8143720d95
The update of jemalloc to 5.1.0 exposed a cache syncing issue on a Freescale e500 base system. There was already code in the FPU emulator to address this, but it was limited to a single static variable, and did not attempt to sync the cache. This pulls that out to the higher level program exception handler, and syncs the cache. If a SIGILL is hit a second time at the same address, it will be treated as a real illegal instruction, and handled accordingly.
797 lines
22 KiB
C
797 lines
22 KiB
C
/* $NetBSD: fpu_emu.c,v 1.14 2005/12/11 12:18:42 christos Exp $ */
|
|
|
|
/*-
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
*
|
|
* Copyright 2001 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratory.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)fpu.c 8.1 (Berkeley) 6/11/93
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/signal.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/signalvar.h>
|
|
|
|
#include <machine/fpu.h>
|
|
#include <machine/reg.h>
|
|
|
|
#include <powerpc/fpu/fpu_emu.h>
|
|
#include <powerpc/fpu/fpu_extern.h>
|
|
#include <powerpc/fpu/fpu_instr.h>
|
|
|
|
static SYSCTL_NODE(_hw, OID_AUTO, fpu_emu, CTLFLAG_RW, 0, "FPU emulator");
|
|
|
|
#define FPU_EMU_EVCNT_DECL(name) \
|
|
static u_int fpu_emu_evcnt_##name; \
|
|
SYSCTL_INT(_hw_fpu_emu, OID_AUTO, evcnt_##name, CTLFLAG_RD, \
|
|
&fpu_emu_evcnt_##name, 0, "")
|
|
|
|
#define FPU_EMU_EVCNT_INCR(name) fpu_emu_evcnt_##name++
|
|
|
|
FPU_EMU_EVCNT_DECL(stfiwx);
|
|
FPU_EMU_EVCNT_DECL(fpstore);
|
|
FPU_EMU_EVCNT_DECL(fpload);
|
|
FPU_EMU_EVCNT_DECL(fcmpu);
|
|
FPU_EMU_EVCNT_DECL(frsp);
|
|
FPU_EMU_EVCNT_DECL(fctiw);
|
|
FPU_EMU_EVCNT_DECL(fcmpo);
|
|
FPU_EMU_EVCNT_DECL(mtfsb1);
|
|
FPU_EMU_EVCNT_DECL(fnegabs);
|
|
FPU_EMU_EVCNT_DECL(mcrfs);
|
|
FPU_EMU_EVCNT_DECL(mtfsb0);
|
|
FPU_EMU_EVCNT_DECL(fmr);
|
|
FPU_EMU_EVCNT_DECL(mtfsfi);
|
|
FPU_EMU_EVCNT_DECL(fnabs);
|
|
FPU_EMU_EVCNT_DECL(fabs);
|
|
FPU_EMU_EVCNT_DECL(mffs);
|
|
FPU_EMU_EVCNT_DECL(mtfsf);
|
|
FPU_EMU_EVCNT_DECL(fctid);
|
|
FPU_EMU_EVCNT_DECL(fcfid);
|
|
FPU_EMU_EVCNT_DECL(fdiv);
|
|
FPU_EMU_EVCNT_DECL(fsub);
|
|
FPU_EMU_EVCNT_DECL(fadd);
|
|
FPU_EMU_EVCNT_DECL(fsqrt);
|
|
FPU_EMU_EVCNT_DECL(fsel);
|
|
FPU_EMU_EVCNT_DECL(fpres);
|
|
FPU_EMU_EVCNT_DECL(fmul);
|
|
FPU_EMU_EVCNT_DECL(frsqrte);
|
|
FPU_EMU_EVCNT_DECL(fmulsub);
|
|
FPU_EMU_EVCNT_DECL(fmuladd);
|
|
FPU_EMU_EVCNT_DECL(fnmsub);
|
|
FPU_EMU_EVCNT_DECL(fnmadd);
|
|
|
|
/* FPSR exception masks */
|
|
#define FPSR_EX_MSK (FPSCR_VX|FPSCR_OX|FPSCR_UX|FPSCR_ZX| \
|
|
FPSCR_XX|FPSCR_VXSNAN|FPSCR_VXISI|FPSCR_VXIDI| \
|
|
FPSCR_VXZDZ|FPSCR_VXIMZ|FPSCR_VXVC|FPSCR_VXSOFT|\
|
|
FPSCR_VXSQRT|FPSCR_VXCVI)
|
|
#define FPSR_EX (FPSCR_VE|FPSCR_OE|FPSCR_UE|FPSCR_ZE|FPSCR_XE)
|
|
#define FPSR_EXOP (FPSR_EX_MSK&(~FPSR_EX))
|
|
|
|
int fpe_debug = 0;
|
|
|
|
#ifdef DEBUG
|
|
vm_offset_t opc_disasm(vm_offset_t, int);
|
|
|
|
/*
|
|
* Dump a `fpn' structure.
