freebsd-skq/sys/dev/sf/if_sf.c
Pyun YongHyeon 9a508b89dc Fix build.
2008-01-21 09:51:28 +00:00

2717 lines
76 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
* Programming manual is available from:
* http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Department of Electical Engineering
* Columbia University, New York City
*/
/*
* The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
* controller designed with flexibility and reducing CPU load in mind.
* The Starfire offers high and low priority buffer queues, a
* producer/consumer index mechanism and several different buffer
* queue and completion queue descriptor types. Any one of a number
* of different driver designs can be used, depending on system and
* OS requirements. This driver makes use of type2 transmit frame
* descriptors to take full advantage of fragmented packets buffers
* and two RX buffer queues prioritized on size (one queue for small
* frames that will fit into a single mbuf, another with full size
* mbuf clusters for everything else). The producer/consumer indexes
* and completion queues are also used.
*
* One downside to the Starfire has to do with alignment: buffer
* queues must be aligned on 256-byte boundaries, and receive buffers
* must be aligned on longword boundaries. The receive buffer alignment
* causes problems on the strict alignment architecture, where the
* packet payload should be longword aligned. There is no simple way
* around this.
*
* For receive filtering, the Starfire offers 16 perfect filter slots
* and a 512-bit hash table.
*
* The Starfire has no internal transceiver, relying instead on an
* external MII-based transceiver. Accessing registers on external
* PHYs is done through a special register map rather than with the
* usual bitbang MDIO method.
*
* Acesssing the registers on the Starfire is a little tricky. The
* Starfire has a 512K internal register space. When programmed for
* PCI memory mapped mode, the entire register space can be accessed
* directly. However in I/O space mode, only 256 bytes are directly
* mapped into PCI I/O space. The other registers can be accessed
* indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
* registers inside the 256-byte I/O window.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <dev/sf/if_sfreg.h>
#include <dev/sf/starfire_rx.h>
#include <dev/sf/starfire_tx.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
MODULE_DEPEND(sf, pci, 1, 1, 1);
MODULE_DEPEND(sf, ether, 1, 1, 1);
MODULE_DEPEND(sf, miibus, 1, 1, 1);
#undef SF_GFP_DEBUG
#define SF_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
/* Define this to activate partial TCP/UDP checksum offload. */
#undef SF_PARTIAL_CSUM_SUPPORT
static struct sf_type sf_devs[] = {
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
AD_SUBSYSID_62011_REV0, "Adaptec ANA-62011 (rev 0) 10/100BaseTX" },
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
AD_SUBSYSID_62011_REV1, "Adaptec ANA-62011 (rev 1) 10/100BaseTX" },
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
AD_SUBSYSID_62022, "Adaptec ANA-62022 10/100BaseTX" },
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
AD_SUBSYSID_62044_REV0, "Adaptec ANA-62044 (rev 0) 10/100BaseTX" },
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
AD_SUBSYSID_62044_REV1, "Adaptec ANA-62044 (rev 1) 10/100BaseTX" },
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
AD_SUBSYSID_62020, "Adaptec ANA-62020 10/100BaseFX" },
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
AD_SUBSYSID_69011, "Adaptec ANA-69011 10/100BaseTX" },
};
static int sf_probe(device_t);
static int sf_attach(device_t);
static int sf_detach(device_t);
static int sf_shutdown(device_t);
static int sf_suspend(device_t);
static int sf_resume(device_t);
static void sf_intr(void *);
static void sf_tick(void *);
static void sf_stats_update(struct sf_softc *);
#ifndef __NO_STRICT_ALIGNMENT
static __inline void sf_fixup_rx(struct mbuf *);
#endif
static void sf_rxeof(struct sf_softc *);
static void sf_txeof(struct sf_softc *);
static int sf_encap(struct sf_softc *, struct mbuf **);
static void sf_start(struct ifnet *);
static void sf_start_locked(struct ifnet *);
static int sf_ioctl(struct ifnet *, u_long, caddr_t);
static void sf_download_fw(struct sf_softc *);
static void sf_init(void *);
static void sf_init_locked(struct sf_softc *);
static void sf_stop(struct sf_softc *);
static void sf_watchdog(struct sf_softc *);
static int sf_ifmedia_upd(struct ifnet *);
static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void sf_reset(struct sf_softc *);
static int sf_dma_alloc(struct sf_softc *);
static void sf_dma_free(struct sf_softc *);
static int sf_init_rx_ring(struct sf_softc *);
static void sf_init_tx_ring(struct sf_softc *);
static int sf_newbuf(struct sf_softc *, int);
static void sf_rxfilter(struct sf_softc *);
static int sf_setperf(struct sf_softc *, int, uint8_t *);
static int sf_sethash(struct sf_softc *, caddr_t, int);
#ifdef notdef
static int sf_setvlan(struct sf_softc *, int, uint32_t);
#endif
static uint8_t sf_read_eeprom(struct sf_softc *, int);
static int sf_miibus_readreg(device_t, int, int);
static int sf_miibus_writereg(device_t, int, int, int);
static void sf_miibus_statchg(device_t);
static void sf_link_task(void *, int);
#ifdef DEVICE_POLLING
static void sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
#endif
static uint32_t csr_read_4(struct sf_softc *, int);
static void csr_write_4(struct sf_softc *, int, uint32_t);
static void sf_txthresh_adjust(struct sf_softc *);
static int sf_sysctl_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS);
static device_method_t sf_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sf_probe),
DEVMETHOD(device_attach, sf_attach),
DEVMETHOD(device_detach, sf_detach),
DEVMETHOD(device_shutdown, sf_shutdown),
DEVMETHOD(device_suspend, sf_suspend),
DEVMETHOD(device_resume, sf_resume),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, sf_miibus_readreg),
DEVMETHOD(miibus_writereg, sf_miibus_writereg),
DEVMETHOD(miibus_statchg, sf_miibus_statchg),
{ NULL, NULL }
};
static driver_t sf_driver = {
"sf",
sf_methods,
sizeof(struct sf_softc),
};
static devclass_t sf_devclass;
DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
#define SF_SETBIT(sc, reg, x) \
csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
#define SF_CLRBIT(sc, reg, x) \
csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
static uint32_t
csr_read_4(struct sf_softc *sc, int reg)
{
uint32_t val;
if (sc->sf_restype == SYS_RES_MEMORY)
val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
else {
CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
}
return (val);
}
static uint8_t
sf_read_eeprom(struct sf_softc *sc, int reg)
{
uint8_t val;
val = (csr_read_4(sc, SF_EEADDR_BASE +
(reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
return (val);
}
static void
csr_write_4(struct sf_softc *sc, int reg, uint32_t val)
{
if (sc->sf_restype == SYS_RES_MEMORY)
CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
else {
CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
}
}
/*
* Copy the address 'mac' into the perfect RX filter entry at
* offset 'idx.' The perfect filter only has 16 entries so do
* some sanity tests.
*/
static int
sf_setperf(struct sf_softc *sc, int idx, uint8_t *mac)
{
if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
return (EINVAL);
if (mac == NULL)
return (EINVAL);
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
(idx * SF_RXFILT_PERFECT_SKIP) + 0, mac[5] | (mac[4] << 8));
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
(idx * SF_RXFILT_PERFECT_SKIP) + 4, mac[3] | (mac[2] << 8));
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
(idx * SF_RXFILT_PERFECT_SKIP) + 8, mac[1] | (mac[0] << 8));
return (0);
}
/*
* Set the bit in the 512-bit hash table that corresponds to the
* specified mac address 'mac.' If 'prio' is nonzero, update the
* priority hash table instead of the filter hash table.
*/
static int
sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
{
uint32_t h;
if (mac == NULL)
return (EINVAL);
h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
if (prio) {
SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
(SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
} else {
SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
(SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
}
return (0);
}
#ifdef notdef
/*
* Set a VLAN tag in the receive filter.
