
|
|
// a fixed address (kSpaceBeg). Both constants are powers of two and
|
|
// kSpaceBeg is kSpaceSize-aligned.
|
|
// At the beginning the entire space is mprotect-ed, then small parts of it
|
|
// are mapped on demand.
|
|
//
|
|
// Region: a part of Space dedicated to a single size class.
|
|
// There are kNumClasses Regions of equal size.
|
|
//
|
|
// UserChunk: a piece of memory returned to user.
|
|
// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
|
|
//
|
|
// A Region looks like this:
|
|
// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
|
|
template <const uptr kSpaceBeg, const uptr kSpaceSize,
|
|
const uptr kMetadataSize, class SizeClassMap,
|
|
class MapUnmapCallback = NoOpMapUnmapCallback>
|
|
class SizeClassAllocator64 {
|
|
public:
|
|
typedef typename SizeClassMap::TransferBatch Batch;
|
|
typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
|
|
SizeClassMap, MapUnmapCallback> ThisT;
|
|
typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
|
|
|
|
void Init() {
|
|
CHECK_EQ(kSpaceBeg,
|
|
reinterpret_cast<uptr>(Mprotect(kSpaceBeg, kSpaceSize)));
|
|
MapWithCallback(kSpaceEnd, AdditionalSize());
|
|
}
|
|
|
|
void MapWithCallback(uptr beg, uptr size) {
|
|
CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
|
|
MapUnmapCallback().OnMap(beg, size);
|
|
}
|
|
|
|
void UnmapWithCallback(uptr beg, uptr size) {
|
|
MapUnmapCallback().OnUnmap(beg, size);
|
|
UnmapOrDie(reinterpret_cast<void *>(beg), size);
|
|
}
|
|
|
|
static bool CanAllocate(uptr size, uptr alignment) {
|
|
return size <= SizeClassMap::kMaxSize &&
|
|
alignment <= SizeClassMap::kMaxSize;
|
|
}
|
|
|
|
NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
|
|
uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
Batch *b = region->free_list.Pop();
|
|
if (b == 0)
|
|
b = PopulateFreeList(stat, c, class_id, region);
|
|
region->n_allocated += b->count;
|
|
return b;
|
|
}
|
|
|
|
NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
CHECK_GT(b->count, 0);
|
|
region->free_list.Push(b);
|
|
region->n_freed += b->count;
|
|
}
|
|
|
|
static bool PointerIsMine(const void *p) {
|
|
return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
|
|
}
|
|
|
|
static uptr GetSizeClass(const void *p) {
|
|
return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClassesRounded;
|
|
}
|
|
|
|
void *GetBlockBegin(const void *p) {
|
|
uptr class_id = GetSizeClass(p);
|
|
uptr size = SizeClassMap::Size(class_id);
|
|
if (!size) return 0;
|
|
uptr chunk_idx = GetChunkIdx((uptr)p, size);
|
|
uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
|
|
uptr beg = chunk_idx * size;
|
|
uptr next_beg = beg + size;
|
|
if (class_id >= kNumClasses) return 0;
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
if (region->mapped_user >= next_beg)
|
|
return reinterpret_cast<void*>(reg_beg + beg);
|
|
return 0;
|
|
}
|
|
|
|
static uptr GetActuallyAllocatedSize(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
return SizeClassMap::Size(GetSizeClass(p));
|
|
}
|
|
|
|
uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
|
|
|
|
void *GetMetaData(const void *p) {
|
|
uptr class_id = GetSizeClass(p);
|
|
uptr size = SizeClassMap::Size(class_id);
|
|
uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
|
|
return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
|
|
(1 + chunk_idx) * kMetadataSize);
|
|
}
|
|
|
|
uptr TotalMemoryUsed() {
|
|
uptr res = 0;
|
|
for (uptr i = 0; i < kNumClasses; i++)
|
|
res += GetRegionInfo(i)->allocated_user;
|
|
return res;
|
|
}
|
|
|
|
// Test-only.
|
|
void TestOnlyUnmap() {
|
|
UnmapWithCallback(kSpaceBeg, kSpaceSize + AdditionalSize());
|
|
}
|
|
|
|
void PrintStats() {
|
|
uptr total_mapped = 0;
|
|
uptr n_allocated = 0;
|
|
uptr n_freed = 0;
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
total_mapped += region->mapped_user;
|
|
n_allocated += region->n_allocated;
|
|
n_freed += region->n_freed;
|
|
}
|
|
Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
|
|
"remains %zd\n",
|
|
total_mapped >> 20, n_allocated, n_allocated - n_freed);
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
if (region->mapped_user == 0) continue;
|
|
Printf(" %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
|
|
class_id,
|
|
SizeClassMap::Size(class_id),
|
|
region->mapped_user >> 10,
|
|
region->n_allocated,
|
|
region->n_allocated - region->n_freed);
|
|
}
|
|
}
|
|
|
|
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
|
|
// introspection API.