|
|
*/
|
|
void
|
|
fpu_dumpfpn(struct fpn *fp)
|
|
{
|
|
static const char *class[] = {
|
|
"SNAN", "QNAN", "ZERO", "NUM", "INF"
|
|
};
|
|
|
|
printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
|
|
fp->fp_sign ? '-' : ' ',
|
|
fp->fp_mant[0], fp->fp_mant[1],
|
|
fp->fp_mant[2], fp->fp_mant[3],
|
|
fp->fp_exp);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* fpu_execute returns the following error numbers (0 = no error):
|
|
*/
|
|
#define FPE 1 /* take a floating point exception */
|
|
#define NOTFPU 2 /* not an FPU instruction */
|
|
#define FAULT 3
|
|
|
|
|
|
/*
|
|
* Emulate a floating-point instruction.
|
|
* Return zero for success, else signal number.
|
|
* (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
|
|
*/
|
|
int
|
|
fpu_emulate(struct trapframe *frame, struct fpu *fpf)
|
|
{
|
|
union instr insn;
|
|
struct fpemu fe;
|
|
int sig;
|
|
|
|
/* initialize insn.is_datasize to tell it is *not* initialized */
|
|
fe.fe_fpstate = fpf;
|
|
fe.fe_cx = 0;
|
|
|
|
/* always set this (to avoid a warning) */
|
|
|
|
if (copyin((void *) (frame->srr0), &insn.i_int, sizeof (insn.i_int))) {
|
|
#ifdef DEBUG
|
|
printf("fpu_emulate: fault reading opcode\n");
|
|
#endif
|
|
return SIGSEGV;
|
|
}
|
|
|
|
DPRINTF(FPE_EX, ("fpu_emulate: emulating insn %x at %p\n",
|
|
insn.i_int, (void *)frame->srr0));
|
|
|
|
|
|
if ((insn.i_any.i_opcd == OPC_TWI) ||
|
|
((insn.i_any.i_opcd == OPC_integer_31) &&
|
|
(insn.i_x.i_xo == OPC31_TW))) {
|
|
/* Check for the two trap insns. */
|
|
DPRINTF(FPE_EX, ("fpu_emulate: SIGTRAP\n"));
|
|
return (SIGTRAP);
|
|
}
|
|
sig = 0;
|
|
switch (fpu_execute(frame, &fe, &insn)) {
|
|
case 0:
|
|
DPRINTF(FPE_EX, ("fpu_emulate: success\n"));
|
|
frame->srr0 += 4;
|
|
break;
|
|
|
|
case FPE:
|
|
DPRINTF(FPE_EX, ("fpu_emulate: SIGFPE\n"));
|
|
sig = SIGFPE;
|
|
break;
|
|
|
|
case FAULT:
|
|
DPRINTF(FPE_EX, ("fpu_emulate: SIGSEGV\n"));
|
|
sig = SIGSEGV;
|
|
break;
|
|
|
|
case NOTFPU:
|
|
default:
|
|
DPRINTF(FPE_EX, ("fpu_emulate: SIGILL\n"));
|
|
#ifdef DEBUG
|
|
if (fpe_debug & FPE_EX) {
|
|
printf("fpu_emulate: illegal insn %x at %p:",
|
|
insn.i_int, (void *) (frame->srr0));
|
|
opc_disasm(frame->srr0, insn.i_int);
|
|
}
|
|
#endif
|
|
sig = SIGILL;
|
|
#ifdef DEBUG
|
|
if (fpe_debug & FPE_EX)
|
|
kdb_enter(KDB_WHY_UNSET, "illegal instruction");
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
return (sig);
|
|
}
|
|
|
|
/*
|
|
* Execute an FPU instruction (one that runs entirely in the FPU; not
|
|
* FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
|
|
* modified to reflect the setting the hardware would have left.
