freebsd-skq/tests/sys/aio/aio_test.c
John Baldwin 005ce8e4e6 Fix locking issues with aio_fsync().
- Use correct lock in aio_cancel_sync when dequeueing job.
- Add _locked variants of aio_set/clear_cancel_function and use those
  to avoid lock recursion when adding and removing fsync jobs to the
  per-process sync queue.
- While here, add a basic test for aio_fsync().

PR:		211390
Reported by:	Randy Westlund <rwestlun@gmail.com>
MFC after:	1 week
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D7339
2016-07-29 18:26:15 +00:00

1026 lines
24 KiB
C

/*-
* Copyright (c) 2004 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Regression test to do some very basic AIO exercising on several types of
* file descriptors. Currently, the tests consist of initializing a fixed
* size buffer with pseudo-random data, writing it to one fd using AIO, then
* reading it from a second descriptor using AIO. For some targets, the same
* fd is used for write and read (i.e., file, md device), but for others the
* operation is performed on a peer (pty, socket, fifo, etc). A timeout is
* initiated to detect undo blocking. This test does not attempt to exercise
* error cases or more subtle asynchronous behavior, just make sure that the
* basic operations work on some basic object types.
*/
#include <sys/param.h>
#include <sys/module.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/mdioctl.h>
#include <aio.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <libutil.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <termios.h>
#include <unistd.h>
#include <atf-c.h>
#include "freebsd_test_suite/macros.h"
#include "local.h"
#define PATH_TEMPLATE "aio.XXXXXXXXXX"
/*
* GLOBAL_MAX sets the largest usable buffer size to be read and written, as
* it sizes ac_buffer in the aio_context structure. It is also the default
* size for file I/O. For other types, we use smaller blocks or we risk
* blocking (and we run in a single process/thread so that would be bad).
*/
#define GLOBAL_MAX 16384
#define BUFFER_MAX GLOBAL_MAX
struct aio_context {
int ac_read_fd, ac_write_fd;
long ac_seed;
char ac_buffer[GLOBAL_MAX];
int ac_buflen;
int ac_seconds;
void (*ac_cleanup)(void *arg);
void *ac_cleanup_arg;
};
static int aio_timedout;
/*
* Each test run specifies a timeout in seconds. Use the somewhat obsoleted
* signal(3) and alarm(3) APIs to set this up.
*/
static void
aio_timeout_signal(int sig __unused)
{
aio_timedout = 1;
}
static void
aio_timeout_start(int seconds)
{
aio_timedout = 0;
ATF_REQUIRE_MSG(signal(SIGALRM, aio_timeout_signal) != SIG_ERR,
"failed to set SIGALRM handler: %s", strerror(errno));
alarm(seconds);
}
static void
aio_timeout_stop(void)
{
ATF_REQUIRE_MSG(signal(SIGALRM, NULL) != SIG_ERR,
"failed to reset SIGALRM handler to default: %s", strerror(errno));
alarm(0);
}
/*
* Fill a buffer given a seed that can be fed into srandom() to initialize
* the PRNG in a repeatable manner.
*/
static void
aio_fill_buffer(char *buffer, int len, long seed)
{
char ch;
int i;
srandom(seed);
for (i = 0; i < len; i++) {
ch = random() & 0xff;
buffer[i] = ch;
}
}
/*
* Test that a buffer matches a given seed. See aio_fill_buffer(). Return
* (1) on a match, (0) on a mismatch.
*/
static int
aio_test_buffer(char *buffer, int len, long seed)
{
char ch;
int i;
srandom(seed);
for (i = 0; i < len; i++) {
ch = random() & 0xff;
if (buffer[i] != ch)
return (0);
}
return (1);
}
/*
* Initialize a testing context given the file descriptors provided by the
* test setup.