*/
static int
sf_setvlan(struct sf_softc *sc, int idx, uint32_t vlan)
{
if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
return (EINVAL);
csr_write_4(sc, SF_RXFILT_HASH_BASE +
(idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
return (0);
}
#endif
static int
sf_miibus_readreg(device_t dev, int phy, int reg)
{
struct sf_softc *sc;
int i;
uint32_t val = 0;
sc = device_get_softc(dev);
for (i = 0; i < SF_TIMEOUT; i++) {
val = csr_read_4(sc, SF_PHY_REG(phy, reg));
if ((val & SF_MII_DATAVALID) != 0)
break;
}
if (i == SF_TIMEOUT)
return (0);
val &= SF_MII_DATAPORT;
if (val == 0xffff)
return (0);
return (val);
}
static int
sf_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct sf_softc *sc;
int i;
int busy;
sc = device_get_softc(dev);
csr_write_4(sc, SF_PHY_REG(phy, reg), val);
for (i = 0; i < SF_TIMEOUT; i++) {
busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
if ((busy & SF_MII_BUSY) == 0)
break;
}
return (0);
}
static void
sf_miibus_statchg(device_t dev)
{
struct sf_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->sf_link_task);
}
static void
sf_link_task(void *arg, int pending)
{
struct sf_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t val;
sc = (struct sf_softc *)arg;
SF_LOCK(sc);
mii = device_get_softc(sc->sf_miibus);
ifp = sc->sf_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
SF_UNLOCK(sc);
return;
}
if (mii->mii_media_status & IFM_ACTIVE) {
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc->sf_link = 1;
} else
sc->sf_link = 0;
val = csr_read_4(sc, SF_MACCFG_1);
val &= ~SF_MACCFG1_FULLDUPLEX;
val &= ~(SF_MACCFG1_RX_FLOWENB | SF_MACCFG1_TX_FLOWENB);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
val |= SF_MACCFG1_FULLDUPLEX;
csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
#ifdef notyet
/* Configure flow-control bits. */
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0)
val |= SF_MACCFG1_RX_FLOWENB;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
IFM_ETH_TXPAUSE) != 0)
val |= SF_MACCFG1_TX_FLOWENB;
#endif
} else
csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
/* Make sure to reset MAC to take changes effect. */
csr_write_4(sc, SF_MACCFG_1, val | SF_MACCFG1_SOFTRESET);
DELAY(1000);
csr_write_4(sc, SF_MACCFG_1, val);
val = csr_read_4(sc, SF_TIMER_CTL);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
val |= SF_TIMER_TIMES_TEN;
else
val &= ~SF_TIMER_TIMES_TEN;
csr_write_4(sc, SF_TIMER_CTL, val);
SF_UNLOCK(sc);
}
static void
sf_rxfilter(struct sf_softc *sc)
{
struct ifnet *ifp;
int i;
struct ifmultiaddr *ifma;
uint8_t dummy[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
uint32_t rxfilt;
ifp = sc->sf_ifp;
/* First zot all the existing filters. */
for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
sf_setperf(sc, i, dummy);
for (i = SF_RXFILT_HASH_BASE; i < (SF_RXFILT_HASH_MAX + 1);
i += sizeof(uint32_t))
csr_write_4(sc, i, 0);
rxfilt = csr_read_4(sc, SF_RXFILT);
rxfilt &= ~(SF_RXFILT_PROMISC | SF_RXFILT_ALLMULTI | SF_RXFILT_BROAD);
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxfilt |= SF_RXFILT_BROAD;
if ((ifp->if_flags & IFF_ALLMULTI) != 0 ||
(ifp->if_flags & IFF_PROMISC) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxfilt |= SF_RXFILT_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxfilt |= SF_RXFILT_ALLMULTI;
goto done;
}
/* Now program new ones. */
i = 1;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/*
* Program the first 15 multicast groups
* into the perfect filter. For all others,
* use the hash table.
*/
if (i < SF_RXFILT_PERFECT_CNT) {
sf_setperf(sc, i,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
i++;
continue;
}
sf_sethash(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
}
IF_ADDR_UNLOCK(ifp);
done:
csr_write_4(sc, SF_RXFILT, rxfilt);
}
/*
* Set media options.
*/
static int
sf_ifmedia_upd(struct ifnet *ifp)
{
struct sf_softc *sc;
struct mii_data *mii;
int error;
sc = ifp->if_softc;
SF_LOCK(sc);
mii = device_get_softc(sc->sf_miibus);
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
SF_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct sf_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
SF_LOCK(sc);
mii = device_get_softc(sc->sf_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
SF_UNLOCK(sc);
}
static int
sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct sf_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (command) {
case SIOCSIFFLAGS:
SF_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((ifp->if_flags ^ sc->sf_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI))
sf_rxfilter(sc);
} else {
if (sc->sf_detach == 0)
sf_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
sf_stop(sc);
}
sc->sf_if_flags = ifp->if_flags;
SF_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
SF_LOCK(sc);
sf_rxfilter(sc);
SF_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->sf_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0) {
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
error = ether_poll_register(sf_poll, ifp);
if (error != 0)
break;
SF_LOCK(sc);
/* Disable interrupts. */
csr_write_4(sc, SF_IMR, 0);
ifp->if_capenable |= IFCAP_POLLING;
SF_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
SF_LOCK(sc);
csr_write_4(sc, SF_IMR, SF_INTRS);
ifp->if_capenable &= ~IFCAP_POLLING;
SF_UNLOCK(sc);
}
}
#endif /* DEVICE_POLLING */
if ((mask & IFCAP_TXCSUM) != 0) {
if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
SF_LOCK(sc);
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) {
ifp->if_hwassist |= SF_CSUM_FEATURES;
SF_SETBIT(sc, SF_GEN_ETH_CTL,
SF_ETHCTL_TXGFP_ENB);
} else {
ifp->if_hwassist &= ~SF_CSUM_FEATURES;
SF_CLRBIT(sc, SF_GEN_ETH_CTL,
SF_ETHCTL_TXGFP_ENB);
}
SF_UNLOCK(sc);
}
}
if ((mask & IFCAP_RXCSUM) != 0) {
if ((IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
SF_LOCK(sc);
ifp->if_capenable ^= IFCAP_RXCSUM;
if ((IFCAP_RXCSUM & ifp->if_capenable) != 0)
SF_SETBIT(sc, SF_GEN_ETH_CTL,
SF_ETHCTL_RXGFP_ENB);
else
SF_CLRBIT(sc, SF_GEN_ETH_CTL,
SF_ETHCTL_RXGFP_ENB);
SF_UNLOCK(sc);
}
}
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
sf_reset(struct sf_softc *sc)
{
int i;
csr_write_4(sc, SF_GEN_ETH_CTL, 0);
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
DELAY(1000);
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
for (i = 0; i < SF_TIMEOUT; i++) {
DELAY(10);
if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
break;
}
if (i == SF_TIMEOUT)
device_printf(sc->sf_dev, "reset never completed!\n");
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
}
/*
* Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
* We also check the subsystem ID so that we can identify exactly which
* NIC has been found, if possible.
*/
static int
sf_probe(device_t dev)
{
struct sf_type *t;
uint16_t vid;
uint16_t did;
uint16_t sdid;
int i;
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
sdid = pci_get_subdevice(dev);
t = sf_devs;
for (i = 0; i < sizeof(sf_devs) / sizeof(sf_devs[0]); i++, t++) {
if (vid == t->sf_vid && did == t->sf_did) {
if (sdid == t->sf_sdid) {
device_set_desc(dev, t->sf_sname);
return (BUS_PROBE_DEFAULT);
}
}
}
if (vid == AD_VENDORID && did == AD_DEVICEID_STARFIRE) {
/* unkown subdevice */
device_set_desc(dev, sf_devs[0].sf_name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
sf_attach(device_t dev)
{
int i;
struct sf_softc *sc;
struct ifnet *ifp;
uint32_t reg;
int rid, error = 0;
uint8_t eaddr[ETHER_ADDR_LEN];
sc = device_get_softc(dev);
sc->sf_dev = dev;
mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sf_co, &sc->sf_mtx, 0);
TASK_INIT(&sc->sf_link_task, 0, sf_link_task, sc);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
/*
* Prefer memory space register mapping over I/O space as the
* hardware requires lots of register access to get various
* producer/consumer index during Tx/Rx operation. However this
* requires large memory space(512K) to map the entire register
* space.
*/
sc->sf_rid = PCIR_BAR(0);
sc->sf_restype = SYS_RES_MEMORY;
sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype, &sc->sf_rid,
RF_ACTIVE);
if (sc->sf_res == NULL) {
reg = pci_read_config(dev, PCIR_BAR(0), 4);
if ((reg & PCIM_BAR_MEM_64) == PCIM_BAR_MEM_64)
sc->sf_rid = PCIR_BAR(2);
else
sc->sf_rid = PCIR_BAR(1);
sc->sf_restype = SYS_RES_IOPORT;
sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype,
&sc->sf_rid, RF_ACTIVE);
if (sc->sf_res == NULL) {
device_printf(dev, "couldn't allocate resources\n");
mtx_destroy(&sc->sf_mtx);
return (ENXIO);
}
}
if (bootverbose)
device_printf(dev, "using %s space register mapping\n",
sc->sf_restype == SYS_RES_MEMORY ? "memory" : "I/O");
reg = pci_read_config(dev, PCIR_CACHELNSZ, 1);
if (reg == 0) {
/*
* If cache line size is 0, MWI is not used at all, so set
* reasonable default. AIC-6915 supports 0, 4, 8, 16, 32
* and 64.