|
|
*
|
|
* Note that we do not catch all illegal opcodes, so you can, for instance,
|
|
* multiply two integers this way.
|
|
*/
|
|
int
|
|
fpu_execute(struct trapframe *tf, struct fpemu *fe, union instr *insn)
|
|
{
|
|
struct fpn *fp;
|
|
union instr instr = *insn;
|
|
int *a;
|
|
vm_offset_t addr;
|
|
int ra, rb, rc, rt, type, mask, fsr, cx, bf, setcr;
|
|
unsigned int cond;
|
|
struct fpu *fs;
|
|
|
|
/* Setup work. */
|
|
fp = NULL;
|
|
fs = fe->fe_fpstate;
|
|
fe->fe_fpscr = ((int *)&fs->fpscr)[1];
|
|
|
|
/*
|
|
* On PowerPC all floating point values are stored in registers
|
|
* as doubles, even when used for single precision operations.
|
|
*/
|
|
type = FTYPE_DBL;
|
|
cond = instr.i_any.i_rc;
|
|
setcr = 0;
|
|
bf = 0; /* XXX gcc */
|
|
|
|
#if defined(DDB) && defined(DEBUG)
|
|
if (fpe_debug & FPE_EX) {
|
|
vm_offset_t loc = tf->srr0;
|
|
|
|
printf("Trying to emulate: %p ", (void *)loc);
|
|
opc_disasm(loc, instr.i_int);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* `Decode' and execute instruction.
|
|
*/
|
|
|
|
if ((instr.i_any.i_opcd >= OPC_LFS && instr.i_any.i_opcd <= OPC_STFDU) ||
|
|
instr.i_any.i_opcd == OPC_integer_31) {
|
|
/*
|
|
* Handle load/store insns:
|
|
*
|
|
* Convert to/from single if needed, calculate addr,
|
|
* and update index reg if needed.