*/
static void
aio_context_init(struct aio_context *ac, int read_fd,
int write_fd, int buflen, int seconds, void (*cleanup)(void *),
void *cleanup_arg)
{
ATF_REQUIRE_MSG(buflen <= BUFFER_MAX,
"aio_context_init: buffer too large (%d > %d)",
buflen, BUFFER_MAX);
bzero(ac, sizeof(*ac));
ac->ac_read_fd = read_fd;
ac->ac_write_fd = write_fd;
ac->ac_buflen = buflen;
srandomdev();
ac->ac_seed = random();
aio_fill_buffer(ac->ac_buffer, buflen, ac->ac_seed);
ATF_REQUIRE_MSG(aio_test_buffer(ac->ac_buffer, buflen,
ac->ac_seed) != 0, "aio_test_buffer: internal error");
ac->ac_seconds = seconds;
ac->ac_cleanup = cleanup;
ac->ac_cleanup_arg = cleanup_arg;
}
/*
* Each tester can register a callback to clean up in the event the test
* fails. Preserve the value of errno so that subsequent calls to errx()
* work properly.
*/
static void
aio_cleanup(struct aio_context *ac)
{
int error;
if (ac->ac_cleanup == NULL)
return;
error = errno;
(ac->ac_cleanup)(ac->ac_cleanup_arg);
errno = error;
}
/*
* Perform a simple write test of our initialized data buffer to the provided
* file descriptor.
*/
static void
aio_write_test(struct aio_context *ac)
{
struct aiocb aio, *aiop;
ssize_t len;
ATF_REQUIRE_KERNEL_MODULE("aio");
bzero(&aio, sizeof(aio));
aio.aio_buf = ac->ac_buffer;
aio.aio_nbytes = ac->ac_buflen;
aio.aio_fildes = ac->ac_write_fd;
aio.aio_offset = 0;
aio_timeout_start(ac->ac_seconds);
if (aio_write(&aio) < 0) {
if (errno == EINTR) {
if (aio_timedout) {
aio_cleanup(ac);
atf_tc_fail("aio_write timed out");
}
}
aio_cleanup(ac);
atf_tc_fail("aio_write failed: %s", strerror(errno));
}
len = aio_waitcomplete(&aiop, NULL);
if (len < 0) {
if (errno == EINTR) {
if (aio_timedout) {
aio_cleanup(ac);
atf_tc_fail("aio_waitcomplete timed out");
}
}
aio_cleanup(ac);
atf_tc_fail("aio_waitcomplete failed: %s", strerror(errno));
}
aio_timeout_stop();
if (len != ac->ac_buflen) {
aio_cleanup(ac);
atf_tc_fail("aio_waitcomplete short write (%jd)",
(intmax_t)len);
}
}
/*
* Perform a simple read test of our initialized data buffer from the
* provided file descriptor.
*/
static void
aio_read_test(struct aio_context *ac)
{
struct aiocb aio, *aiop;
ssize_t len;
ATF_REQUIRE_KERNEL_MODULE("aio");
bzero(ac->ac_buffer, ac->ac_buflen);
bzero(&aio, sizeof(aio));
aio.aio_buf = ac->ac_buffer;
aio.aio_nbytes = ac->ac_buflen;
aio.aio_fildes = ac->ac_read_fd;
aio.aio_offset = 0;
aio_timeout_start(ac->ac_seconds);
if (aio_read(&aio) < 0) {
if (errno == EINTR) {
if (aio_timedout) {
aio_cleanup(ac);
atf_tc_fail("aio_write timed out");
}
}
aio_cleanup(ac);
atf_tc_fail("aio_read failed: %s", strerror(errno));
}
len = aio_waitcomplete(&aiop, NULL);
if (len < 0) {
if (errno == EINTR) {
if (aio_timedout) {
aio_cleanup(ac);
atf_tc_fail("aio_waitcomplete timed out");
}
}
aio_cleanup(ac);
atf_tc_fail("aio_waitcomplete failed: %s", strerror(errno));
}
aio_timeout_stop();
if (len != ac->ac_buflen) {
aio_cleanup(ac);
atf_tc_fail("aio_waitcomplete short read (%jd)",
(intmax_t)len);
}
if (aio_test_buffer(ac->ac_buffer, ac->ac_buflen, ac->ac_seed) == 0) {
aio_cleanup(ac);
atf_tc_fail("buffer mismatched");
}
}
/*
* Series of type-specific tests for AIO. For now, we just make sure we can
* issue a write and then a read to each type. We assume that once a write
* is issued, a read can follow.