|
|
void ForceLock() {
|
|
for (uptr i = 0; i < kNumClasses; i++) {
|
|
GetRegionInfo(i)->mutex.Lock();
|
|
}
|
|
}
|
|
|
|
void ForceUnlock() {
|
|
for (int i = (int)kNumClasses - 1; i >= 0; i--) {
|
|
GetRegionInfo(i)->mutex.Unlock();
|
|
}
|
|
}
|
|
|
|
// Iterate over all existing chunks.
|
|
// The allocator must be locked when calling this function.
|
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
|
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
uptr chunk_size = SizeClassMap::Size(class_id);
|
|
uptr region_beg = kSpaceBeg + class_id * kRegionSize;
|
|
for (uptr chunk = region_beg;
|
|
chunk < region_beg + region->allocated_user;
|
|
chunk += chunk_size) {
|
|
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
|
|
callback(chunk, arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uptr AdditionalSize() {
|
|
return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
|
|
GetPageSizeCached());
|
|
}
|
|
|
|
typedef SizeClassMap SizeClassMapT;
|
|
static const uptr kNumClasses = SizeClassMap::kNumClasses;
|
|
static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
|
|
|
|
private:
|
|
static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
|
|
static const uptr kSpaceEnd = kSpaceBeg + kSpaceSize;
|
|
COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
|
|
// kRegionSize must be >= 2^32.
|
|
COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
|
|
// Populate the free list with at most this number of bytes at once
|
|
// or with one element if its size is greater.
|
|
static const uptr kPopulateSize = 1 << 14;
|
|
// Call mmap for user memory with at least this size.
|
|
static const uptr kUserMapSize = 1 << 16;
|
|
// Call mmap for metadata memory with at least this size.
|
|
static const uptr kMetaMapSize = 1 << 16;
|
|
|
|
struct RegionInfo {
|
|
BlockingMutex mutex;
|
|
LFStack<Batch> free_list;
|
|
uptr allocated_user; // Bytes allocated for user memory.
|
|
uptr allocated_meta; // Bytes allocated for metadata.
|
|
uptr mapped_user; // Bytes mapped for user memory.
|
|
uptr mapped_meta; // Bytes mapped for metadata.
|
|
uptr n_allocated, n_freed; // Just stats.
|
|
};
|
|
COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
|
|
|
|
RegionInfo *GetRegionInfo(uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
|
|
return ®ions[class_id];
|
|
}
|
|
|
|
static uptr GetChunkIdx(uptr chunk, uptr size) {
|
|
uptr offset = chunk % kRegionSize;
|
|
// Here we divide by a non-constant. This is costly.
|
|
// size always fits into 32-bits. If the offset fits too, use 32-bit div.
|
|
if (offset >> (SANITIZER_WORDSIZE / 2))
|
|
return offset / size;
|
|
return (u32)offset / (u32)size;
|
|
}
|
|
|
|
NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
|
|
uptr class_id, RegionInfo *region) {
|
|
BlockingMutexLock l(®ion->mutex);
|
|
Batch *b = region->free_list.Pop();
|
|
if (b)
|
|
return b;
|
|
uptr size = SizeClassMap::Size(class_id);
|
|
uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
|
|
uptr beg_idx = region->allocated_user;
|
|
uptr end_idx = beg_idx + count * size;
|
|
uptr region_beg = kSpaceBeg + kRegionSize * class_id;
|
|
if (end_idx + size > region->mapped_user) {
|
|
// Do the mmap for the user memory.
|
|
uptr map_size = kUserMapSize;
|
|
while (end_idx + size > region->mapped_user + map_size)
|
|
map_size += kUserMapSize;
|
|
CHECK_GE(region->mapped_user + map_size, end_idx);
|
|
MapWithCallback(region_beg + region->mapped_user, map_size);
|
|
stat->Add(AllocatorStatMapped, map_size);
|
|
region->mapped_user += map_size;
|
|
}
|
|
uptr total_count = (region->mapped_user - beg_idx - size)
|
|
/ size / count * count;
|
|
region->allocated_meta += total_count * kMetadataSize;
|
|
if (region->allocated_meta > region->mapped_meta) {
|
|
uptr map_size = kMetaMapSize;
|
|
while (region->allocated_meta > region->mapped_meta + map_size)
|
|
map_size += kMetaMapSize;
|
|
// Do the mmap for the metadata.
|
|
CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
|
|
MapWithCallback(region_beg + kRegionSize -
|
|
region->mapped_meta - map_size, map_size);
|
|
region->mapped_meta += map_size;
|
|
}
|
|
CHECK_LE(region->allocated_meta, region->mapped_meta);
|
|
if (region->mapped_user + region->mapped_meta > kRegionSize) {
|
|
Printf("%s: Out of memory. Dying. ", SanitizerToolName);
|
|
Printf("The process has exhausted %zuMB for size class %zu.\n",
|
|
kRegionSize / 1024 / 1024, size);
|
|
Die();
|
|
}
|
|
for (;;) {
|
|
if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
|
|
b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
|
|
else
|
|
b = (Batch*)(region_beg + beg_idx);
|
|
b->count = count;
|
|
for (uptr i = 0; i < count; i++)
|
|
b->batch[i] = (void*)(region_beg + beg_idx + i * size);
|
|
region->allocated_user += count * size;
|
|
CHECK_LE(region->allocated_user, region->mapped_user);
|
|
beg_idx += count * size;
|
|
if (beg_idx + count * size + size > region->mapped_user)
|
|
break;
|
|
CHECK_GT(b->count, 0);
|
|
region->free_list.Push(b);
|
|
}
|
|
return b;
|
|
}
|
|
};
|
|
|
|
// Maps integers in rage [0, kSize) to u8 values.