|
|
*/
|
|
double buf;
|
|
size_t size = sizeof(float);
|
|
int store, update;
|
|
|
|
cond = 0; /* ld/st never set condition codes */
|
|
|
|
|
|
if (instr.i_any.i_opcd == OPC_integer_31) {
|
|
if (instr.i_x.i_xo == OPC31_STFIWX) {
|
|
FPU_EMU_EVCNT_INCR(stfiwx);
|
|
|
|
/* Store as integer */
|
|
ra = instr.i_x.i_ra;
|
|
rb = instr.i_x.i_rb;
|
|
DPRINTF(FPE_INSN,
|
|
("reg %d has %jx reg %d has %jx\n",
|
|
ra, (uintmax_t)tf->fixreg[ra], rb,
|
|
(uintmax_t)tf->fixreg[rb]));
|
|
|
|
addr = tf->fixreg[rb];
|
|
if (ra != 0)
|
|
addr += tf->fixreg[ra];
|
|
rt = instr.i_x.i_rt;
|
|
a = (int *)&fs->fpr[rt].fpr;
|
|
DPRINTF(FPE_INSN,
|
|
("fpu_execute: Store INT %x at %p\n",
|
|
a[1], (void *)addr));
|
|
if (copyout(&a[1], (void *)addr, sizeof(int)))
|
|
return (FAULT);
|
|
return (0);
|
|
}
|
|
|
|
if ((instr.i_x.i_xo & OPC31_FPMASK) != OPC31_FPOP)
|
|
/* Not an indexed FP load/store op */
|
|
return (NOTFPU);
|
|
|
|
store = (instr.i_x.i_xo & 0x80);
|
|
if (instr.i_x.i_xo & 0x40)
|
|
size = sizeof(double);
|
|
else
|
|
type = FTYPE_SNG;
|
|
update = (instr.i_x.i_xo & 0x20);
|
|
|
|
/* calculate EA of load/store */
|
|
ra = instr.i_x.i_ra;
|
|
rb = instr.i_x.i_rb;
|
|
DPRINTF(FPE_INSN, ("reg %d has %jx reg %d has %jx\n",
|
|
ra, (uintmax_t)tf->fixreg[ra], rb,
|
|
(uintmax_t)tf->fixreg[rb]));
|
|
addr = tf->fixreg[rb];
|
|
if (ra != 0)
|
|
addr += tf->fixreg[ra];
|
|
rt = instr.i_x.i_rt;
|
|
} else {
|
|
store = instr.i_d.i_opcd & 0x4;
|
|
if (instr.i_d.i_opcd & 0x2)
|
|
size = sizeof(double);
|
|
else
|
|
type = FTYPE_SNG;
|
|
update = instr.i_d.i_opcd & 0x1;
|
|
|
|
/* calculate EA of load/store */
|
|
ra = instr.i_d.i_ra;
|
|
addr = instr.i_d.i_d;
|
|
DPRINTF(FPE_INSN, ("reg %d has %jx displ %jx\n",
|
|
ra, (uintmax_t)tf->fixreg[ra],
|
|
(uintmax_t)addr));
|
|
if (ra != 0)
|
|
addr += tf->fixreg[ra];
|
|
rt = instr.i_d.i_rt;
|
|
}
|
|
|
|
if (update && ra == 0)
|
|
return (NOTFPU);
|
|
|
|
if (store) {
|
|
/* Store */
|
|
FPU_EMU_EVCNT_INCR(fpstore);
|
|
if (type != FTYPE_DBL) {
|
|
DPRINTF(FPE_INSN,
|
|
("fpu_execute: Store SNG at %p\n",
|
|
(void *)addr));
|
|
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rt);
|
|
fpu_implode(fe, fp, type, (void *)&buf);
|
|
if (copyout(&buf, (void *)addr, size))
|
|
return (FAULT);
|
|
} else {
|
|
DPRINTF(FPE_INSN,
|
|
("fpu_execute: Store DBL at %p\n",
|
|
(void *)addr));
|
|
if (copyout(&fs->fpr[rt].fpr, (void *)addr,
|
|
size))
|
|
return (FAULT);
|
|
}
|
|
} else {
|
|
/* Load */
|
|
FPU_EMU_EVCNT_INCR(fpload);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: Load from %p\n",
|
|
(void *)addr));
|
|
if (copyin((const void *)addr, &fs->fpr[rt].fpr,
|
|
size))
|
|
return (FAULT);
|
|
if (type != FTYPE_DBL) {
|
|
fpu_explode(fe, fp = &fe->fe_f1, type, rt);
|
|
fpu_implode(fe, fp, FTYPE_DBL,
|
|
(u_int *)&fs->fpr[rt].fpr);
|
|
}
|
|
}
|
|
if (update)
|
|
tf->fixreg[ra] = addr;
