freebsd-skq/sys/dev/sfxge/sfxge.c
Andrew Rybchenko 29033246a8 sfxge: skip VPD info population if access is denied
The patch allows to run on unprivileged PF (PFIOV) passed to
a virtual machine.

Reviewed by:    gnn
Sponsored by:   Solarflare Communications, Inc.
MFC after:      2 days
Differential Revision: https://reviews.freebsd.org/D2891
2015-06-24 06:25:20 +00:00

1124 lines
26 KiB
C

/*-
* Copyright (c) 2010-2015 Solarflare Communications Inc.
* All rights reserved.
*
* This software was developed in part by Philip Paeps under contract for
* Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/taskqueue.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/priv.h>
#include <sys/syslog.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include "common/efx.h"
#include "sfxge.h"
#include "sfxge_rx.h"
#include "sfxge_ioc.h"
#include "sfxge_version.h"
#define SFXGE_CAP (IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM | \
IFCAP_RXCSUM | IFCAP_TXCSUM | \
IFCAP_RXCSUM_IPV6 | IFCAP_TXCSUM_IPV6 | \
IFCAP_TSO4 | IFCAP_TSO6 | \
IFCAP_JUMBO_MTU | \
IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWSTATS)
#define SFXGE_CAP_ENABLE SFXGE_CAP
#define SFXGE_CAP_FIXED (IFCAP_VLAN_MTU | \
IFCAP_JUMBO_MTU | IFCAP_LINKSTATE | IFCAP_HWSTATS)
MALLOC_DEFINE(M_SFXGE, "sfxge", "Solarflare 10GigE driver");
SYSCTL_NODE(_hw, OID_AUTO, sfxge, CTLFLAG_RD, 0,
"SFXGE driver parameters");
#define SFXGE_PARAM_RX_RING SFXGE_PARAM(rx_ring)
static int sfxge_rx_ring_entries = SFXGE_NDESCS;
TUNABLE_INT(SFXGE_PARAM_RX_RING, &sfxge_rx_ring_entries);
SYSCTL_INT(_hw_sfxge, OID_AUTO, rx_ring, CTLFLAG_RDTUN,
&sfxge_rx_ring_entries, 0,
"Maximum number of descriptors in a receive ring");
#define SFXGE_PARAM_TX_RING SFXGE_PARAM(tx_ring)
static int sfxge_tx_ring_entries = SFXGE_NDESCS;
TUNABLE_INT(SFXGE_PARAM_TX_RING, &sfxge_tx_ring_entries);
SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_ring, CTLFLAG_RDTUN,
&sfxge_tx_ring_entries, 0,
"Maximum number of descriptors in a transmit ring");
static void
sfxge_reset(void *arg, int npending);
static int
sfxge_estimate_rsrc_limits(struct sfxge_softc *sc)
{
efx_drv_limits_t limits;
int rc;
unsigned int evq_max;
uint32_t evq_allocated;
uint32_t rxq_allocated;
uint32_t txq_allocated;
/*
* Limit the number of event queues to:
* - number of CPUs
* - hardwire maximum RSS channels
* - administratively specified maximum RSS channels
*/
evq_max = MIN(mp_ncpus, EFX_MAXRSS);
if (sc->max_rss_channels > 0)
evq_max = MIN(evq_max, sc->max_rss_channels);
memset(&limits, 0, sizeof(limits));
limits.edl_min_evq_count = 1;
limits.edl_max_evq_count = evq_max;
limits.edl_min_txq_count = SFXGE_TXQ_NTYPES;
limits.edl_max_txq_count = evq_max + SFXGE_TXQ_NTYPES - 1;
limits.edl_min_rxq_count = 1;
limits.edl_max_rxq_count = evq_max;
efx_nic_set_drv_limits(sc->enp, &limits);
if ((rc = efx_nic_init(sc->enp)) != 0)
return (rc);
rc = efx_nic_get_vi_pool(sc->enp, &evq_allocated, &rxq_allocated,
&txq_allocated);
if (rc != 0) {
efx_nic_fini(sc->enp);
return (rc);
}
KASSERT(txq_allocated >= SFXGE_TXQ_NTYPES,
("txq_allocated < SFXGE_TXQ_NTYPES"));
sc->evq_max = MIN(evq_allocated, evq_max);
sc->evq_max = MIN(rxq_allocated, sc->evq_max);
sc->evq_max = MIN(txq_allocated - (SFXGE_TXQ_NTYPES - 1),
sc->evq_max);
KASSERT(sc->evq_max <= evq_max,
("allocated more than maximum requested"));
/*
* NIC is kept initialized in the case of success to be able to
* initialize port to find out media types.