|
|
template<u64 kSize>
|
|
class FlatByteMap {
|
|
public:
|
|
void TestOnlyInit() {
|
|
internal_memset(map_, 0, sizeof(map_));
|
|
}
|
|
|
|
void set(uptr idx, u8 val) {
|
|
CHECK_LT(idx, kSize);
|
|
CHECK_EQ(0U, map_[idx]);
|
|
map_[idx] = val;
|
|
}
|
|
u8 operator[] (uptr idx) {
|
|
CHECK_LT(idx, kSize);
|
|
// FIXME: CHECK may be too expensive here.
|
|
return map_[idx];
|
|
}
|
|
private:
|
|
u8 map_[kSize];
|
|
};
|
|
|
|
// TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
|
|
// It is implemented as a two-dimensional array: array of kSize1 pointers
|
|
// to kSize2-byte arrays. The secondary arrays are mmaped on demand.
|
|
// Each value is initially zero and can be set to something else only once.
|
|
// Setting and getting values from multiple threads is safe w/o extra locking.
|
|
template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback>
|
|
class TwoLevelByteMap {
|
|
public:
|
|
void TestOnlyInit() {
|
|
internal_memset(map1_, 0, sizeof(map1_));
|
|
mu_.Init();
|
|
}
|
|
void TestOnlyUnmap() {
|
|
for (uptr i = 0; i < kSize1; i++) {
|
|
u8 *p = Get(i);
|
|
if (!p) continue;
|
|
MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
|
|
UnmapOrDie(p, kSize2);
|
|
}
|
|
}
|
|
|
|
uptr size() const { return kSize1 * kSize2; }
|
|
uptr size1() const { return kSize1; }
|
|
uptr size2() const { return kSize2; }
|
|
|
|
void set(uptr idx, u8 val) {
|
|
CHECK_LT(idx, kSize1 * kSize2);
|
|
u8 *map2 = GetOrCreate(idx / kSize2);
|
|
CHECK_EQ(0U, map2[idx % kSize2]);
|
|
map2[idx % kSize2] = val;
|
|
}
|
|
|
|
u8 operator[] (uptr idx) const {
|
|
CHECK_LT(idx, kSize1 * kSize2);
|
|
u8 *map2 = Get(idx / kSize2);
|
|
if (!map2) return 0;
|
|
return map2[idx % kSize2];
|
|
}
|
|
|
|
private:
|
|
u8 *Get(uptr idx) const {
|
|
CHECK_LT(idx, kSize1);
|
|
return reinterpret_cast<u8 *>(
|
|
atomic_load(&map1_[idx], memory_order_acquire));
|
|
}
|
|
|
|
u8 *GetOrCreate(uptr idx) {
|
|
u8 *res = Get(idx);
|
|
if (!res) {
|
|
SpinMutexLock l(&mu_);
|
|
if (!(res = Get(idx))) {
|
|
res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap");
|
|
MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
|
|
atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
|
|
memory_order_release);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
atomic_uintptr_t map1_[kSize1];
|
|
StaticSpinMutex mu_;
|
|
};
|
|
|
|
// SizeClassAllocator32 -- allocator for 32-bit address space.
|
|
// This allocator can theoretically be used on 64-bit arch, but there it is less
|
|
// efficient than SizeClassAllocator64.
|
|
//
|
|
// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
|
|
// be returned by MmapOrDie().
|
|
//
|
|
// Region:
|
|
// a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
|
|
// Since the regions are aligned by kRegionSize, there are exactly
|
|
// kNumPossibleRegions possible regions in the address space and so we keep
|
|
// a ByteMap possible_regions to store the size classes of each Region.
|
|
// 0 size class means the region is not used by the allocator.
|
|
//
|
|
// One Region is used to allocate chunks of a single size class.
|
|
// A Region looks like this:
|
|
// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
|
|
//
|
|
// In order to avoid false sharing the objects of this class should be
|
|
// chache-line aligned.