|
|
/* Complete. */
|
|
return (0);
|
|
#ifdef notyet
|
|
} else if (instr.i_any.i_opcd == OPC_load_st_62) {
|
|
/* These are 64-bit extensions */
|
|
return (NOTFPU);
|
|
#endif
|
|
} else if (instr.i_any.i_opcd == OPC_sp_fp_59 ||
|
|
instr.i_any.i_opcd == OPC_dp_fp_63) {
|
|
|
|
|
|
if (instr.i_any.i_opcd == OPC_dp_fp_63 &&
|
|
!(instr.i_a.i_xo & OPC63M_MASK)) {
|
|
/* Format X */
|
|
rt = instr.i_x.i_rt;
|
|
ra = instr.i_x.i_ra;
|
|
rb = instr.i_x.i_rb;
|
|
|
|
|
|
/* One of the special opcodes.... */
|
|
switch (instr.i_x.i_xo) {
|
|
case OPC63_FCMPU:
|
|
FPU_EMU_EVCNT_INCR(fcmpu);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FCMPU\n"));
|
|
rt >>= 2;
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rb);
|
|
fpu_compare(fe, 0);
|
|
/* Make sure we do the condition regs. */
|
|
cond = 0;
|
|
/* N.B.: i_rs is already left shifted by two. */
|
|
bf = instr.i_x.i_rs & 0xfc;
|
|
setcr = 1;
|
|
break;
|
|
|
|
case OPC63_FRSP:
|
|
/*
|
|
* Convert to single:
|
|
*
|
|
* PowerPC uses this to round a double
|
|
* precision value to single precision,
|
|
* but values in registers are always
|
|
* stored in double precision format.
|
|
*/
|
|
FPU_EMU_EVCNT_INCR(frsp);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FRSP\n"));
|
|
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rb);
|
|
fpu_implode(fe, fp, FTYPE_SNG,
|
|
(u_int *)&fs->fpr[rt].fpr);
|
|
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG, rt);
|
|
type = FTYPE_DBL;
|
|
break;
|
|
case OPC63_FCTIW:
|
|
case OPC63_FCTIWZ:
|
|
FPU_EMU_EVCNT_INCR(fctiw);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FCTIW\n"));
|
|
fpu_explode(fe, fp = &fe->fe_f1, type, rb);
|
|
type = FTYPE_INT;
|
|
break;
|
|
case OPC63_FCMPO:
|
|
FPU_EMU_EVCNT_INCR(fcmpo);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FCMPO\n"));
|
|
rt >>= 2;
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rb);
|
|
fpu_compare(fe, 1);
|
|
/* Make sure we do the condition regs. */
|
|
cond = 0;
|
|
/* N.B.: i_rs is already left shifted by two. */
|
|
bf = instr.i_x.i_rs & 0xfc;
|
|
setcr = 1;
|
|
break;
|
|
case OPC63_MTFSB1:
|
|
FPU_EMU_EVCNT_INCR(mtfsb1);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: MTFSB1\n"));
|
|
fe->fe_fpscr |=
|
|
(~(FPSCR_VX|FPSR_EX) & (1<<(31-rt)));
|
|
break;
|
|
case OPC63_FNEG:
|
|
FPU_EMU_EVCNT_INCR(fnegabs);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FNEGABS\n"));
|
|
memcpy(&fs->fpr[rt].fpr, &fs->fpr[rb].fpr,
|
|
sizeof(double));
|
|
a = (int *)&fs->fpr[rt].fpr;
|
|
*a ^= (1U << 31);
|
|
break;
|
|
case OPC63_MCRFS:
|
|
FPU_EMU_EVCNT_INCR(mcrfs);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: MCRFS\n"));
|
|
cond = 0;
|
|
rt &= 0x1c;
|
|
ra &= 0x1c;
|
|
/* Extract the bits we want */
|
|
mask = (fe->fe_fpscr >> (28 - ra)) & 0xf;
|
|
/* Clear the bits we copied. */
|
|
fe->fe_cx =
|
|