*/
reg = 16;
device_printf(dev, "setting PCI cache line size to %u\n", reg);
pci_write_config(dev, PCIR_CACHELNSZ, reg, 1);
} else {
if (bootverbose)
device_printf(dev, "PCI cache line size : %u\n", reg);
}
/* Enable MWI. */
reg = pci_read_config(dev, PCIR_COMMAND, 2);
reg |= PCIM_CMD_MWRICEN;
pci_write_config(dev, PCIR_COMMAND, reg, 2);
/* Allocate interrupt. */
rid = 0;
sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->sf_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
sf_sysctl_stats, "I", "Statistics");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "int_mod", CTLTYPE_INT | CTLFLAG_RW,
&sc->sf_int_mod, 0, sysctl_hw_sf_int_mod, "I",
"sf interrupt moderation");
/* Pull in device tunables. */
sc->sf_int_mod = SF_IM_DEFAULT;
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
"int_mod", &sc->sf_int_mod);
if (error == 0) {
if (sc->sf_int_mod < SF_IM_MIN ||
sc->sf_int_mod > SF_IM_MAX) {
device_printf(dev, "int_mod value out of range; "
"using default: %d\n", SF_IM_DEFAULT);
sc->sf_int_mod = SF_IM_DEFAULT;
}
}
/* Reset the adapter. */
sf_reset(sc);
/*
* Get station address from the EEPROM.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] =
sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
/* Allocate DMA resources. */
if (sf_dma_alloc(sc) != 0) {
error = ENOSPC;
goto fail;
}
sc->sf_txthresh = SF_MIN_TX_THRESHOLD;
ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not allocate ifnet structure\n");
error = ENOSPC;
goto fail;
}
/* Do MII setup. */
if (mii_phy_probe(dev, &sc->sf_miibus, sf_ifmedia_upd,
sf_ifmedia_sts)) {
device_printf(dev, "MII without any phy!\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sf_ioctl;
ifp->if_start = sf_start;
ifp->if_init = sf_init;
IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/*
* With the help of firmware, AIC-6915 supports
* Tx/Rx TCP/UDP checksum offload.
*/
ifp->if_hwassist = SF_CSUM_FEATURES;
ifp->if_capabilities = IFCAP_HWCSUM;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* VLAN capability setup. */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, sf_intr, sc, &sc->sf_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
sf_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
sf_detach(device_t dev)
{
struct sf_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->sf_ifp;
#ifdef DEVICE_POLLING
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
SF_LOCK(sc);
sc->sf_detach = 1;
sf_stop(sc);
SF_UNLOCK(sc);
callout_drain(&sc->sf_co);
taskqueue_drain(taskqueue_swi, &sc->sf_link_task);
if (ifp != NULL)
ether_ifdetach(ifp);
}
if (sc->sf_miibus) {
device_delete_child(dev, sc->sf_miibus);
sc->sf_miibus = NULL;
}
bus_generic_detach(dev);
if (sc->sf_intrhand != NULL)
bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
if (sc->sf_irq != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
if (sc->sf_res != NULL)
bus_release_resource(dev, sc->sf_restype, sc->sf_rid,
sc->sf_res);
sf_dma_free(sc);
if (ifp != NULL)
if_free(ifp);
mtx_destroy(&sc->sf_mtx);
return (0);
}
struct sf_dmamap_arg {
bus_addr_t sf_busaddr;
};
static void
sf_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct sf_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->sf_busaddr = segs[0].ds_addr;
}
static int
sf_dma_alloc(struct sf_softc *sc)
{
struct sf_dmamap_arg ctx;
struct sf_txdesc *txd;
struct sf_rxdesc *rxd;
bus_addr_t lowaddr;
bus_addr_t rx_ring_end, rx_cring_end;
bus_addr_t tx_ring_end, tx_cring_end;
int error, i;
lowaddr = BUS_SPACE_MAXADDR;
again:
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->sf_dev), /* parent */
1, 0, /* alignment, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sf_cdata.sf_parent_tag);
if (error != 0) {
device_printf(sc->sf_dev, "failed to create parent DMA tag\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
SF_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SF_TX_DLIST_SIZE, /* maxsize */
1, /* nsegments */
SF_TX_DLIST_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sf_cdata.sf_tx_ring_tag);
if (error != 0) {
device_printf(sc->sf_dev, "failed to create Tx ring DMA tag\n");
goto fail;
}
/* Create tag for Tx completion ring. */
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
SF_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SF_TX_CLIST_SIZE, /* maxsize */
1, /* nsegments */
SF_TX_CLIST_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sf_cdata.sf_tx_cring_tag);
if (error != 0) {
device_printf(sc->sf_dev,
"failed to create Tx completion ring DMA tag\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
SF_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SF_RX_DLIST_SIZE, /* maxsize */
1, /* nsegments */
SF_RX_DLIST_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sf_cdata.sf_rx_ring_tag);
if (error != 0) {
device_printf(sc->sf_dev,
"failed to create Rx ring DMA tag\n");
goto fail;
}
/* Create tag for Rx completion ring. */
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
SF_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SF_RX_CLIST_SIZE, /* maxsize */
1, /* nsegments */
SF_RX_CLIST_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sf_cdata.sf_rx_cring_tag);
if (error != 0) {
device_printf(sc->sf_dev,
"failed to create Rx completion ring DMA tag\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * SF_MAXTXSEGS, /* maxsize */
SF_MAXTXSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sf_cdata.sf_tx_tag);
if (error != 0) {
device_printf(sc->sf_dev, "failed to create Tx DMA tag\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
SF_RX_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sf_cdata.sf_rx_tag);
if (error != 0) {
device_printf(sc->sf_dev, "failed to create Rx DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_ring_tag,
(void **)&sc->sf_rdata.sf_tx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_ring_map);
if (error != 0) {
device_printf(sc->sf_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.sf_busaddr = 0;
error = bus_dmamap_load(sc->sf_cdata.sf_tx_ring_tag,
sc->sf_cdata.sf_tx_ring_map, sc->sf_rdata.sf_tx_ring,
SF_TX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.sf_busaddr == 0) {
device_printf(sc->sf_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc->sf_rdata.sf_tx_ring_paddr = ctx.sf_busaddr;
/*
* Allocate DMA'able memory and load the DMA map for Tx completion ring.
*/
error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_cring_tag,
(void **)&sc->sf_rdata.sf_tx_cring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_cring_map);
if (error != 0) {
device_printf(sc->sf_dev,
"failed to allocate DMA'able memory for "
"Tx completion ring\n");
goto fail;
}
ctx.sf_busaddr = 0;
error = bus_dmamap_load(sc->sf_cdata.sf_tx_cring_tag,
sc->sf_cdata.sf_tx_cring_map, sc->sf_rdata.sf_tx_cring,
SF_TX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.sf_busaddr == 0) {
device_printf(sc->sf_dev,
"failed to load DMA'able memory for Tx completion ring\n");
goto fail;
}
sc->sf_rdata.sf_tx_cring_paddr = ctx.sf_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_ring_tag,
(void **)&sc->sf_rdata.sf_rx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_ring_map);
if (error != 0) {
device_printf(sc->sf_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.sf_busaddr = 0;
error = bus_dmamap_load(sc->sf_cdata.sf_rx_ring_tag,
sc->sf_cdata.sf_rx_ring_map, sc->sf_rdata.sf_rx_ring,
SF_RX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.sf_busaddr == 0) {
device_printf(sc->sf_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc->sf_rdata.sf_rx_ring_paddr = ctx.sf_busaddr;
/*
* Allocate DMA'able memory and load the DMA map for Rx completion ring.
*/
error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_cring_tag,
(void **)&sc->sf_rdata.sf_rx_cring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_cring_map);
if (error != 0) {
device_printf(sc->sf_dev,
"failed to allocate DMA'able memory for "
"Rx completion ring\n");
goto fail;
}
ctx.sf_busaddr = 0;
error = bus_dmamap_load(sc->sf_cdata.sf_rx_cring_tag,
sc->sf_cdata.sf_rx_cring_map, sc->sf_rdata.sf_rx_cring,
SF_RX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.sf_busaddr == 0) {
device_printf(sc->sf_dev,
"failed to load DMA'able memory for Rx completion ring\n");
goto fail;
}
sc->sf_rdata.sf_rx_cring_paddr = ctx.sf_busaddr;
/*
* Tx desciptor ring and Tx completion ring should be addressed in
* the same 4GB space. The same rule applys to Rx ring and Rx
* completion ring. Unfortunately there is no way to specify this
* boundary restriction with bus_dma(9). So just try to allocate
* without the restriction and check the restriction was satisfied.
* If not, fall back to 32bit dma addressing mode which always
* guarantees the restriction.