|
|
template <const uptr kSpaceBeg, const u64 kSpaceSize,
|
|
const uptr kMetadataSize, class SizeClassMap,
|
|
const uptr kRegionSizeLog,
|
|
class ByteMap,
|
|
class MapUnmapCallback = NoOpMapUnmapCallback>
|
|
class SizeClassAllocator32 {
|
|
public:
|
|
typedef typename SizeClassMap::TransferBatch Batch;
|
|
typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
|
|
SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
|
|
typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
|
|
|
|
void Init() {
|
|
possible_regions.TestOnlyInit();
|
|
internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
|
|
}
|
|
|
|
void *MapWithCallback(uptr size) {
|
|
size = RoundUpTo(size, GetPageSizeCached());
|
|
void *res = MmapOrDie(size, "SizeClassAllocator32");
|
|
MapUnmapCallback().OnMap((uptr)res, size);
|
|
return res;
|
|
}
|
|
|
|
void UnmapWithCallback(uptr beg, uptr size) {
|
|
MapUnmapCallback().OnUnmap(beg, size);
|
|
UnmapOrDie(reinterpret_cast<void *>(beg), size);
|
|
}
|
|
|
|
static bool CanAllocate(uptr size, uptr alignment) {
|
|
return size <= SizeClassMap::kMaxSize &&
|
|
alignment <= SizeClassMap::kMaxSize;
|
|
}
|
|
|
|
void *GetMetaData(const void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
uptr mem = reinterpret_cast<uptr>(p);
|
|
uptr beg = ComputeRegionBeg(mem);
|
|
uptr size = SizeClassMap::Size(GetSizeClass(p));
|
|
u32 offset = mem - beg;
|
|
uptr n = offset / (u32)size; // 32-bit division
|
|
uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
|
|
return reinterpret_cast<void*>(meta);
|
|
}
|
|
|
|
NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
|
|
uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
SizeClassInfo *sci = GetSizeClassInfo(class_id);
|
|
SpinMutexLock l(&sci->mutex);
|
|
if (sci->free_list.empty())
|
|
PopulateFreeList(stat, c, sci, class_id);
|
|
CHECK(!sci->free_list.empty());
|
|
Batch *b = sci->free_list.front();
|
|
sci->free_list.pop_front();
|
|
return b;
|
|
}
|
|
|
|
NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
SizeClassInfo *sci = GetSizeClassInfo(class_id);
|
|
SpinMutexLock l(&sci->mutex);
|
|
CHECK_GT(b->count, 0);
|
|
sci->free_list.push_front(b);
|
|
}
|
|
|
|
bool PointerIsMine(const void *p) {
|
|
return GetSizeClass(p) != 0;
|
|
}
|
|
|
|
uptr GetSizeClass(const void *p) {
|
|
return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
|
|
}
|
|
|
|
void *GetBlockBegin(const void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
uptr mem = reinterpret_cast<uptr>(p);
|
|
uptr beg = ComputeRegionBeg(mem);
|
|
uptr size = SizeClassMap::Size(GetSizeClass(p));
|
|
u32 offset = mem - beg;
|
|
u32 n = offset / (u32)size; // 32-bit division
|
|
uptr res = beg + (n * (u32)size);
|
|
return reinterpret_cast<void*>(res);
|
|
}
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
return SizeClassMap::Size(GetSizeClass(p));
|
|
}
|
|
|
|
uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
|
|
|
|
uptr TotalMemoryUsed() {
|
|
// No need to lock here.
|
|
uptr res = 0;
|
|
for (uptr i = 0; i < kNumPossibleRegions; i++)
|
|
if (possible_regions[i])
|
|
res += kRegionSize;
|
|
return res;
|
|
}
|
|
|
|
void TestOnlyUnmap() {
|
|
for (uptr i = 0; i < kNumPossibleRegions; i++)
|
|
if (possible_regions[i])
|
|
UnmapWithCallback((i * kRegionSize), kRegionSize);
|
|
}
|
|
|
|
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
|
|
// introspection API.
|
|
void ForceLock() {
|
|
for (uptr i = 0; i < kNumClasses; i++) {
|
|
GetSizeClassInfo(i)->mutex.Lock();
|
|
}
|
|
}
|
|
|
|
void ForceUnlock() {
|
|
for (int i = kNumClasses - 1; i >= 0; i--) {
|
|
GetSizeClassInfo(i)->mutex.Unlock();
|
|
}
|
|
}
|
|
|
|
// Iterate over all existing chunks.
|
|
// The allocator must be locked when calling this function.