(FPSR_EX_MSK | (0xf << (28 - ra)));
|
|
fe->fe_fpscr &= fe->fe_cx;
|
|
/* Now shove them in the right part of cr */
|
|
tf->cr &= ~(0xf << (28 - rt));
|
|
tf->cr |= (mask << (28 - rt));
|
|
break;
|
|
case OPC63_MTFSB0:
|
|
FPU_EMU_EVCNT_INCR(mtfsb0);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: MTFSB0\n"));
|
|
fe->fe_fpscr &=
|
|
((FPSCR_VX|FPSR_EX) & ~(1<<(31-rt)));
|
|
break;
|
|
case OPC63_FMR:
|
|
FPU_EMU_EVCNT_INCR(fmr);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FMR\n"));
|
|
memcpy(&fs->fpr[rt].fpr, &fs->fpr[rb].fpr,
|
|
sizeof(double));
|
|
break;
|
|
case OPC63_MTFSFI:
|
|
FPU_EMU_EVCNT_INCR(mtfsfi);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: MTFSFI\n"));
|
|
rb >>= 1;
|
|
rt &= 0x1c; /* Already left-shifted 4 */
|
|
fe->fe_cx = rb << (28 - rt);
|
|
mask = 0xf<<(28 - rt);
|
|
fe->fe_fpscr = (fe->fe_fpscr & ~mask) |
|
|
fe->fe_cx;
|
|
/* XXX weird stuff about OX, FX, FEX, and VX should be handled */
|
|
break;
|
|
case OPC63_FNABS:
|
|
FPU_EMU_EVCNT_INCR(fnabs);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
|
|
memcpy(&fs->fpr[rt].fpr, &fs->fpr[rb].fpr,
|
|
sizeof(double));
|
|
a = (int *)&fs->fpr[rt].fpr;
|
|
*a |= (1U << 31);
|
|
break;
|
|
case OPC63_FABS:
|
|
FPU_EMU_EVCNT_INCR(fabs);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
|
|
memcpy(&fs->fpr[rt].fpr, &fs->fpr[rb].fpr,
|
|
sizeof(double));
|
|
a = (int *)&fs->fpr[rt].fpr;
|
|
*a &= ~(1U << 31);
|
|
break;
|
|
case OPC63_MFFS:
|
|
FPU_EMU_EVCNT_INCR(mffs);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: MFFS\n"));
|
|
memcpy(&fs->fpr[rt].fpr, &fs->fpscr,
|
|
sizeof(fs->fpscr));
|
|
break;
|
|
case OPC63_MTFSF:
|
|
FPU_EMU_EVCNT_INCR(mtfsf);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: MTFSF\n"));
|
|
if ((rt = instr.i_xfl.i_flm) == -1)
|
|
mask = -1;
|
|
else {
|
|
mask = 0;
|
|
/* Convert 1 bit -> 4 bits */
|
|
for (ra = 0; ra < 8; ra ++)
|
|
if (rt & (1<<ra))
|
|
mask |= (0xf<<(4*ra));
|
|
}
|
|
a = (int *)&fs->fpr[rt].fpr;
|
|
fe->fe_cx = mask & a[1];
|
|
fe->fe_fpscr = (fe->fe_fpscr&~mask) |
|
|
(fe->fe_cx);
|
|
/* XXX weird stuff about OX, FX, FEX, and VX should be handled */
|
|
break;
|
|
case OPC63_FCTID:
|
|
case OPC63_FCTIDZ:
|
|
FPU_EMU_EVCNT_INCR(fctid);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FCTID\n"));
|
|
fpu_explode(fe, fp = &fe->fe_f1, type, rb);
|
|
type = FTYPE_LNG;
|
|
break;
|
|
case OPC63_FCFID:
|
|
FPU_EMU_EVCNT_INCR(fcfid);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FCFID\n"));
|
|
type = FTYPE_LNG;
|
|
fpu_explode(fe, fp = &fe->fe_f1, type, rb);
|
|
type = FTYPE_DBL;
|
|
break;
|
|
default:
|
|
return (NOTFPU);
|
|
break;
|
|
}
|
|
} else {
|
|
/* Format A */
|
|
rt = instr.i_a.i_frt;
|
|
ra = instr.i_a.i_fra;
|
|
rb = instr.i_a.i_frb;
|
|
rc = instr.i_a.i_frc;
|
|
|
|
/*
|
|
* All arithmetic operations work on registers, which
|
|
* are stored as doubles.