*/
tx_ring_end = sc->sf_rdata.sf_tx_ring_paddr + SF_TX_DLIST_SIZE;
tx_cring_end = sc->sf_rdata.sf_tx_cring_paddr + SF_TX_CLIST_SIZE;
rx_ring_end = sc->sf_rdata.sf_rx_ring_paddr + SF_RX_DLIST_SIZE;
rx_cring_end = sc->sf_rdata.sf_rx_cring_paddr + SF_RX_CLIST_SIZE;
if ((SF_ADDR_HI(sc->sf_rdata.sf_tx_ring_paddr) !=
SF_ADDR_HI(tx_cring_end)) ||
(SF_ADDR_HI(sc->sf_rdata.sf_tx_cring_paddr) !=
SF_ADDR_HI(tx_ring_end)) ||
(SF_ADDR_HI(sc->sf_rdata.sf_rx_ring_paddr) !=
SF_ADDR_HI(rx_cring_end)) ||
(SF_ADDR_HI(sc->sf_rdata.sf_rx_cring_paddr) !=
SF_ADDR_HI(rx_ring_end))) {
device_printf(sc->sf_dev,
"switching to 32bit DMA mode\n");
sf_dma_free(sc);
/* Limit DMA address space to 32bit and try again. */
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
txd = &sc->sf_cdata.sf_txdesc[i];
txd->tx_m = NULL;
txd->ndesc = 0;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->sf_cdata.sf_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->sf_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
&sc->sf_cdata.sf_rx_sparemap)) != 0) {
device_printf(sc->sf_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
rxd = &sc->sf_cdata.sf_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->sf_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static void
sf_dma_free(struct sf_softc *sc)
{
struct sf_txdesc *txd;
struct sf_rxdesc *rxd;
int i;
/* Tx ring. */
if (sc->sf_cdata.sf_tx_ring_tag) {
if (sc->sf_cdata.sf_tx_ring_map)
bus_dmamap_unload(sc->sf_cdata.sf_tx_ring_tag,
sc->sf_cdata.sf_tx_ring_map);
if (sc->sf_cdata.sf_tx_ring_map &&
sc->sf_rdata.sf_tx_ring)
bus_dmamem_free(sc->sf_cdata.sf_tx_ring_tag,
sc->sf_rdata.sf_tx_ring,
sc->sf_cdata.sf_tx_ring_map);
sc->sf_rdata.sf_tx_ring = NULL;
sc->sf_cdata.sf_tx_ring_map = NULL;
bus_dma_tag_destroy(sc->sf_cdata.sf_tx_ring_tag);
sc->sf_cdata.sf_tx_ring_tag = NULL;
}
/* Tx completion ring. */
if (sc->sf_cdata.sf_tx_cring_tag) {
if (sc->sf_cdata.sf_tx_cring_map)
bus_dmamap_unload(sc->sf_cdata.sf_tx_cring_tag,
sc->sf_cdata.sf_tx_cring_map);
if (sc->sf_cdata.sf_tx_cring_map &&
sc->sf_rdata.sf_tx_cring)
bus_dmamem_free(sc->sf_cdata.sf_tx_cring_tag,
sc->sf_rdata.sf_tx_cring,
sc->sf_cdata.sf_tx_cring_map);
sc->sf_rdata.sf_tx_cring = NULL;
sc->sf_cdata.sf_tx_cring_map = NULL;
bus_dma_tag_destroy(sc->sf_cdata.sf_tx_cring_tag);
sc->sf_cdata.sf_tx_cring_tag = NULL;
}
/* Rx ring. */
if (sc->sf_cdata.sf_rx_ring_tag) {
if (sc->sf_cdata.sf_rx_ring_map)
bus_dmamap_unload(sc->sf_cdata.sf_rx_ring_tag,
sc->sf_cdata.sf_rx_ring_map);
if (sc->sf_cdata.sf_rx_ring_map &&
sc->sf_rdata.sf_rx_ring)
bus_dmamem_free(sc->sf_cdata.sf_rx_ring_tag,
sc->sf_rdata.sf_rx_ring,
sc->sf_cdata.sf_rx_ring_map);
sc->sf_rdata.sf_rx_ring = NULL;
sc->sf_cdata.sf_rx_ring_map = NULL;
bus_dma_tag_destroy(sc->sf_cdata.sf_rx_ring_tag);
sc->sf_cdata.sf_rx_ring_tag = NULL;
}
/* Rx completion ring. */
if (sc->sf_cdata.sf_rx_cring_tag) {
if (sc->sf_cdata.sf_rx_cring_map)
bus_dmamap_unload(sc->sf_cdata.sf_rx_cring_tag,
sc->sf_cdata.sf_rx_cring_map);
if (sc->sf_cdata.sf_rx_cring_map &&
sc->sf_rdata.sf_rx_cring)
bus_dmamem_free(sc->sf_cdata.sf_rx_cring_tag,
sc->sf_rdata.sf_rx_cring,
sc->sf_cdata.sf_rx_cring_map);
sc->sf_rdata.sf_rx_cring = NULL;
sc->sf_cdata.sf_rx_cring_map = NULL;
bus_dma_tag_destroy(sc->sf_cdata.sf_rx_cring_tag);
sc->sf_cdata.sf_rx_cring_tag = NULL;
}
/* Tx buffers. */
if (sc->sf_cdata.sf_tx_tag) {
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
txd = &sc->sf_cdata.sf_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc->sf_cdata.sf_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->sf_cdata.sf_tx_tag);
sc->sf_cdata.sf_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->sf_cdata.sf_rx_tag) {
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
rxd = &sc->sf_cdata.sf_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->sf_cdata.sf_rx_sparemap) {
bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
sc->sf_cdata.sf_rx_sparemap);
sc->sf_cdata.sf_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc->sf_cdata.sf_rx_tag);
sc->sf_cdata.sf_rx_tag = NULL;
}
if (sc->sf_cdata.sf_parent_tag) {
bus_dma_tag_destroy(sc->sf_cdata.sf_parent_tag);
sc->sf_cdata.sf_parent_tag = NULL;
}
}
static int
sf_init_rx_ring(struct sf_softc *sc)
{
struct sf_ring_data *rd;
int i;
sc->sf_cdata.sf_rxc_cons = 0;
rd = &sc->sf_rdata;
bzero(rd->sf_rx_ring, SF_RX_DLIST_SIZE);
bzero(rd->sf_rx_cring, SF_RX_CLIST_SIZE);
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
if (sf_newbuf(sc, i) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
sc->sf_cdata.sf_rx_cring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
sc->sf_cdata.sf_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
sf_init_tx_ring(struct sf_softc *sc)
{
struct sf_ring_data *rd;
int i;
sc->sf_cdata.sf_tx_prod = 0;
sc->sf_cdata.sf_tx_cnt = 0;
sc->sf_cdata.sf_txc_cons = 0;
rd = &sc->sf_rdata;
bzero(rd->sf_tx_ring, SF_TX_DLIST_SIZE);
bzero(rd->sf_tx_cring, SF_TX_CLIST_SIZE);
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
rd->sf_tx_ring[i].sf_tx_ctrl = htole32(SF_TX_DESC_ID);
sc->sf_cdata.sf_txdesc[i].tx_m = NULL;
sc->sf_cdata.sf_txdesc[i].ndesc = 0;
}
rd->sf_tx_ring[i].sf_tx_ctrl |= htole32(SF_TX_DESC_END);
bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
sc->sf_cdata.sf_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
sc->sf_cdata.sf_tx_cring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
sf_newbuf(struct sf_softc *sc, int idx)
{
struct sf_rx_rdesc *desc;
struct sf_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, sizeof(uint32_t));
if (bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_rx_tag,
sc->sf_cdata.sf_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc->sf_cdata.sf_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->sf_cdata.sf_rx_sparemap;
sc->sf_cdata.sf_rx_sparemap = map;
bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = &sc->sf_rdata.sf_rx_ring[idx];
desc->sf_addr = htole64(segs[0].ds_addr);
return (0);
}
#ifndef __NO_STRICT_ALIGNMENT
static __inline void
sf_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= ETHER_ALIGN;
}
#endif
/*
* The starfire is programmed to use 'normal' mode for packet reception,
* which means we use the consumer/producer model for both the buffer
* descriptor queue and the completion descriptor queue. The only problem
* with this is that it involves a lot of register accesses: we have to
* read the RX completion consumer and producer indexes and the RX buffer
* producer index, plus the RX completion consumer and RX buffer producer
* indexes have to be updated. It would have been easier if Adaptec had
* put each index in a separate register, especially given that the damn
* NIC has a 512K register space.
*
* In spite of all the lovely features that Adaptec crammed into the 6915,
* it is marred by one truly stupid design flaw, which is that receive
* buffer addresses must be aligned on a longword boundary. This forces
* the packet payload to be unaligned, which is suboptimal on the x86 and
* completely unuseable on the Alpha. Our only recourse is to copy received
* packets into properly aligned buffers before handing them off.