|
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
|
for (uptr region = 0; region < kNumPossibleRegions; region++)
|
|
if (possible_regions[region]) {
|
|
uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
|
|
uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
|
|
uptr region_beg = region * kRegionSize;
|
|
for (uptr chunk = region_beg;
|
|
chunk < region_beg + max_chunks_in_region * chunk_size;
|
|
chunk += chunk_size) {
|
|
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
|
|
callback(chunk, arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PrintStats() {
|
|
}
|
|
|
|
typedef SizeClassMap SizeClassMapT;
|
|
static const uptr kNumClasses = SizeClassMap::kNumClasses;
|
|
|
|
private:
|
|
static const uptr kRegionSize = 1 << kRegionSizeLog;
|
|
static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
|
|
|
|
struct SizeClassInfo {
|
|
SpinMutex mutex;
|
|
IntrusiveList<Batch> free_list;
|
|
char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
|
|
};
|
|
COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
|
|
|
|
uptr ComputeRegionId(uptr mem) {
|
|
uptr res = mem >> kRegionSizeLog;
|
|
CHECK_LT(res, kNumPossibleRegions);
|
|
return res;
|
|
}
|
|
|
|
uptr ComputeRegionBeg(uptr mem) {
|
|
return mem & ~(kRegionSize - 1);
|
|
}
|
|
|
|
uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
|
|
"SizeClassAllocator32"));
|
|
MapUnmapCallback().OnMap(res, kRegionSize);
|
|
stat->Add(AllocatorStatMapped, kRegionSize);
|
|
CHECK_EQ(0U, (res & (kRegionSize - 1)));
|
|
possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
|
|
return res;
|
|
}
|
|
|
|
SizeClassInfo *GetSizeClassInfo(uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
return &size_class_info_array[class_id];
|
|
}
|
|
|
|
void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
|
|
SizeClassInfo *sci, uptr class_id) {
|
|
uptr size = SizeClassMap::Size(class_id);
|
|
uptr reg = AllocateRegion(stat, class_id);
|
|
uptr n_chunks = kRegionSize / (size + kMetadataSize);
|
|
uptr max_count = SizeClassMap::MaxCached(class_id);
|
|
Batch *b = 0;
|
|
for (uptr i = reg; i < reg + n_chunks * size; i += size) {
|
|
if (b == 0) {
|
|
if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
|
|
b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
|
|
else
|
|
b = (Batch*)i;
|
|
b->count = 0;
|
|
}
|
|
b->batch[b->count++] = (void*)i;
|
|
if (b->count == max_count) {
|
|
CHECK_GT(b->count, 0);
|
|
sci->free_list.push_back(b);
|
|
b = 0;
|
|
}
|
|
}
|
|
if (b) {
|
|
CHECK_GT(b->count, 0);
|
|
sci->free_list.push_back(b);
|
|
}
|
|
}
|
|
|
|
ByteMap possible_regions;
|
|
SizeClassInfo size_class_info_array[kNumClasses];
|
|
};
|
|
|
|
// Objects of this type should be used as local caches for SizeClassAllocator64
|
|
// or SizeClassAllocator32. Since the typical use of this class is to have one
|
|
// object per thread in TLS, is has to be POD.
|
|
template<class SizeClassAllocator>
|
|
struct SizeClassAllocatorLocalCache {
|
|
typedef SizeClassAllocator Allocator;
|
|
static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
|
|
|
|
void Init(AllocatorGlobalStats *s) {
|
|
stats_.Init();
|
|
if (s)
|
|
s->Register(&stats_);
|
|
}
|
|
|
|
void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
|
|
Drain(allocator);
|
|
if (s)
|
|
s->Unregister(&stats_);
|
|
}
|
|
|
|
void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
|
|
CHECK_NE(class_id, 0UL);
|
|
CHECK_LT(class_id, kNumClasses);
|
|
stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id));
|
|
PerClass *c = &per_class_[class_id];
|
|
if (UNLIKELY(c->count == 0))
|
|
Refill(allocator, class_id);
|
|
void *res = c->batch[--c->count];
|
|
PREFETCH(c->batch[c->count - 1]);
|
|
return res;
|
|
}
|
|
|
|
void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
|
|
CHECK_NE(class_id, 0UL);
|
|
CHECK_LT(class_id, kNumClasses);
|
|
// If the first allocator call on a new thread is a deallocation, then
|
|
// max_count will be zero, leading to check failure.
|
|
InitCache();
|
|
stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id));
|
|
PerClass *c = &per_class_[class_id];
|
|
CHECK_NE(c->max_count, 0UL);
|
|
if (UNLIKELY(c->count == c->max_count))
|
|
Drain(allocator, class_id);
|
|
c->batch[c->count++] = p;
|
|
}
|
|
|
|
void Drain(SizeClassAllocator *allocator) {
|
|
for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
|
|
PerClass *c = &per_class_[class_id];
|
|
while (c->count > 0)
|
|
Drain(allocator, class_id);
|
|
}
|
|
}
|
|
|
|
// private:
|
|
typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
|
|
typedef typename SizeClassMap::TransferBatch Batch;
|
|
struct PerClass {
|
|
uptr count;
|
|
uptr max_count;
|
|
void *batch[2 * SizeClassMap::kMaxNumCached];
|
|
};
|
|
PerClass per_class_[kNumClasses];
|
|
AllocatorStats stats_;
|
|
|
|
void InitCache() {
|
|
if (per_class_[1].max_count)
|
|
return;
|
|
for (uptr i = 0; i < kNumClasses; i++) {
|
|
PerClass *c = &per_class_[i];
|
|
c->max_count = 2 * SizeClassMap::MaxCached(i);
|
|
}
|
|
}
|
|
|
|
NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
|
|
InitCache();
|
|
PerClass *c = &per_class_[class_id];
|
|
Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
|
|
CHECK_GT(b->count, 0);
|
|
for (uptr i = 0; i < b->count; i++)
|
|
c->batch[i] = b->batch[i];
|
|
c->count = b->count;
|
|
if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
|
|
Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
|
|
}
|
|
|
|
NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
|
|
InitCache();
|
|
PerClass *c = &per_class_[class_id];
|
|
Batch *b;
|
|
if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
|
|
b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
|
|
else
|
|
b = (Batch*)c->batch[0];
|
|
uptr cnt = Min(c->max_count / 2, c->count);
|
|
for (uptr i = 0; i < cnt; i++) {
|
|
b->batch[i] = c->batch[i];
|
|
c->batch[i] = c->batch[i + c->max_count / 2];
|
|
}
|
|
b->count = cnt;
|
|
c->count -= cnt;
|
|
CHECK_GT(b->count, 0);
|
|
allocator->DeallocateBatch(&stats_, class_id, b);
|
|
}
|
|
};
|
|
|
|
// This class can (de)allocate only large chunks of memory using mmap/unmap.