*/
return (0);
}
static int
sfxge_set_drv_limits(struct sfxge_softc *sc)
{
efx_drv_limits_t limits;
memset(&limits, 0, sizeof(limits));
/* Limits are strict since take into account initial estimation */
limits.edl_min_evq_count = limits.edl_max_evq_count =
sc->intr.n_alloc;
limits.edl_min_txq_count = limits.edl_max_txq_count =
sc->intr.n_alloc + SFXGE_TXQ_NTYPES - 1;
limits.edl_min_rxq_count = limits.edl_max_rxq_count =
sc->intr.n_alloc;
return (efx_nic_set_drv_limits(sc->enp, &limits));
}
static int
sfxge_start(struct sfxge_softc *sc)
{
int rc;
SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
if (sc->init_state == SFXGE_STARTED)
return (0);
if (sc->init_state != SFXGE_REGISTERED) {
rc = EINVAL;
goto fail;
}
/* Set required resource limits */
if ((rc = sfxge_set_drv_limits(sc)) != 0)
goto fail;
if ((rc = efx_nic_init(sc->enp)) != 0)
goto fail;
/* Start processing interrupts. */
if ((rc = sfxge_intr_start(sc)) != 0)
goto fail2;
/* Start processing events. */
if ((rc = sfxge_ev_start(sc)) != 0)
goto fail3;
/* Fire up the port. */
if ((rc = sfxge_port_start(sc)) != 0)
goto fail4;
/* Start the receiver side. */
if ((rc = sfxge_rx_start(sc)) != 0)
goto fail5;
/* Start the transmitter side. */
if ((rc = sfxge_tx_start(sc)) != 0)
goto fail6;
sc->init_state = SFXGE_STARTED;
/* Tell the stack we're running. */
sc->ifnet->if_drv_flags |= IFF_DRV_RUNNING;
sc->ifnet->if_drv_flags &= ~IFF_DRV_OACTIVE;
return (0);
fail6:
sfxge_rx_stop(sc);
fail5:
sfxge_port_stop(sc);
fail4:
sfxge_ev_stop(sc);
fail3:
sfxge_intr_stop(sc);
fail2:
efx_nic_fini(sc->enp);
fail:
device_printf(sc->dev, "sfxge_start: %d\n", rc);
return (rc);
}
static void
sfxge_if_init(void *arg)
{
struct sfxge_softc *sc;
sc = (struct sfxge_softc *)arg;
SFXGE_ADAPTER_LOCK(sc);
(void)sfxge_start(sc);
SFXGE_ADAPTER_UNLOCK(sc);
}
static void
sfxge_stop(struct sfxge_softc *sc)
{
SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
if (sc->init_state != SFXGE_STARTED)
return;
sc->init_state = SFXGE_REGISTERED;
/* Stop the transmitter. */
sfxge_tx_stop(sc);
/* Stop the receiver. */
sfxge_rx_stop(sc);
/* Stop the port. */
sfxge_port_stop(sc);
/* Stop processing events. */
sfxge_ev_stop(sc);
/* Stop processing interrupts. */
sfxge_intr_stop(sc);
efx_nic_fini(sc->enp);
sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
}
static int
sfxge_vpd_ioctl(struct sfxge_softc *sc, sfxge_ioc_t *ioc)
{
efx_vpd_value_t value;
int rc = 0;
switch (ioc->u.vpd.op) {
case SFXGE_VPD_OP_GET_KEYWORD:
value.evv_tag = ioc->u.vpd.tag;
value.evv_keyword = ioc->u.vpd.keyword;