*/
static void
sf_rxeof(struct sf_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
struct sf_rxdesc *rxd;
struct sf_rx_rcdesc *cur_cmp;
int cons, eidx, prog;
uint32_t status, status2;
SF_LOCK_ASSERT(sc);
ifp = sc->sf_ifp;
bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
sc->sf_cdata.sf_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
sc->sf_cdata.sf_rx_cring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* To reduce register access, directly read Receive completion
* queue entry.
*/
eidx = 0;
prog = 0;
for (cons = sc->sf_cdata.sf_rxc_cons; ; SF_INC(cons, SF_RX_CLIST_CNT)) {
cur_cmp = &sc->sf_rdata.sf_rx_cring[cons];
status = le32toh(cur_cmp->sf_rx_status1);
if (status == 0)
break;
#ifdef DEVICE_POLLING
if ((ifp->if_capenable & IFCAP_POLLING) != 0) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
prog++;
eidx = (status & SF_RX_CMPDESC_EIDX) >> 16;
rxd = &sc->sf_cdata.sf_rxdesc[eidx];
m = rxd->rx_m;
/*
* Note, if_ipackets and if_ierrors counters
* are handled in sf_stats_update().
*/
if ((status & SF_RXSTAT1_OK) == 0) {
cur_cmp->sf_rx_status1 = 0;
continue;
}
if (sf_newbuf(sc, eidx) != 0) {
ifp->if_iqdrops++;
cur_cmp->sf_rx_status1 = 0;
continue;
}
/* AIC-6915 supports TCP/UDP checksum offload. */
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
status2 = le32toh(cur_cmp->sf_rx_status2);
/*
* Sometimes AIC-6915 generates an interrupt to
* warn RxGFP stall with bad checksum bit set
* in status word. I'm not sure what conditioan
* triggers it but recevied packet's checksum
* was correct even though AIC-6915 does not
* agree on this. This may be an indication of
* firmware bug. To fix the issue, do not rely
* on bad checksum bit in status word and let
* upper layer verify integrity of received
* frame.
* Another nice feature of AIC-6915 is hardware
* assistance of checksum calculation by
* providing partial checksum value for received
* frame. The partial checksum value can be used
* to accelerate checksum computation for
* fragmented TCP/UDP packets. Upper network
* stack already takes advantage of the partial
* checksum value in IP reassembly stage. But
* I'm not sure the correctness of the partial
* hardware checksum assistance as frequent
* RxGFP stalls are seen on non-fragmented
* frames. Due to the nature of the complexity
* of checksum computation code in firmware it's
* possible to see another bug in RxGFP so
* ignore checksum assistance for fragmented
* frames. This can be changed in future.
*/
if ((status2 & SF_RXSTAT2_FRAG) == 0) {
if ((status2 & (SF_RXSTAT2_TCP |
SF_RXSTAT2_UDP)) != 0) {
if ((status2 & SF_RXSTAT2_CSUM_OK)) {
m->m_pkthdr.csum_flags =
CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
}
#ifdef SF_PARTIAL_CSUM_SUPPORT
else if ((status2 & SF_RXSTAT2_FRAG) != 0) {
if ((status2 & (SF_RXSTAT2_TCP |
SF_RXSTAT2_UDP)) != 0) {
if ((status2 & SF_RXSTAT2_PCSUM_OK)) {
m->m_pkthdr.csum_flags =
CSUM_DATA_VALID;
m->m_pkthdr.csum_data =
(status &
SF_RX_CMPDESC_CSUM2);
}
}
}
#endif
}
m->m_pkthdr.len = m->m_len = status & SF_RX_CMPDESC_LEN;
#ifndef __NO_STRICT_ALIGNMENT
sf_fixup_rx(m);
#endif
m->m_pkthdr.rcvif = ifp;
SF_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
SF_LOCK(sc);
/* Clear completion status. */
cur_cmp->sf_rx_status1 = 0;
}
if (prog > 0) {
sc->sf_cdata.sf_rxc_cons = cons;
bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
sc->sf_cdata.sf_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
sc->sf_cdata.sf_rx_cring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Update Rx completion Q1 consumer index. */
csr_write_4(sc, SF_CQ_CONSIDX,
(csr_read_4(sc, SF_CQ_CONSIDX) & ~SF_CQ_CONSIDX_RXQ1) |
(cons & SF_CQ_CONSIDX_RXQ1));
/* Update Rx descriptor Q1 ptr. */
csr_write_4(sc, SF_RXDQ_PTR_Q1,
(csr_read_4(sc, SF_RXDQ_PTR_Q1) & ~SF_RXDQ_PRODIDX) |
(eidx & SF_RXDQ_PRODIDX));
}
}
/*
* Read the transmit status from the completion queue and release
* mbufs. Note that the buffer descriptor index in the completion
* descriptor is an offset from the start of the transmit buffer
* descriptor list in bytes. This is important because the manual
* gives the impression that it should match the producer/consumer
* index, which is the offset in 8 byte blocks.
*/
static void
sf_txeof(struct sf_softc *sc)
{
struct sf_txdesc *txd;
struct sf_tx_rcdesc *cur_cmp;
struct ifnet *ifp;
uint32_t status;
int cons, idx, prod;
SF_LOCK_ASSERT(sc);
ifp = sc->sf_ifp;
bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
sc->sf_cdata.sf_tx_cring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cons = sc->sf_cdata.sf_txc_cons;
prod = (csr_read_4(sc, SF_CQ_PRODIDX) & SF_TXDQ_PRODIDX_HIPRIO) >> 16;
if (prod == cons)
return;
for (; cons != prod; SF_INC(cons, SF_TX_CLIST_CNT)) {
cur_cmp = &sc->sf_rdata.sf_tx_cring[cons];
status = le32toh(cur_cmp->sf_tx_status1);
if (status == 0)
break;
switch (status & SF_TX_CMPDESC_TYPE) {
case SF_TXCMPTYPE_TX:
/* Tx complete entry. */
break;
case SF_TXCMPTYPE_DMA:
/* DMA complete entry. */
idx = status & SF_TX_CMPDESC_IDX;
idx = idx / sizeof(struct sf_tx_rdesc);
/*
* We don't need to check Tx status here.
* SF_ISR_TX_LOFIFO intr would handle this.
* Note, if_opackets, if_collisions and if_oerrors
* counters are handled in sf_stats_update().