|
|
// The main purpose of this allocator is to cover large and rare allocation
|
|
// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
|
|
template <class MapUnmapCallback = NoOpMapUnmapCallback>
|
|
class LargeMmapAllocator {
|
|
public:
|
|
void Init() {
|
|
internal_memset(this, 0, sizeof(*this));
|
|
page_size_ = GetPageSizeCached();
|
|
}
|
|
|
|
void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
|
|
CHECK(IsPowerOfTwo(alignment));
|
|
uptr map_size = RoundUpMapSize(size);
|
|
if (alignment > page_size_)
|
|
map_size += alignment;
|
|
if (map_size < size) return AllocatorReturnNull(); // Overflow.
|
|
uptr map_beg = reinterpret_cast<uptr>(
|
|
MmapOrDie(map_size, "LargeMmapAllocator"));
|
|
CHECK(IsAligned(map_beg, page_size_));
|
|
MapUnmapCallback().OnMap(map_beg, map_size);
|
|
uptr map_end = map_beg + map_size;
|
|
uptr res = map_beg + page_size_;
|
|
if (res & (alignment - 1)) // Align.
|
|
res += alignment - (res & (alignment - 1));
|
|
CHECK(IsAligned(res, alignment));
|
|
CHECK(IsAligned(res, page_size_));
|
|
CHECK_GE(res + size, map_beg);
|
|
CHECK_LE(res + size, map_end);
|
|
Header *h = GetHeader(res);
|
|
h->size = size;
|
|
h->map_beg = map_beg;
|
|
h->map_size = map_size;
|
|
uptr size_log = MostSignificantSetBitIndex(map_size);
|
|
CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
|
|
{
|
|
SpinMutexLock l(&mutex_);
|
|
uptr idx = n_chunks_++;
|
|
chunks_sorted_ = false;
|
|
CHECK_LT(idx, kMaxNumChunks);
|
|
h->chunk_idx = idx;
|
|
chunks_[idx] = h;
|
|
stats.n_allocs++;
|
|
stats.currently_allocated += map_size;
|
|
stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
|
|
stats.by_size_log[size_log]++;
|
|
stat->Add(AllocatorStatAllocated, map_size);
|
|
stat->Add(AllocatorStatMapped, map_size);
|
|
}
|
|
return reinterpret_cast<void*>(res);
|
|
}
|
|
|
|
void Deallocate(AllocatorStats *stat, void *p) {
|
|
Header *h = GetHeader(p);
|
|
{
|
|
SpinMutexLock l(&mutex_);
|
|
uptr idx = h->chunk_idx;
|
|
CHECK_EQ(chunks_[idx], h);
|
|
CHECK_LT(idx, n_chunks_);
|
|
chunks_[idx] = chunks_[n_chunks_ - 1];
|
|
chunks_[idx]->chunk_idx = idx;
|
|
n_chunks_--;
|
|
chunks_sorted_ = false;
|
|
stats.n_frees++;
|
|
stats.currently_allocated -= h->map_size;
|
|
stat->Sub(AllocatorStatAllocated, h->map_size);
|
|
stat->Sub(AllocatorStatMapped, h->map_size);
|
|
}
|
|
MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
|
|
UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
|
|
}
|
|
|
|
uptr TotalMemoryUsed() {
|
|
SpinMutexLock l(&mutex_);
|
|
uptr res = 0;
|
|
for (uptr i = 0; i < n_chunks_; i++) {
|
|
Header *h = chunks_[i];
|
|
CHECK_EQ(h->chunk_idx, i);
|
|
res += RoundUpMapSize(h->size);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
bool PointerIsMine(const void *p) {
|
|
return GetBlockBegin(p) != 0;
|
|
}
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
return RoundUpTo(GetHeader(p)->size, page_size_);
|
|
}
|
|
|
|
// At least page_size_/2 metadata bytes is available.
|
|
void *GetMetaData(const void *p) {
|
|
// Too slow: CHECK_EQ(p, GetBlockBegin(p));
|
|
if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
|
|
Printf("%s: bad pointer %p\n", SanitizerToolName, p);
|
|
CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
|
|
}
|
|
return GetHeader(p) + 1;
|
|
}
|
|
|
|
void *GetBlockBegin(const void *ptr) {
|
|
uptr p = reinterpret_cast<uptr>(ptr);
|
|
SpinMutexLock l(&mutex_);
|
|
uptr nearest_chunk = 0;
|
|
// Cache-friendly linear search.