rc = efx_vpd_get(sc->enp, sc->vpd_data, sc->vpd_size, &value);
if (rc != 0)
break;
ioc->u.vpd.len = MIN(ioc->u.vpd.len, value.evv_length);
if (ioc->u.vpd.payload != 0) {
rc = copyout(value.evv_value, ioc->u.vpd.payload,
ioc->u.vpd.len);
}
break;
case SFXGE_VPD_OP_SET_KEYWORD:
if (ioc->u.vpd.len > sizeof(value.evv_value))
return (EINVAL);
value.evv_tag = ioc->u.vpd.tag;
value.evv_keyword = ioc->u.vpd.keyword;
value.evv_length = ioc->u.vpd.len;
rc = copyin(ioc->u.vpd.payload, value.evv_value, value.evv_length);
if (rc != 0)
break;
rc = efx_vpd_set(sc->enp, sc->vpd_data, sc->vpd_size, &value);
if (rc != 0)
break;
rc = efx_vpd_verify(sc->enp, sc->vpd_data, sc->vpd_size);
if (rc != 0)
break;
rc = efx_vpd_write(sc->enp, sc->vpd_data, sc->vpd_size);
break;
default:
rc = EOPNOTSUPP;
break;
}
return (rc);
}
static int
sfxge_private_ioctl(struct sfxge_softc *sc, sfxge_ioc_t *ioc)
{
switch (ioc->op) {
case SFXGE_MCDI_IOC:
return (sfxge_mcdi_ioctl(sc, ioc));
case SFXGE_NVRAM_IOC:
return (sfxge_nvram_ioctl(sc, ioc));
case SFXGE_VPD_IOC:
return (sfxge_vpd_ioctl(sc, ioc));
default:
return (EOPNOTSUPP);
}
}
static int
sfxge_if_ioctl(struct ifnet *ifp, unsigned long command, caddr_t data)
{
struct sfxge_softc *sc;
struct ifreq *ifr;
sfxge_ioc_t ioc;
int error;
ifr = (struct ifreq *)data;
sc = ifp->if_softc;
error = 0;
switch (command) {
case SIOCSIFFLAGS:
SFXGE_ADAPTER_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
sfxge_mac_filter_set(sc);
}
} else
sfxge_start(sc);
} else
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
sfxge_stop(sc);
sc->if_flags = ifp->if_flags;
SFXGE_ADAPTER_UNLOCK(sc);
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu == ifp->if_mtu) {
/* Nothing to do */
error = 0;
} else if (ifr->ifr_mtu > SFXGE_MAX_MTU) {
error = EINVAL;
} else if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ifp->if_mtu = ifr->ifr_mtu;
error = 0;
} else {
/* Restart required */
SFXGE_ADAPTER_LOCK(sc);
sfxge_stop(sc);
ifp->if_mtu = ifr->ifr_mtu;
error = sfxge_start(sc);
SFXGE_ADAPTER_UNLOCK(sc);
if (error != 0) {
ifp->if_flags &= ~IFF_UP;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
if_down(ifp);
}
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
sfxge_mac_filter_set(sc);
break;
case SIOCSIFCAP:
{
int reqcap = ifr->ifr_reqcap;
int capchg_mask;
SFXGE_ADAPTER_LOCK(sc);
/* Capabilities to be changed in accordance with request */
capchg_mask = ifp->if_capenable ^ reqcap;
/*
* The networking core already rejects attempts to
* enable capabilities we don't have. We still have
* to reject attempts to disable capabilities that we
* can't (yet) disable.