|
|
*/
|
|
type = FTYPE_DBL;
|
|
switch ((unsigned int)instr.i_a.i_xo) {
|
|
case OPC59_FDIVS:
|
|
FPU_EMU_EVCNT_INCR(fdiv);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rb);
|
|
fp = fpu_div(fe);
|
|
break;
|
|
case OPC59_FSUBS:
|
|
FPU_EMU_EVCNT_INCR(fsub);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rb);
|
|
fp = fpu_sub(fe);
|
|
break;
|
|
case OPC59_FADDS:
|
|
FPU_EMU_EVCNT_INCR(fadd);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rb);
|
|
fp = fpu_add(fe);
|
|
break;
|
|
case OPC59_FSQRTS:
|
|
FPU_EMU_EVCNT_INCR(fsqrt);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, rb);
|
|
fp = fpu_sqrt(fe);
|
|
break;
|
|
case OPC63M_FSEL:
|
|
FPU_EMU_EVCNT_INCR(fsel);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FSEL\n"));
|
|
a = (int *)&fe->fe_fpstate->fpr[ra].fpr;
|
|
if ((*a & 0x80000000) && (*a & 0x7fffffff))
|
|
/* fra < 0 */
|
|
rc = rb;
|
|
DPRINTF(FPE_INSN, ("f%d => f%d\n", rc, rt));
|
|
memcpy(&fs->fpr[rt].fpr, &fs->fpr[rc].fpr,
|
|
sizeof(double));
|
|
break;
|
|
case OPC59_FRES:
|
|
FPU_EMU_EVCNT_INCR(fpres);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FPRES\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, rb);
|
|
fp = fpu_sqrt(fe);
|
|
/* now we've gotta overwrite the dest reg */
|
|
*((int *)&fe->fe_fpstate->fpr[rt].fpr) = 1;
|
|
fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt);
|
|
fpu_div(fe);
|
|
break;
|
|
case OPC59_FMULS:
|
|
FPU_EMU_EVCNT_INCR(fmul);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rc);
|
|
fp = fpu_mul(fe);
|
|
break;
|
|
case OPC63M_FRSQRTE:
|
|
/* Reciprocal sqrt() estimate */
|
|
FPU_EMU_EVCNT_INCR(frsqrte);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FRSQRTE\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, rb);
|
|
fp = fpu_sqrt(fe);
|
|
fe->fe_f2 = *fp;
|
|
/* now we've gotta overwrite the dest reg */
|
|
*((int *)&fe->fe_fpstate->fpr[rt].fpr) = 1;
|
|
fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt);
|
|
fpu_div(fe);
|
|
break;
|
|
case OPC59_FMSUBS:
|
|
FPU_EMU_EVCNT_INCR(fmulsub);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FMULSUB\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rc);
|
|
fp = fpu_mul(fe);
|
|
fe->fe_f1 = *fp;
|
|
fpu_explode(fe, &fe->fe_f2, type, rb);
|
|
fp = fpu_sub(fe);
|
|
break;
|
|
case OPC59_FMADDS:
|
|
FPU_EMU_EVCNT_INCR(fmuladd);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FMULADD\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rc);
|
|
fp = fpu_mul(fe);
|
|
fe->fe_f1 = *fp;
|
|
fpu_explode(fe, &fe->fe_f2, type, rb);
|
|
fp = fpu_add(fe);