|
|
for (uptr i = 0; i < n_chunks_; i++) {
|
|
uptr ch = reinterpret_cast<uptr>(chunks_[i]);
|
|
if (p < ch) continue; // p is at left to this chunk, skip it.
|
|
if (p - ch < p - nearest_chunk)
|
|
nearest_chunk = ch;
|
|
}
|
|
if (!nearest_chunk)
|
|
return 0;
|
|
Header *h = reinterpret_cast<Header *>(nearest_chunk);
|
|
CHECK_GE(nearest_chunk, h->map_beg);
|
|
CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
|
|
CHECK_LE(nearest_chunk, p);
|
|
if (h->map_beg + h->map_size <= p)
|
|
return 0;
|
|
return GetUser(h);
|
|
}
|
|
|
|
// This function does the same as GetBlockBegin, but is much faster.
|
|
// Must be called with the allocator locked.
|
|
void *GetBlockBeginFastLocked(void *ptr) {
|
|
mutex_.CheckLocked();
|
|
uptr p = reinterpret_cast<uptr>(ptr);
|
|
uptr n = n_chunks_;
|
|
if (!n) return 0;
|
|
if (!chunks_sorted_) {
|
|
// Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
|
|
SortArray(reinterpret_cast<uptr*>(chunks_), n);
|
|
for (uptr i = 0; i < n; i++)
|
|
chunks_[i]->chunk_idx = i;
|
|
chunks_sorted_ = true;
|
|
min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
|
|
max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
|
|
chunks_[n - 1]->map_size;
|
|
}
|
|
if (p < min_mmap_ || p >= max_mmap_)
|
|
return 0;
|
|
uptr beg = 0, end = n - 1;
|
|
// This loop is a log(n) lower_bound. It does not check for the exact match
|
|
// to avoid expensive cache-thrashing loads.
|
|
while (end - beg >= 2) {
|
|
uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1
|
|
if (p < reinterpret_cast<uptr>(chunks_[mid]))
|
|
end = mid - 1; // We are not interested in chunks_[mid].
|
|
else
|
|
beg = mid; // chunks_[mid] may still be what we want.
|
|
}
|
|
|
|
if (beg < end) {
|
|
CHECK_EQ(beg + 1, end);
|
|
// There are 2 chunks left, choose one.
|
|
if (p >= reinterpret_cast<uptr>(chunks_[end]))
|
|
beg = end;
|
|
}
|
|
|
|
Header *h = chunks_[beg];
|
|
if (h->map_beg + h->map_size <= p || p < h->map_beg)
|
|
return 0;
|
|
return GetUser(h);
|
|
}
|
|
|
|
void PrintStats() {
|
|
Printf("Stats: LargeMmapAllocator: allocated %zd times, "
|
|
"remains %zd (%zd K) max %zd M; by size logs: ",
|
|
stats.n_allocs, stats.n_allocs - stats.n_frees,
|
|
stats.currently_allocated >> 10, stats.max_allocated >> 20);
|
|
for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
|
|
uptr c = stats.by_size_log[i];
|
|
if (!c) continue;
|
|
Printf("%zd:%zd; ", i, c);
|
|
}
|
|
Printf("\n");
|
|
}
|
|
|
|
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
|
|
// introspection API.
|
|
void ForceLock() {
|
|
mutex_.Lock();
|
|
}
|
|
|
|
void ForceUnlock() {
|
|
mutex_.Unlock();
|
|
}
|
|
|
|
// Iterate over all existing chunks.
|
|
// The allocator must be locked when calling this function.
|
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
|
for (uptr i = 0; i < n_chunks_; i++)
|
|
callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
|
|
}
|
|
|
|
private:
|
|
static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
|
|
struct Header {
|
|
uptr map_beg;
|
|
uptr map_size;
|
|
uptr size;
|
|
uptr chunk_idx;
|
|
};
|
|
|
|
Header *GetHeader(uptr p) {
|
|
CHECK(IsAligned(p, page_size_));
|
|
return reinterpret_cast<Header*>(p - page_size_);
|
|
}
|
|
Header *GetHeader(const void *p) {
|
|
return GetHeader(reinterpret_cast<uptr>(p));
|
|
}
|
|
|
|
void *GetUser(Header *h) {
|
|
CHECK(IsAligned((uptr)h, page_size_));
|
|
return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
|
|
}
|
|
|
|
uptr RoundUpMapSize(uptr size) {
|
|
return RoundUpTo(size, page_size_) + page_size_;
|
|
}
|
|
|
|
uptr page_size_;
|
|
Header *chunks_[kMaxNumChunks];
|
|
uptr n_chunks_;
|
|
uptr min_mmap_, max_mmap_;
|
|
bool chunks_sorted_;
|
|
struct Stats {
|
|
uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
|
|
} stats;
|
|
SpinMutex mutex_;
|
|
};
|
|
|
|
// This class implements a complete memory allocator by using two
|
|
// internal allocators:
|
|
// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
|
|
// When allocating 2^x bytes it should return 2^x aligned chunk.