*/
KASSERT((reqcap & ~ifp->if_capabilities) == 0,
("Unsupported capabilities 0x%x requested 0x%x vs "
"supported 0x%x",
reqcap & ~ifp->if_capabilities,
reqcap , ifp->if_capabilities));
if (capchg_mask & SFXGE_CAP_FIXED) {
error = EINVAL;
SFXGE_ADAPTER_UNLOCK(sc);
break;
}
/* Check request before any changes */
if ((capchg_mask & IFCAP_TSO4) &&
(reqcap & (IFCAP_TSO4 | IFCAP_TXCSUM)) == IFCAP_TSO4) {
error = EAGAIN;
SFXGE_ADAPTER_UNLOCK(sc);
if_printf(ifp, "enable txcsum before tso4\n");
break;
}
if ((capchg_mask & IFCAP_TSO6) &&
(reqcap & (IFCAP_TSO6 | IFCAP_TXCSUM_IPV6)) == IFCAP_TSO6) {
error = EAGAIN;
SFXGE_ADAPTER_UNLOCK(sc);
if_printf(ifp, "enable txcsum6 before tso6\n");
break;
}
if (reqcap & IFCAP_TXCSUM) {
ifp->if_hwassist |= (CSUM_IP | CSUM_TCP | CSUM_UDP);
} else {
ifp->if_hwassist &= ~(CSUM_IP | CSUM_TCP | CSUM_UDP);
if (reqcap & IFCAP_TSO4) {
reqcap &= ~IFCAP_TSO4;
if_printf(ifp,
"tso4 disabled due to -txcsum\n");
}
}
if (reqcap & IFCAP_TXCSUM_IPV6) {
ifp->if_hwassist |= (CSUM_TCP_IPV6 | CSUM_UDP_IPV6);
} else {
ifp->if_hwassist &= ~(CSUM_TCP_IPV6 | CSUM_UDP_IPV6);
if (reqcap & IFCAP_TSO6) {
reqcap &= ~IFCAP_TSO6;
if_printf(ifp,
"tso6 disabled due to -txcsum6\n");
}
}
/*
* The kernel takes both IFCAP_TSOx and CSUM_TSO into
* account before using TSO. So, we do not touch
* checksum flags when IFCAP_TSOx is modified.
* Note that CSUM_TSO is (CSUM_IP_TSO|CSUM_IP6_TSO),
* but both bits are set in IPv4 and IPv6 mbufs.
*/
ifp->if_capenable = reqcap;
SFXGE_ADAPTER_UNLOCK(sc);
break;
}
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
break;
case SIOCGPRIVATE_0:
error = priv_check(curthread, PRIV_DRIVER);
if (error != 0)
break;
error = copyin(ifr->ifr_data, &ioc, sizeof(ioc));
if (error != 0)
return (error);
error = sfxge_private_ioctl(sc, &ioc);
if (error == 0) {
error = copyout(&ioc, ifr->ifr_data, sizeof(ioc));
}
break;
default:
error = ether_ioctl(ifp, command, data);
}
return (error);
}
static void
sfxge_ifnet_fini(struct ifnet *ifp)
{
struct sfxge_softc *sc = ifp->if_softc;
SFXGE_ADAPTER_LOCK(sc);
sfxge_stop(sc);
SFXGE_ADAPTER_UNLOCK(sc);
ifmedia_removeall(&sc->media);
ether_ifdetach(ifp);
if_free(ifp);
}
static int
sfxge_ifnet_init(struct ifnet *ifp, struct sfxge_softc *sc)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp);
device_t dev;
int rc;
dev = sc->dev;
sc->ifnet = ifp;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_init = sfxge_if_init;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sfxge_if_ioctl;
ifp->if_capabilities = SFXGE_CAP;
ifp->if_capenable = SFXGE_CAP_ENABLE;
#ifdef SFXGE_LRO
ifp->if_capabilities |= IFCAP_LRO;
ifp->if_capenable |= IFCAP_LRO;
#endif
if (encp->enc_hw_tx_insert_vlan_enabled) {
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
ifp->if_capenable |= IFCAP_VLAN_HWTAGGING;
}
ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
CSUM_TCP_IPV6 | CSUM_UDP_IPV6;
ether_ifattach(ifp, encp->enc_mac_addr);
ifp->if_transmit = sfxge_if_transmit;
ifp->if_qflush = sfxge_if_qflush;