*/
txd = &sc->sf_cdata.sf_txdesc[idx];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
sc->sf_cdata.sf_tx_cnt -= txd->ndesc;
KASSERT(sc->sf_cdata.sf_tx_cnt >= 0,
("%s: Active Tx desc counter was garbled\n",
__func__));
txd->ndesc = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
break;
default:
/* It should not happen. */
device_printf(sc->sf_dev,
"unknown Tx completion type : 0x%08x : %d : %d\n",
status, cons, prod);
break;
}
cur_cmp->sf_tx_status1 = 0;
}
sc->sf_cdata.sf_txc_cons = cons;
bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
sc->sf_cdata.sf_tx_cring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->sf_cdata.sf_tx_cnt == 0)
sc->sf_watchdog_timer = 0;
/* Update Tx completion consumer index. */
csr_write_4(sc, SF_CQ_CONSIDX,
(csr_read_4(sc, SF_CQ_CONSIDX) & 0xffff) |
((cons << 16) & 0xffff0000));
}
static void
sf_txthresh_adjust(struct sf_softc *sc)
{
uint32_t txfctl;
device_printf(sc->sf_dev, "Tx underrun -- ");
if (sc->sf_txthresh < SF_MAX_TX_THRESHOLD) {
txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
/* Increase Tx threshold 256 bytes. */
sc->sf_txthresh += 16;
if (sc->sf_txthresh > SF_MAX_TX_THRESHOLD)
sc->sf_txthresh = SF_MAX_TX_THRESHOLD;
txfctl &= ~SF_TXFRMCTL_TXTHRESH;
txfctl |= sc->sf_txthresh;
printf("increasing Tx threshold to %d bytes\n",
sc->sf_txthresh * SF_TX_THRESHOLD_UNIT);
csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
} else
printf("\n");
}
#ifdef DEVICE_POLLING
static void
sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct sf_softc *sc;
uint32_t status;
sc = ifp->if_softc;
SF_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
SF_UNLOCK(sc);
return;
}
sc->rxcycles = count;
sf_rxeof(sc);
sf_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sf_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
/* Reading the ISR register clears all interrrupts. */
status = csr_read_4(sc, SF_ISR);
if ((status & SF_ISR_ABNORMALINTR) != 0) {
if ((status & SF_ISR_STATSOFLOW) != 0)
sf_stats_update(sc);
else if ((status & SF_ISR_TX_LOFIFO) != 0)
sf_txthresh_adjust(sc);
else if ((status & SF_ISR_DMAERR) != 0) {
device_printf(sc->sf_dev,
"DMA error, resetting\n");
sf_init_locked(sc);
} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
sc->sf_statistics.sf_tx_gfp_stall++;
#ifdef SF_GFP_DEBUG
device_printf(sc->sf_dev,
"TxGFP is not responding!\n");
#endif
} else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
sc->sf_statistics.sf_rx_gfp_stall++;
#ifdef SF_GFP_DEBUG
device_printf(sc->sf_dev,
"RxGFP is not responding!\n");
#endif
}
}
}
SF_UNLOCK(sc);
}
#endif /* DEVICE_POLLING */
static void
sf_intr(void *arg)
{
struct sf_softc *sc;
struct ifnet *ifp;
uint32_t status;
sc = (struct sf_softc *)arg;
SF_LOCK(sc);
if (sc->sf_suspended != 0)
goto done_locked;
/* Reading the ISR register clears all interrrupts. */
status = csr_read_4(sc, SF_ISR);
if (status == 0 || status == 0xffffffff ||
(status & SF_ISR_PCIINT_ASSERTED) == 0)
goto done_locked;
ifp = sc->sf_ifp;
#ifdef DEVICE_POLLING
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
goto done_locked;
#endif
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto done_locked;
/* Disable interrupts. */
csr_write_4(sc, SF_IMR, 0x00000000);
for (; (status & SF_INTRS) != 0;) {
if ((status & SF_ISR_RXDQ1_DMADONE) != 0)
sf_rxeof(sc);
if ((status & (SF_ISR_TX_TXDONE | SF_ISR_TX_DMADONE |
SF_ISR_TX_QUEUEDONE)) != 0)
sf_txeof(sc);
if ((status & SF_ISR_ABNORMALINTR) != 0) {
if ((status & SF_ISR_STATSOFLOW) != 0)
sf_stats_update(sc);
else if ((status & SF_ISR_TX_LOFIFO) != 0)
sf_txthresh_adjust(sc);
else if ((status & SF_ISR_DMAERR) != 0) {
device_printf(sc->sf_dev,
"DMA error, resetting\n");
sf_init_locked(sc);
break;
} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
sc->sf_statistics.sf_tx_gfp_stall++;
#ifdef SF_GFP_DEBUG
device_printf(sc->sf_dev,
"TxGFP is not responding!\n");
#endif
}
else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
sc->sf_statistics.sf_rx_gfp_stall++;
#ifdef SF_GFP_DEBUG
device_printf(sc->sf_dev,
"RxGFP is not responding!\n");
#endif
}
}
/* Reading the ISR register clears all interrrupts. */
status = csr_read_4(sc, SF_ISR);
}
/* Re-enable interrupts. */
csr_write_4(sc, SF_IMR, SF_INTRS);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sf_start_locked(ifp);
done_locked:
SF_UNLOCK(sc);
}
static void
sf_download_fw(struct sf_softc *sc)
{
uint32_t gfpinst;
int i, ndx;
uint8_t *p;
/*
* A FP instruction is composed of 48bits so we have to
* write it with two parts.
*/
p = txfwdata;
ndx = 0;
for (i = 0; i < sizeof(txfwdata) / SF_GFP_INST_BYTES; i++) {
gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
csr_write_4(sc, SF_TXGFP_MEM_BASE + ndx * 4, gfpinst);
gfpinst = p[0] << 8 | p[1];
csr_write_4(sc, SF_TXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
p += SF_GFP_INST_BYTES;
ndx += 2;
}
if (bootverbose)
device_printf(sc->sf_dev, "%d Tx instructions downloaded\n", i);
p = rxfwdata;
ndx = 0;
for (i = 0; i < sizeof(rxfwdata) / SF_GFP_INST_BYTES; i++) {
gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx * 4), gfpinst);
gfpinst = p[0] << 8 | p[1];
csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
p += SF_GFP_INST_BYTES;
ndx += 2;
}
if (bootverbose)
device_printf(sc->sf_dev, "%d Rx instructions downloaded\n", i);
}
static void
sf_init(void *xsc)
{
struct sf_softc *sc;
sc = (struct sf_softc *)xsc;
SF_LOCK(sc);
sf_init_locked(sc);
SF_UNLOCK(sc);
}
static void
sf_init_locked(struct sf_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t addr;
int i;
SF_LOCK_ASSERT(sc);
ifp = sc->sf_ifp;
mii = device_get_softc(sc->sf_miibus);
sf_stop(sc);
/* Reset the hardware to a known state. */
sf_reset(sc);
/* Init all the receive filter registers */
for (i = SF_RXFILT_PERFECT_BASE;
i < (SF_RXFILT_HASH_MAX + 1); i += sizeof(uint32_t))
csr_write_4(sc, i, 0);
/* Empty stats counter registers. */
for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
csr_write_4(sc, i, 0);
/* Init our MAC address. */
bcopy(IF_LLADDR(sc->sf_ifp), eaddr, sizeof(eaddr));
csr_write_4(sc, SF_PAR0,
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
csr_write_4(sc, SF_PAR1, eaddr[0] << 8 | eaddr[1]);
sf_setperf(sc, 0, eaddr);
if (sf_init_rx_ring(sc) == ENOBUFS) {
device_printf(sc->sf_dev,
"initialization failed: no memory for rx buffers\n");
return;
}
sf_init_tx_ring(sc);
/*
* 16 perfect address filtering.
* Hash only multicast destination address, Accept matching
* frames regardless of VLAN ID.
*/
csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL | SF_HASHMODE_ANYVLAN);
/*
* Set Rx filter.
*/
sf_rxfilter(sc);
/* Init the completion queue indexes. */
csr_write_4(sc, SF_CQ_CONSIDX, 0);
csr_write_4(sc, SF_CQ_PRODIDX, 0);
/* Init the RX completion queue. */
addr = sc->sf_rdata.sf_rx_cring_paddr;
csr_write_4(sc, SF_CQ_ADDR_HI, SF_ADDR_HI(addr));
csr_write_4(sc, SF_RXCQ_CTL_1, SF_ADDR_LO(addr) & SF_RXCQ_ADDR);
if (SF_ADDR_HI(addr) != 0)
SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQ_USE_64BIT);
/* Set RX completion queue type 2. */
SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_2);
csr_write_4(sc, SF_RXCQ_CTL_2, 0);
/*
* Init RX DMA control.
* default RxHighPriority Threshold,
* default RxBurstSize, 128bytes.
