Bruce Evans
1dd21062e5
Rearranged the polynomial evaluation some more to reduce dependencies.
Instead of echoing the code in a comment, try to describe why we split up the evaluation in a special way. The new optimization is mostly to move the evaluation of w = z*z later so that everything else (except z = x*x) doesn't have to wait for w. On Athlons, FP multiplication has a latency of 4 cycles so this optimization saves 4 cycles per call provided no new dependencies are introduced. Tweaking the other terms in to reduce dependencies saves a couple more cycles in some cases (more on AXP than on A64; up to 8 cycles out of 56 altogether in some cases). The previous version had a similar optimization for s = z*x. Special optimizations like these probably have a larger effect than the simple 2-way vectorization permitted (but not activated by gcc) in the old version, since 2-way vectorization is not enough and the polynomial's degree is so small in the float case that non-vectorizable dependencies dominate. On an AXP, tanf() on uniformly distributed args in [-2pi, 2pi] now takes 34-55 cycles (was 39-59 cycles).
…
This is the top level of the FreeBSD source directory. This file was last revised on: $FreeBSD$ For copyright information, please see the file COPYRIGHT in this directory (additional copyright information also exists for some sources in this tree - please see the specific source directories for more information). The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree, the most commonly used one being ``world'', which rebuilds and installs everything in the FreeBSD system from the source tree except the kernel, the kernel-modules and the contents of /etc. The ``buildkernel'' and ``installkernel'' targets build and install the kernel and the modules (see below). Please see the top of the Makefile in this directory for more information on the standard build targets and compile-time flags. Building a kernel is a somewhat more involved process, documentation for which can be found at: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html And in the config(8) man page. Note: If you want to build and install the kernel with the ``buildkernel'' and ``installkernel'' targets, you might need to build world before. More information is available in the handbook. The sample kernel configuration files reside in the sys/<arch>/conf sub-directory (assuming that you've installed the kernel sources), the file named GENERIC being the one used to build your initial installation kernel. The file NOTES contains entries and documentation for all possible devices, not just those commonly used. It is the successor of the ancient LINT file, but in contrast to LINT, it is not buildable as a kernel but a pure reference and documentation file. Source Roadmap: --------------- bin System/user commands. contrib Packages contributed by 3rd parties. crypto Cryptography stuff (see crypto/README). etc Template files for /etc. games Amusements. gnu Various commands and libraries under the GNU Public License. Please see gnu/COPYING* for more information. include System include files. kerberos5 Kerberos5 (Heimdal) package. lib System libraries. libexec System daemons. release Release building Makefile & associated tools. sbin System commands. secure Cryptographic libraries and commands. share Shared resources. sys Kernel sources. tools Utilities for regression testing and miscellaneous tasks. usr.bin User commands. usr.sbin System administration commands. For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html
Description
Languages
C
63.3%
C++
23.3%
Roff
5.1%
Shell
2.9%
Makefile
1.5%
Other
3.4%