ifp->if_get_counter = sfxge_get_counter;
DBGPRINT(sc->dev, "ifmedia_init");
if ((rc = sfxge_port_ifmedia_init(sc)) != 0)
goto fail;
return (0);
fail:
ether_ifdetach(sc->ifnet);
return (rc);
}
void
sfxge_sram_buf_tbl_alloc(struct sfxge_softc *sc, size_t n, uint32_t *idp)
{
KASSERT(sc->buffer_table_next + n <=
efx_nic_cfg_get(sc->enp)->enc_buftbl_limit,
("buffer table full"));
*idp = sc->buffer_table_next;
sc->buffer_table_next += n;
}
static int
sfxge_bar_init(struct sfxge_softc *sc)
{
efsys_bar_t *esbp = &sc->bar;
esbp->esb_rid = PCIR_BAR(EFX_MEM_BAR);
if ((esbp->esb_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&esbp->esb_rid, RF_ACTIVE)) == NULL) {
device_printf(sc->dev, "Cannot allocate BAR region %d\n",
EFX_MEM_BAR);
return (ENXIO);
}
esbp->esb_tag = rman_get_bustag(esbp->esb_res);
esbp->esb_handle = rman_get_bushandle(esbp->esb_res);
SFXGE_BAR_LOCK_INIT(esbp, device_get_nameunit(sc->dev));
return (0);
}
static void
sfxge_bar_fini(struct sfxge_softc *sc)
{
efsys_bar_t *esbp = &sc->bar;
bus_release_resource(sc->dev, SYS_RES_MEMORY, esbp->esb_rid,
esbp->esb_res);
SFXGE_BAR_LOCK_DESTROY(esbp);
}
static int
sfxge_create(struct sfxge_softc *sc)
{
device_t dev;
efx_nic_t *enp;
int error;
char rss_param_name[sizeof(SFXGE_PARAM(%d.max_rss_channels))];
dev = sc->dev;
SFXGE_ADAPTER_LOCK_INIT(sc, device_get_nameunit(sc->dev));
sc->max_rss_channels = 0;
snprintf(rss_param_name, sizeof(rss_param_name),
SFXGE_PARAM(%d.max_rss_channels),
(int)device_get_unit(dev));
TUNABLE_INT_FETCH(rss_param_name, &sc->max_rss_channels);
sc->stats_node = SYSCTL_ADD_NODE(
device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "stats", CTLFLAG_RD, NULL, "Statistics");
if (sc->stats_node == NULL) {
error = ENOMEM;
goto fail;
}
TASK_INIT(&sc->task_reset, 0, sfxge_reset, sc);
(void) pci_enable_busmaster(dev);
/* Initialize DMA mappings. */
DBGPRINT(sc->dev, "dma_init...");
if ((error = sfxge_dma_init(sc)) != 0)
goto fail;
/* Map the device registers. */
DBGPRINT(sc->dev, "bar_init...");
if ((error = sfxge_bar_init(sc)) != 0)
goto fail;
error = efx_family(pci_get_vendor(dev), pci_get_device(dev),
&sc->family);
KASSERT(error == 0, ("Family should be filtered by sfxge_probe()"));
DBGPRINT(sc->dev, "nic_create...");
/* Create the common code nic object. */
SFXGE_EFSYS_LOCK_INIT(&sc->enp_lock,
device_get_nameunit(sc->dev), "nic");
if ((error = efx_nic_create(sc->family, (efsys_identifier_t *)sc,
&sc->bar, &sc->enp_lock, &enp)) != 0)
goto fail3;
sc->enp = enp;
if (!ISP2(sfxge_rx_ring_entries) ||
(sfxge_rx_ring_entries < EFX_RXQ_MINNDESCS) ||
(sfxge_rx_ring_entries > EFX_RXQ_MAXNDESCS)) {
log(LOG_ERR, "%s=%d must be power of 2 from %u to %u",
SFXGE_PARAM_RX_RING, sfxge_rx_ring_entries,
EFX_RXQ_MINNDESCS, EFX_RXQ_MAXNDESCS);
error = EINVAL;
goto fail_rx_ring_entries;
}
sc->rxq_entries = sfxge_rx_ring_entries;
if (!ISP2(sfxge_tx_ring_entries) ||
(sfxge_tx_ring_entries < EFX_TXQ_MINNDESCS) ||
(sfxge_tx_ring_entries > EFX_TXQ_MAXNDESCS(efx_nic_cfg_get(enp)))) {