|
|
break;
|
|
case OPC59_FNMSUBS:
|
|
FPU_EMU_EVCNT_INCR(fnmsub);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FNMSUB\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rc);
|
|
fp = fpu_mul(fe);
|
|
fe->fe_f1 = *fp;
|
|
fpu_explode(fe, &fe->fe_f2, type, rb);
|
|
fp = fpu_sub(fe);
|
|
/* Negate */
|
|
fp->fp_sign ^= 1;
|
|
break;
|
|
case OPC59_FNMADDS:
|
|
FPU_EMU_EVCNT_INCR(fnmadd);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: FNMADD\n"));
|
|
fpu_explode(fe, &fe->fe_f1, type, ra);
|
|
fpu_explode(fe, &fe->fe_f2, type, rc);
|
|
fp = fpu_mul(fe);
|
|
fe->fe_f1 = *fp;
|
|
fpu_explode(fe, &fe->fe_f2, type, rb);
|
|
fp = fpu_add(fe);
|
|
/* Negate */
|
|
fp->fp_sign ^= 1;
|
|
break;
|
|
default:
|
|
return (NOTFPU);
|
|
break;
|
|
}
|
|
|
|
/* If the instruction was single precision, round */
|
|
if (!(instr.i_any.i_opcd & 0x4)) {
|
|
fpu_implode(fe, fp, FTYPE_SNG,
|
|
(u_int *)&fs->fpr[rt].fpr);
|
|
fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG, rt);
|
|
}
|
|
}
|
|
} else {
|
|
return (NOTFPU);
|
|
}
|
|
|
|
/*
|
|
* ALU operation is complete. Collapse the result and then check
|
|
* for exceptions. If we got any, and they are enabled, do not
|
|
* alter the destination register, just stop with an exception.
|
|
* Otherwise set new current exceptions and accrue.
|
|
*/
|
|
if (fp)
|
|
fpu_implode(fe, fp, type, (u_int *)&fs->fpr[rt].fpr);
|
|
cx = fe->fe_cx;
|
|
fsr = fe->fe_fpscr;
|
|
if (cx != 0) {
|
|
fsr &= ~FPSCR_FX;
|
|
if ((cx^fsr)&FPSR_EX_MSK)
|
|
fsr |= FPSCR_FX;
|
|
mask = fsr & FPSR_EX;
|
|
mask <<= (25-3);
|
|
if (cx & mask)
|
|
fsr |= FPSCR_FEX;
|
|
if (cx & FPSCR_FPRF) {
|
|
/* Need to replace CC */
|
|
fsr &= ~FPSCR_FPRF;
|
|
}
|
|
if (cx & (FPSR_EXOP))
|
|
fsr |= FPSCR_VX;
|
|
fsr |= cx;
|
|
DPRINTF(FPE_INSN, ("fpu_execute: cx %x, fsr %x\n", cx, fsr));
|
|
}
|
|
|
|
if (cond) {
|
|
cond = fsr & 0xf0000000;
|
|
/* Isolate condition codes */
|
|
cond >>= 28;
|
|
/* Move fpu condition codes to cr[1] */
|
|
tf->cr &= (0x0f000000);
|
|
tf->cr |= (cond<<24);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: cr[1] <= %x\n", cond));
|
|
}
|
|
|
|
if (setcr) {
|
|
cond = fsr & FPSCR_FPCC;
|
|
/* Isolate condition codes */
|
|
cond <<= 16;
|
|
/* Move fpu condition codes to cr[1] */
|
|
tf->cr &= ~(0xf0000000>>bf);
|
|
tf->cr |= (cond>>bf);
|
|
DPRINTF(FPE_INSN, ("fpu_execute: cr[%d] (cr=%jx) <= %x\n",
|
|
bf/4, (uintmax_t)tf->cr, cond));
|
|
}
|
|
|
|
((int *)&fs->fpscr)[1] = fsr;
|
|
if (fsr & FPSCR_FEX)
|
|
return(FPE);
|
|
return (0); /* success */
|
|
}
|