*/
SF_SETBIT(sc, SF_RXDMA_CTL,
SF_RXDMA_REPORTBADPKTS |
(SF_RXDMA_HIGHPRIO_THRESH << 8) |
SF_RXDMA_BURST);
/* Init the RX buffer descriptor queue. */
addr = sc->sf_rdata.sf_rx_ring_paddr;
csr_write_4(sc, SF_RXDQ_ADDR_HI, SF_ADDR_HI(addr));
csr_write_4(sc, SF_RXDQ_ADDR_Q1, SF_ADDR_LO(addr));
/* Set RX queue buffer length. */
csr_write_4(sc, SF_RXDQ_CTL_1,
((MCLBYTES - sizeof(uint32_t)) << 16) |
SF_RXDQCTL_64BITBADDR | SF_RXDQCTL_VARIABLE);
if (SF_ADDR_HI(addr) != 0)
SF_SETBIT(sc, SF_RXDQ_CTL_1, SF_RXDQCTL_64BITDADDR);
csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
csr_write_4(sc, SF_RXDQ_CTL_2, 0);
/* Init the TX completion queue */
addr = sc->sf_rdata.sf_tx_cring_paddr;
csr_write_4(sc, SF_TXCQ_CTL, SF_ADDR_LO(addr) & SF_TXCQ_ADDR);
if (SF_ADDR_HI(addr) != 0)
SF_SETBIT(sc, SF_TXCQ_CTL, SF_TXCQ_USE_64BIT);
/* Init the TX buffer descriptor queue. */
addr = sc->sf_rdata.sf_tx_ring_paddr;
csr_write_4(sc, SF_TXDQ_ADDR_HI, SF_ADDR_HI(addr));
csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
csr_write_4(sc, SF_TXDQ_ADDR_LOPRIO, SF_ADDR_LO(addr));
csr_write_4(sc, SF_TX_FRAMCTL,
SF_TXFRMCTL_CPLAFTERTX | sc->sf_txthresh);
csr_write_4(sc, SF_TXDQ_CTL,
SF_TXDMA_HIPRIO_THRESH << 24 |
SF_TXSKIPLEN_0BYTES << 16 |
SF_TXDDMA_BURST << 8 |
SF_TXBUFDESC_TYPE2 | SF_TXMINSPACE_UNLIMIT);
if (SF_ADDR_HI(addr) != 0)
SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_64BITADDR);
/* Set VLAN Type register. */
csr_write_4(sc, SF_VLANTYPE, ETHERTYPE_VLAN);
/* Set TxPause Timer. */
csr_write_4(sc, SF_TXPAUSETIMER, 0xffff);
/* Enable autopadding of short TX frames. */
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
SF_SETBIT(sc, SF_MACCFG_2, SF_MACCFG2_AUTOVLANPAD);
/* Make sure to reset MAC to take changes effect. */
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
DELAY(1000);
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
/* Enable PCI bus master. */
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_PCIMEN);
/* Load StarFire firmware. */
sf_download_fw(sc);
/* Intialize interrupt moderation. */
csr_write_4(sc, SF_TIMER_CTL, SF_TIMER_IMASK_MODE | SF_TIMER_TIMES_TEN |
(sc->sf_int_mod & SF_TIMER_IMASK_INTERVAL));
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
csr_write_4(sc, SF_IMR, 0x00000000);
else
#endif
/* Enable interrupts. */
csr_write_4(sc, SF_IMR, SF_INTRS);
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
/* Enable the RX and TX engines. */
csr_write_4(sc, SF_GEN_ETH_CTL,
SF_ETHCTL_RX_ENB | SF_ETHCTL_RXDMA_ENB |
SF_ETHCTL_TX_ENB | SF_ETHCTL_TXDMA_ENB);
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
else
SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
else
SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
sc->sf_link = 0;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->sf_co, hz, sf_tick, sc);
}
static int
sf_encap(struct sf_softc *sc, struct mbuf **m_head)
{
struct sf_txdesc *txd;
struct sf_tx_rdesc *desc;
struct mbuf *m;
bus_dmamap_t map;
bus_dma_segment_t txsegs[SF_MAXTXSEGS];
int error, i, nsegs, prod, si;
int avail, nskip;
SF_LOCK_ASSERT(sc);
m = *m_head;
prod = sc->sf_cdata.sf_tx_prod;
txd = &sc->sf_cdata.sf_txdesc[prod];
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag, map,
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_DONTWAIT, SF_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag,
map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check number of available descriptors. */
avail = (SF_TX_DLIST_CNT - 1) - sc->sf_cdata.sf_tx_cnt;
if (avail < nsegs) {
bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
return (ENOBUFS);
}
nskip = 0;
if (prod + nsegs >= SF_TX_DLIST_CNT) {
nskip = SF_TX_DLIST_CNT - prod - 1;
if (avail < nsegs + nskip) {
bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
return (ENOBUFS);
}
}
bus_dmamap_sync(sc->sf_cdata.sf_tx_tag, map, BUS_DMASYNC_PREWRITE);
si = prod;
for (i = 0; i < nsegs; i++) {
desc = &sc->sf_rdata.sf_tx_ring[prod];
desc->sf_tx_ctrl = htole32(SF_TX_DESC_ID |
(txsegs[i].ds_len & SF_TX_DESC_FRAGLEN));
desc->sf_tx_reserved = 0;
desc->sf_addr = htole64(txsegs[i].ds_addr);
if (i == 0 && prod + nsegs >= SF_TX_DLIST_CNT) {
/* Queue wraps! */
desc->sf_tx_ctrl |= htole32(SF_TX_DESC_END);
prod = 0;
} else
SF_INC(prod, SF_TX_DLIST_CNT);
}
/* Update producer index. */
sc->sf_cdata.sf_tx_prod = prod;
sc->sf_cdata.sf_tx_cnt += nsegs + nskip;
desc = &sc->sf_rdata.sf_tx_ring[si];
/* Check TDP/UDP checksum offload request. */
if ((m->m_pkthdr.csum_flags & SF_CSUM_FEATURES) != 0)
desc->sf_tx_ctrl |= htole32(SF_TX_DESC_CALTCP);
desc->sf_tx_ctrl |=
htole32(SF_TX_DESC_CRCEN | SF_TX_DESC_INTR | (nsegs << 16));
txd->tx_dmamap = map;
txd->tx_m = m;
txd->ndesc = nsegs + nskip;
return (0);
}
static void
sf_start(struct ifnet *ifp)
{
struct sf_softc *sc;
sc = ifp->if_softc;
SF_LOCK(sc);
sf_start_locked(ifp);
SF_UNLOCK(sc);
}
static void
sf_start_locked(struct ifnet *ifp)
{
struct sf_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
SF_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc->sf_link == 0)
return;
/*
* Since we don't know when descriptor wrap occurrs in advance
* limit available number of active Tx descriptor counter to be
* higher than maximum number of DMA segments allowed in driver.
*/
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->sf_cdata.sf_tx_cnt < SF_TX_DLIST_CNT - SF_MAXTXSEGS; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (sf_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
sc->sf_cdata.sf_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Kick transmit. */
csr_write_4(sc, SF_TXDQ_PRODIDX,
sc->sf_cdata.sf_tx_prod * (sizeof(struct sf_tx_rdesc) / 8));
/* Set a timeout in case the chip goes out to lunch. */
sc->sf_watchdog_timer = 5;
}
}
static void
sf_stop(struct sf_softc *sc)
{
struct sf_txdesc *txd;
struct sf_rxdesc *rxd;
struct ifnet *ifp;
int i;
SF_LOCK_ASSERT(sc);
ifp = sc->sf_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sf_link = 0;
callout_stop(&sc->sf_co);
sc->sf_watchdog_timer = 0;
/* Reading the ISR register clears all interrrupts. */
csr_read_4(sc, SF_ISR);
/* Disable further interrupts. */
csr_write_4(sc, SF_IMR, 0);
/* Disable Tx/Rx egine. */
csr_write_4(sc, SF_GEN_ETH_CTL, 0);
csr_write_4(sc, SF_CQ_CONSIDX, 0);
csr_write_4(sc, SF_CQ_PRODIDX, 0);
csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
csr_write_4(sc, SF_RXDQ_CTL_1, 0);
csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
csr_write_4(sc, SF_TXCQ_CTL, 0);
csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
csr_write_4(sc, SF_TXDQ_CTL, 0);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
rxd = &sc->sf_cdata.sf_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sf_cdata.sf_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sf_cdata.sf_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
txd = &sc->sf_cdata.sf_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->ndesc = 0;
}
}
}
static void
sf_tick(void *xsc)
{
struct sf_softc *sc;
struct mii_data *mii;
sc = xsc;
SF_LOCK_ASSERT(sc);
mii = device_get_softc(sc->sf_miibus);
mii_tick(mii);
sf_stats_update(sc);
sf_watchdog(sc);
callout_reset(&sc->sf_co, hz, sf_tick, sc);
}
/*
* Note: it is important that this function not be interrupted. We
* use a two-stage register access scheme: if we are interrupted in
* between setting the indirect address register and reading from the
* indirect data register, the contents of the address register could
* be changed out from under us.