log(LOG_ERR, "%s=%d must be power of 2 from %u to %u",
SFXGE_PARAM_TX_RING, sfxge_tx_ring_entries,
EFX_TXQ_MINNDESCS, EFX_TXQ_MAXNDESCS(efx_nic_cfg_get(enp)));
error = EINVAL;
goto fail_tx_ring_entries;
}
sc->txq_entries = sfxge_tx_ring_entries;
/* Initialize MCDI to talk to the microcontroller. */
DBGPRINT(sc->dev, "mcdi_init...");
if ((error = sfxge_mcdi_init(sc)) != 0)
goto fail4;
/* Probe the NIC and build the configuration data area. */
DBGPRINT(sc->dev, "nic_probe...");
if ((error = efx_nic_probe(enp)) != 0)
goto fail5;
SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "version", CTLFLAG_RD,
SFXGE_VERSION_STRING, 0,
"Driver version");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "phy_type", CTLFLAG_RD,
NULL, efx_nic_cfg_get(enp)->enc_phy_type,
"PHY type");
/* Initialize the NVRAM. */
DBGPRINT(sc->dev, "nvram_init...");
if ((error = efx_nvram_init(enp)) != 0)
goto fail6;
/* Initialize the VPD. */
DBGPRINT(sc->dev, "vpd_init...");
if ((error = efx_vpd_init(enp)) != 0)
goto fail7;
efx_mcdi_new_epoch(enp);
/* Reset the NIC. */
DBGPRINT(sc->dev, "nic_reset...");
if ((error = efx_nic_reset(enp)) != 0)
goto fail8;
/* Initialize buffer table allocation. */
sc->buffer_table_next = 0;
/*
* Guarantee minimum and estimate maximum number of event queues
* to take it into account when MSI-X interrupts are allocated.
* It initializes NIC and keeps it initialized on success.
*/
if ((error = sfxge_estimate_rsrc_limits(sc)) != 0)
goto fail8;
/* Set up interrupts. */
DBGPRINT(sc->dev, "intr_init...");
if ((error = sfxge_intr_init(sc)) != 0)
goto fail9;
/* Initialize event processing state. */
DBGPRINT(sc->dev, "ev_init...");
if ((error = sfxge_ev_init(sc)) != 0)
goto fail11;
/* Initialize port state. */
DBGPRINT(sc->dev, "port_init...");
if ((error = sfxge_port_init(sc)) != 0)
goto fail12;
/* Initialize receive state. */
DBGPRINT(sc->dev, "rx_init...");
if ((error = sfxge_rx_init(sc)) != 0)
goto fail13;
/* Initialize transmit state. */
DBGPRINT(sc->dev, "tx_init...");
if ((error = sfxge_tx_init(sc)) != 0)
goto fail14;
sc->init_state = SFXGE_INITIALIZED;
DBGPRINT(sc->dev, "success");
return (0);
fail14:
sfxge_rx_fini(sc);
fail13:
sfxge_port_fini(sc);
fail12:
sfxge_ev_fini(sc);
fail11:
sfxge_intr_fini(sc);
fail9:
efx_nic_fini(sc->enp);
fail8:
efx_vpd_fini(enp);
fail7:
efx_nvram_fini(enp);
fail6:
efx_nic_unprobe(enp);
fail5:
sfxge_mcdi_fini(sc);
fail4:
fail_tx_ring_entries:
fail_rx_ring_entries:
sc->enp = NULL;
efx_nic_destroy(enp);
SFXGE_EFSYS_LOCK_DESTROY(&sc->enp_lock);
fail3:
sfxge_bar_fini(sc);
(void) pci_disable_busmaster(sc->dev);
fail:
DBGPRINT(sc->dev, "failed %d", error);
sc->dev = NULL;
SFXGE_ADAPTER_LOCK_DESTROY(sc);
return (error);
}
static void
sfxge_destroy(struct sfxge_softc *sc)
{
efx_nic_t *enp;
/* Clean up transmit state. */
sfxge_tx_fini(sc);
/* Clean up receive state. */
sfxge_rx_fini(sc);
/* Clean up port state. */
sfxge_port_fini(sc);
/* Clean up event processing state. */
sfxge_ev_fini(sc);
/* Clean up interrupts. */
sfxge_intr_fini(sc);