|
|
// PrimaryAllocator is used via a local AllocatorCache.
|
|
// SecondaryAllocator can allocate anything, but is not efficient.
|
|
template <class PrimaryAllocator, class AllocatorCache,
|
|
class SecondaryAllocator> // NOLINT
|
|
class CombinedAllocator {
|
|
public:
|
|
void Init() {
|
|
primary_.Init();
|
|
secondary_.Init();
|
|
stats_.Init();
|
|
}
|
|
|
|
void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
|
|
bool cleared = false) {
|
|
// Returning 0 on malloc(0) may break a lot of code.
|
|
if (size == 0)
|
|
size = 1;
|
|
if (size + alignment < size)
|
|
return AllocatorReturnNull();
|
|
if (alignment > 8)
|
|
size = RoundUpTo(size, alignment);
|
|
void *res;
|
|
bool from_primary = primary_.CanAllocate(size, alignment);
|
|
if (from_primary)
|
|
res = cache->Allocate(&primary_, primary_.ClassID(size));
|
|
else
|
|
res = secondary_.Allocate(&stats_, size, alignment);
|
|
if (alignment > 8)
|
|
CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
|
|
if (cleared && res && from_primary)
|
|
internal_bzero_aligned16(res, RoundUpTo(size, 16));
|
|
return res;
|
|
}
|
|
|
|
void Deallocate(AllocatorCache *cache, void *p) {
|
|
if (!p) return;
|
|
if (primary_.PointerIsMine(p))
|
|
cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
|
|
else
|
|
secondary_.Deallocate(&stats_, p);
|
|
}
|
|
|
|
void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
|
|
uptr alignment) {
|
|
if (!p)
|
|
return Allocate(cache, new_size, alignment);
|
|
if (!new_size) {
|
|
Deallocate(cache, p);
|
|
return 0;
|
|
}
|
|
CHECK(PointerIsMine(p));
|
|
uptr old_size = GetActuallyAllocatedSize(p);
|
|
uptr memcpy_size = Min(new_size, old_size);
|
|
void *new_p = Allocate(cache, new_size, alignment);
|
|
if (new_p)
|
|
internal_memcpy(new_p, p, memcpy_size);
|
|
Deallocate(cache, p);
|
|
return new_p;
|
|
}
|
|
|
|
bool PointerIsMine(void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return true;
|
|
return secondary_.PointerIsMine(p);
|
|
}
|
|
|
|
bool FromPrimary(void *p) {
|
|
return primary_.PointerIsMine(p);
|
|
}
|
|
|
|
void *GetMetaData(const void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetMetaData(p);
|
|
return secondary_.GetMetaData(p);
|
|
}
|
|
|
|
void *GetBlockBegin(const void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetBlockBegin(p);
|
|
return secondary_.GetBlockBegin(p);
|
|
}
|
|
|
|
// This function does the same as GetBlockBegin, but is much faster.
|
|
// Must be called with the allocator locked.
|
|
void *GetBlockBeginFastLocked(void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetBlockBegin(p);
|
|
return secondary_.GetBlockBeginFastLocked(p);
|
|
}
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetActuallyAllocatedSize(p);
|
|
return secondary_.GetActuallyAllocatedSize(p);
|
|
}
|
|
|
|
uptr TotalMemoryUsed() {
|
|
return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
|
|
}
|
|
|
|
void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
|
|
|
|
void InitCache(AllocatorCache *cache) {
|
|
cache->Init(&stats_);
|
|
}
|
|
|
|
void DestroyCache(AllocatorCache *cache) {
|
|
cache->Destroy(&primary_, &stats_);
|
|
}
|
|
|
|
void SwallowCache(AllocatorCache *cache) {
|
|
cache->Drain(&primary_);
|
|
}
|
|
|
|
void GetStats(AllocatorStatCounters s) const {
|
|
stats_.Get(s);
|
|
}
|
|
|
|
void PrintStats() {
|
|
primary_.PrintStats();
|
|
secondary_.PrintStats();
|
|
}
|
|
|
|
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
|
|
// introspection API.
|
|
void ForceLock() {
|
|
primary_.ForceLock();
|
|
secondary_.ForceLock();
|
|
}
|
|
|
|
void ForceUnlock() {
|
|
secondary_.ForceUnlock();
|
|
primary_.ForceUnlock();
|
|
}
|
|
|
|
// Iterate over all existing chunks.
|
|
// The allocator must be locked when calling this function.
|
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
|
primary_.ForEachChunk(callback, arg);
|
|
secondary_.ForEachChunk(callback, arg);
|
|
}
|
|
|
|
private:
|
|
PrimaryAllocator primary_;
|
|
SecondaryAllocator secondary_;
|
|
AllocatorGlobalStats stats_;
|
|
};
|
|
|
|
// Returns true if calloc(size, n) should return 0 due to overflow in size*n.
|
|
bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
|
|
|
|
} // namespace __sanitizer
|
|
|
|
#endif // SANITIZER_ALLOCATOR_H
|
|
|