*/
static void
sf_stats_update(struct sf_softc *sc)
{
struct ifnet *ifp;
struct sf_stats now, *stats, *nstats;
int i;
SF_LOCK_ASSERT(sc);
ifp = sc->sf_ifp;
stats = &now;
stats->sf_tx_frames =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAMES);
stats->sf_tx_single_colls =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_SINGLE_COL);
stats->sf_tx_multi_colls =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI_COL);
stats->sf_tx_crcerrs =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CRC_ERRS);
stats->sf_tx_bytes =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BYTES);
stats->sf_tx_deferred =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_DEFERRED);
stats->sf_tx_late_colls =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_LATE_COL);
stats->sf_tx_pause_frames =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_PAUSE);
stats->sf_tx_control_frames =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CTL_FRAME);
stats->sf_tx_excess_colls =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_COL);
stats->sf_tx_excess_defer =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_DEF);
stats->sf_tx_mcast_frames =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI);
stats->sf_tx_bcast_frames =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BCAST);
stats->sf_tx_frames_lost =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAME_LOST);
stats->sf_rx_frames =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAMES);
stats->sf_rx_crcerrs =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CRC_ERRS);
stats->sf_rx_alignerrs =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_ALIGN_ERRS);
stats->sf_rx_bytes =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_BYTES);
stats->sf_rx_pause_frames =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_PAUSE);
stats->sf_rx_control_frames =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CTL_FRAME);
stats->sf_rx_unsup_control_frames =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_UNSUP_FRAME);
stats->sf_rx_giants =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_GIANTS);
stats->sf_rx_runts =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_RUNTS);
stats->sf_rx_jabbererrs =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_JABBER);
stats->sf_rx_fragments =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAGMENTS);
stats->sf_rx_pkts_64 =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_64);
stats->sf_rx_pkts_65_127 =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_65_127);
stats->sf_rx_pkts_128_255 =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_128_255);
stats->sf_rx_pkts_256_511 =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_256_511);
stats->sf_rx_pkts_512_1023 =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_512_1023);
stats->sf_rx_pkts_1024_1518 =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_1024_1518);
stats->sf_rx_frames_lost =
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAME_LOST);
/* Lower 16bits are valid. */
stats->sf_tx_underruns =
(csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_UNDERRUN) & 0xffff);
/* Empty stats counter registers. */
for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
csr_write_4(sc, i, 0);
ifp->if_opackets += (u_long)stats->sf_tx_frames;
ifp->if_collisions += (u_long)stats->sf_tx_single_colls +
(u_long)stats->sf_tx_multi_colls;
ifp->if_oerrors += (u_long)stats->sf_tx_excess_colls +
(u_long)stats->sf_tx_excess_defer +
(u_long)stats->sf_tx_frames_lost;
ifp->if_ipackets += (u_long)stats->sf_rx_frames;
ifp->if_ierrors += (u_long)stats->sf_rx_crcerrs +
(u_long)stats->sf_rx_alignerrs +
(u_long)stats->sf_rx_giants +
(u_long)stats->sf_rx_runts +
(u_long)stats->sf_rx_jabbererrs +
(u_long)stats->sf_rx_frames_lost;
nstats = &sc->sf_statistics;
nstats->sf_tx_frames += stats->sf_tx_frames;
nstats->sf_tx_single_colls += stats->sf_tx_single_colls;
nstats->sf_tx_multi_colls += stats->sf_tx_multi_colls;
nstats->sf_tx_crcerrs += stats->sf_tx_crcerrs;
nstats->sf_tx_bytes += stats->sf_tx_bytes;
nstats->sf_tx_deferred += stats->sf_tx_deferred;
nstats->sf_tx_late_colls += stats->sf_tx_late_colls;
nstats->sf_tx_pause_frames += stats->sf_tx_pause_frames;
nstats->sf_tx_control_frames += stats->sf_tx_control_frames;
nstats->sf_tx_excess_colls += stats->sf_tx_excess_colls;
nstats->sf_tx_excess_defer += stats->sf_tx_excess_defer;
nstats->sf_tx_mcast_frames += stats->sf_tx_mcast_frames;
nstats->sf_tx_bcast_frames += stats->sf_tx_bcast_frames;
nstats->sf_tx_frames_lost += stats->sf_tx_frames_lost;
nstats->sf_rx_frames += stats->sf_rx_frames;
nstats->sf_rx_crcerrs += stats->sf_rx_crcerrs;
nstats->sf_rx_alignerrs += stats->sf_rx_alignerrs;
nstats->sf_rx_bytes += stats->sf_rx_bytes;
nstats->sf_rx_pause_frames += stats->sf_rx_pause_frames;
nstats->sf_rx_control_frames += stats->sf_rx_control_frames;
nstats->sf_rx_unsup_control_frames += stats->sf_rx_unsup_control_frames;
nstats->sf_rx_giants += stats->sf_rx_giants;
nstats->sf_rx_runts += stats->sf_rx_runts;
nstats->sf_rx_jabbererrs += stats->sf_rx_jabbererrs;
nstats->sf_rx_fragments += stats->sf_rx_fragments;
nstats->sf_rx_pkts_64 += stats->sf_rx_pkts_64;
nstats->sf_rx_pkts_65_127 += stats->sf_rx_pkts_65_127;
nstats->sf_rx_pkts_128_255 += stats->sf_rx_pkts_128_255;
nstats->sf_rx_pkts_256_511 += stats->sf_rx_pkts_256_511;
nstats->sf_rx_pkts_512_1023 += stats->sf_rx_pkts_512_1023;
nstats->sf_rx_pkts_1024_1518 += stats->sf_rx_pkts_1024_1518;
nstats->sf_rx_frames_lost += stats->sf_rx_frames_lost;
nstats->sf_tx_underruns += stats->sf_tx_underruns;
}
static void
sf_watchdog(struct sf_softc *sc)
{
struct ifnet *ifp;
SF_LOCK_ASSERT(sc);
if (sc->sf_watchdog_timer == 0 || --sc->sf_watchdog_timer)
return;
ifp = sc->sf_ifp;
ifp->if_oerrors++;
if (sc->sf_link == 0) {
if (bootverbose)
if_printf(sc->sf_ifp, "watchdog timeout "
"(missed link)\n");
} else
if_printf(ifp, "watchdog timeout, %d Tx descs are active\n",
sc->sf_cdata.sf_tx_cnt);
sf_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
sf_start_locked(ifp);
}
static int
sf_shutdown(device_t dev)
{
struct sf_softc *sc;
sc = device_get_softc(dev);
SF_LOCK(sc);
sf_stop(sc);
SF_UNLOCK(sc);
return (0);
}
static int
sf_suspend(device_t dev)
{
struct sf_softc *sc;
sc = device_get_softc(dev);
SF_LOCK(sc);
sf_stop(sc);
sc->sf_suspended = 1;
bus_generic_suspend(dev);
SF_UNLOCK(sc);
return (0);
}
static int
sf_resume(device_t dev)
{
struct sf_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
SF_LOCK(sc);
bus_generic_resume(dev);
ifp = sc->sf_ifp;
if ((ifp->if_flags & IFF_UP) != 0)
sf_init_locked(sc);
sc->sf_suspended = 0;
SF_UNLOCK(sc);
return (0);
}
static int
sf_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct sf_softc *sc;
struct sf_stats *stats;
int error;
int result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (result != 1)
return (error);
sc = (struct sf_softc *)arg1;
stats = &sc->sf_statistics;
printf("%s statistics:\n", device_get_nameunit(sc->sf_dev));
printf("Transmit good frames : %ju\n",
(uintmax_t)stats->sf_tx_frames);
printf("Transmit good octets : %ju\n",
(uintmax_t)stats->sf_tx_bytes);
printf("Transmit single collisions : %u\n",
stats->sf_tx_single_colls);
printf("Transmit multiple collisions : %u\n",
stats->sf_tx_multi_colls);
printf("Transmit late collisions : %u\n",
stats->sf_tx_late_colls);
printf("Transmit abort due to excessive collisions : %u\n",
stats->sf_tx_excess_colls);
printf("Transmit CRC errors : %u\n",
stats->sf_tx_crcerrs);
printf("Transmit deferrals : %u\n",
stats->sf_tx_deferred);
printf("Transmit abort due to excessive deferrals : %u\n",
stats->sf_tx_excess_defer);
printf("Transmit pause control frames : %u\n",
stats->sf_tx_pause_frames);
printf("Transmit control frames : %u\n",
stats->sf_tx_control_frames);
printf("Transmit good multicast frames : %u\n",
stats->sf_tx_mcast_frames);
printf("Transmit good broadcast frames : %u\n",
stats->sf_tx_bcast_frames);
printf("Transmit frames lost due to internal transmit errors : %u\n",
stats->sf_tx_frames_lost);
printf("Transmit FIFO underflows : %u\n",
stats->sf_tx_underruns);
printf("Transmit GFP stalls : %u\n", stats->sf_tx_gfp_stall);
printf("Receive good frames : %ju\n",
(uint64_t)stats->sf_rx_frames);
printf("Receive good octets : %ju\n",
(uint64_t)stats->sf_rx_bytes);
printf("Receive CRC errors : %u\n",
stats->sf_rx_crcerrs);
printf("Receive alignment errors : %u\n",
stats->sf_rx_alignerrs);
printf("Receive pause frames : %u\n",
stats->sf_rx_pause_frames);
printf("Receive control frames : %u\n",
stats->sf_rx_control_frames);
printf("Receive control frames with unsupported opcode : %u\n",
stats->sf_rx_unsup_control_frames);
printf("Receive frames too long : %u\n",
stats->sf_rx_giants);
printf("Receive frames too short : %u\n",
stats->sf_rx_runts);
printf("Receive frames jabber errors : %u\n",
stats->sf_rx_jabbererrs);
printf("Receive frames fragments : %u\n",
stats->sf_rx_fragments);
printf("Receive packets 64 bytes : %ju\n",
(uint64_t)stats->sf_rx_pkts_64);
printf("Receive packets 65 to 127 bytes : %ju\n",
(uint64_t)stats->sf_rx_pkts_65_127);
printf("Receive packets 128 to 255 bytes : %ju\n",
(uint64_t)stats->sf_rx_pkts_128_255);
printf("Receive packets 256 to 511 bytes : %ju\n",
(uint64_t)stats->sf_rx_pkts_256_511);
printf("Receive packets 512 to 1023 bytes : %ju\n",
(uint64_t)stats->sf_rx_pkts_512_1023);
printf("Receive packets 1024 to 1518 bytes : %ju\n",
(uint64_t)stats->sf_rx_pkts_1024_1518);
printf("Receive frames lost due to internal receive errors : %u\n",
stats->sf_rx_frames_lost);
printf("Receive GFP stalls : %u\n", stats->sf_rx_gfp_stall);
return (error);
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (!arg1)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, SF_IM_MIN, SF_IM_MAX));
}