/* Tear down common code subsystems. */
efx_nic_reset(sc->enp);
efx_vpd_fini(sc->enp);
efx_nvram_fini(sc->enp);
efx_nic_unprobe(sc->enp);
/* Tear down MCDI. */
sfxge_mcdi_fini(sc);
/* Destroy common code context. */
enp = sc->enp;
sc->enp = NULL;
efx_nic_destroy(enp);
/* Free DMA memory. */
sfxge_dma_fini(sc);
/* Free mapped BARs. */
sfxge_bar_fini(sc);
(void) pci_disable_busmaster(sc->dev);
taskqueue_drain(taskqueue_thread, &sc->task_reset);
/* Destroy the softc lock. */
SFXGE_ADAPTER_LOCK_DESTROY(sc);
}
static int
sfxge_vpd_handler(SYSCTL_HANDLER_ARGS)
{
struct sfxge_softc *sc = arg1;
efx_vpd_value_t value;
int rc;
value.evv_tag = arg2 >> 16;
value.evv_keyword = arg2 & 0xffff;
if ((rc = efx_vpd_get(sc->enp, sc->vpd_data, sc->vpd_size, &value))
!= 0)
return (rc);
return (SYSCTL_OUT(req, value.evv_value, value.evv_length));
}
static void
sfxge_vpd_try_add(struct sfxge_softc *sc, struct sysctl_oid_list *list,
efx_vpd_tag_t tag, const char *keyword)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
efx_vpd_value_t value;
/* Check whether VPD tag/keyword is present */
value.evv_tag = tag;
value.evv_keyword = EFX_VPD_KEYWORD(keyword[0], keyword[1]);
if (efx_vpd_get(sc->enp, sc->vpd_data, sc->vpd_size, &value) != 0)
return;
SYSCTL_ADD_PROC(
ctx, list, OID_AUTO, keyword, CTLTYPE_STRING|CTLFLAG_RD,
sc, tag << 16 | EFX_VPD_KEYWORD(keyword[0], keyword[1]),
sfxge_vpd_handler, "A", "");
}
static int
sfxge_vpd_init(struct sfxge_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
struct sysctl_oid *vpd_node;
struct sysctl_oid_list *vpd_list;
char keyword[3];
efx_vpd_value_t value;
int rc;
if ((rc = efx_vpd_size(sc->enp, &sc->vpd_size)) != 0) {
/*
* Unpriviledged functions deny VPD access.
* Simply skip VPD in this case.
*/
if (rc == EACCES)
goto done;
goto fail;
}
sc->vpd_data = malloc(sc->vpd_size, M_SFXGE, M_WAITOK);
if ((rc = efx_vpd_read(sc->enp, sc->vpd_data, sc->vpd_size)) != 0)
goto fail2;
/* Copy ID (product name) into device description, and log it. */
value.evv_tag = EFX_VPD_ID;
if (efx_vpd_get(sc->enp, sc->vpd_data, sc->vpd_size, &value) == 0) {
value.evv_value[value.evv_length] = 0;
device_set_desc_copy(sc->dev, value.evv_value);
device_printf(sc->dev, "%s\n", value.evv_value);
}
vpd_node = SYSCTL_ADD_NODE(
ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "vpd", CTLFLAG_RD, NULL, "Vital Product Data");
vpd_list = SYSCTL_CHILDREN(vpd_node);
/* Add sysctls for all expected and any vendor-defined keywords. */
sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, "PN");
sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, "EC");
sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, "SN");
keyword[0] = 'V';
keyword[2] = 0;
for (keyword[1] = '0'; keyword[1] <= '9'; keyword[1]++)
sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, keyword);
for (keyword[1] = 'A'; keyword[1] <= 'Z'; keyword[1]++)
sfxge_vpd_try_add(sc, vpd_list, EFX_VPD_RO, keyword);
done:
return (0);
fail2:
free(sc->vpd_data, M_SFXGE);
fail:
return (rc);
}
static void
sfxge_vpd_fini(struct sfxge_softc *sc)
{
free(sc->vpd_data, M_SFXGE);
}
static void
sfxge_reset(void *arg, int npending)
{
struct sfxge_softc *sc;
int rc;
unsigned attempt;
(void)npending;
sc = (struct sfxge_softc *)arg;
SFXGE_ADAPTER_LOCK(sc);
if (sc->init_state != SFXGE_STARTED)
goto done;
sfxge_stop(sc);
efx_nic_reset(sc->enp);
for (attempt = 0; attempt < 3; ++attempt) {
if ((rc = sfxge_start(sc)) == 0)
goto done;
device_printf(sc->dev, "start on reset failed (%d)\n", rc);
DELAY(100000);
}
device_printf(sc->dev, "reset failed; interface is now stopped\n");
done:
SFXGE_ADAPTER_UNLOCK(sc);
}
void
sfxge_schedule_reset(struct sfxge_softc *sc)
{
taskqueue_enqueue(taskqueue_thread, &sc->task_reset);
}
static int
sfxge_attach(device_t dev)
{
struct sfxge_softc *sc;
struct ifnet *ifp;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
/* Allocate ifnet. */
ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "Couldn't allocate ifnet\n");
error = ENOMEM;
goto fail;
}
sc->ifnet = ifp;
/* Initialize hardware. */
DBGPRINT(sc->dev, "create nic");
if ((error = sfxge_create(sc)) != 0)
goto fail2;
/* Create the ifnet for the port. */
DBGPRINT(sc->dev, "init ifnet");
if ((error = sfxge_ifnet_init(ifp, sc)) != 0)
goto fail3;
DBGPRINT(sc->dev, "init vpd");
if ((error = sfxge_vpd_init(sc)) != 0)
goto fail4;
/*
* NIC is initialized inside sfxge_create() and kept inialized
* to be able to initialize port to discover media types in
* sfxge_ifnet_init().
*/
efx_nic_fini(sc->enp);
sc->init_state = SFXGE_REGISTERED;
DBGPRINT(sc->dev, "success");
return (0);
fail4:
sfxge_ifnet_fini(ifp);
fail3:
efx_nic_fini(sc->enp);
sfxge_destroy(sc);
fail2:
if_free(sc->ifnet);
fail:
DBGPRINT(sc->dev, "failed %d", error);
return (error);
}
static int
sfxge_detach(device_t dev)
{
struct sfxge_softc *sc;
sc = device_get_softc(dev);
sfxge_vpd_fini(sc);
/* Destroy the ifnet. */
sfxge_ifnet_fini(sc->ifnet);
/* Tear down hardware. */
sfxge_destroy(sc);
return (0);
}
static int
sfxge_probe(device_t dev)
{
uint16_t pci_vendor_id;
uint16_t pci_device_id;
efx_family_t family;
int rc;
pci_vendor_id = pci_get_vendor(dev);
pci_device_id = pci_get_device(dev);
DBGPRINT(dev, "PCI ID %04x:%04x", pci_vendor_id, pci_device_id);
rc = efx_family(pci_vendor_id, pci_device_id, &family);
if (rc != 0) {
DBGPRINT(dev, "efx_family fail %d", rc);
return (ENXIO);
}
if (family == EFX_FAMILY_SIENA) {
device_set_desc(dev, "Solarflare SFC9000 family");
return (0);
}
if (family == EFX_FAMILY_HUNTINGTON) {
device_set_desc(dev, "Solarflare SFC9100 family");
return (0);
}
DBGPRINT(dev, "impossible controller family %d", family);
return (ENXIO);
}
static device_method_t sfxge_methods[] = {
DEVMETHOD(device_probe, sfxge_probe),
DEVMETHOD(device_attach, sfxge_attach),
DEVMETHOD(device_detach, sfxge_detach),
DEVMETHOD_END
};
static devclass_t sfxge_devclass;
static driver_t sfxge_driver = {
"sfxge",
sfxge_methods,
sizeof(struct sfxge_softc)
};
DRIVER_MODULE(sfxge, pci, sfxge_driver, sfxge_devclass, 0, 0);