*/
/*
* Test with a classic file. Assumes we can create a moderate size temporary
* file.
*/
struct aio_file_arg {
int afa_fd;
char *afa_pathname;
};
static void
aio_file_cleanup(void *arg)
{
struct aio_file_arg *afa;
afa = arg;
close(afa->afa_fd);
unlink(afa->afa_pathname);
}
#define FILE_LEN GLOBAL_MAX
#define FILE_TIMEOUT 30
ATF_TC_WITHOUT_HEAD(aio_file_test);
ATF_TC_BODY(aio_file_test, tc)
{
char pathname[PATH_MAX];
struct aio_file_arg arg;
struct aio_context ac;
int fd;
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
strcpy(pathname, PATH_TEMPLATE);
fd = mkstemp(pathname);
ATF_REQUIRE_MSG(fd != -1, "mkstemp failed: %s", strerror(errno));
arg.afa_fd = fd;
arg.afa_pathname = pathname;
aio_context_init(&ac, fd, fd, FILE_LEN,
FILE_TIMEOUT, aio_file_cleanup, &arg);
aio_write_test(&ac);
aio_read_test(&ac);
aio_file_cleanup(&arg);
}
struct aio_fifo_arg {
int afa_read_fd;
int afa_write_fd;
char *afa_pathname;
};
static void
aio_fifo_cleanup(void *arg)
{
struct aio_fifo_arg *afa;
afa = arg;
if (afa->afa_read_fd != -1)
close(afa->afa_read_fd);
if (afa->afa_write_fd != -1)
close(afa->afa_write_fd);
unlink(afa->afa_pathname);
}
#define FIFO_LEN 256
#define FIFO_TIMEOUT 30
ATF_TC_WITHOUT_HEAD(aio_fifo_test);
ATF_TC_BODY(aio_fifo_test, tc)
{
int error, read_fd = -1, write_fd = -1;
struct aio_fifo_arg arg;
char pathname[PATH_MAX];
struct aio_context ac;
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
/*
* In theory, mkstemp() can return a name that is then collided with.
* Because this is a regression test, we treat that as a test failure
* rather than retrying.
*/
strcpy(pathname, PATH_TEMPLATE);
ATF_REQUIRE_MSG(mkstemp(pathname) != -1,
"mkstemp failed: %s", strerror(errno));
ATF_REQUIRE_MSG(unlink(pathname) == 0,
"unlink failed: %s", strerror(errno));
ATF_REQUIRE_MSG(mkfifo(pathname, 0600) != -1,
"mkfifo failed: %s", strerror(errno));
arg.afa_pathname = pathname;
arg.afa_read_fd = -1;
arg.afa_write_fd = -1;
read_fd = open(pathname, O_RDONLY | O_NONBLOCK);
if (read_fd == -1) {
error = errno;
aio_fifo_cleanup(&arg);
errno = error;
atf_tc_fail("read_fd open failed: %s",
strerror(errno));
}
arg.afa_read_fd = read_fd;
write_fd = open(pathname, O_WRONLY);
if (write_fd == -1) {
error = errno;
aio_fifo_cleanup(&arg);
errno = error;
atf_tc_fail("write_fd open failed: %s",
strerror(errno));
}
arg.afa_write_fd = write_fd;
aio_context_init(&ac, read_fd, write_fd, FIFO_LEN,
FIFO_TIMEOUT, aio_fifo_cleanup, &arg);
aio_write_test(&ac);
aio_read_test(&ac);
aio_fifo_cleanup(&arg);
}
struct aio_unix_socketpair_arg {
int asa_sockets[2];
};
static void
aio_unix_socketpair_cleanup(void *arg)
{
struct aio_unix_socketpair_arg *asa;
asa = arg;
close(asa->asa_sockets[0]);
close(asa->asa_sockets[1]);
}
#define UNIX_SOCKETPAIR_LEN 256
#define UNIX_SOCKETPAIR_TIMEOUT 30
ATF_TC_WITHOUT_HEAD(aio_unix_socketpair_test);
ATF_TC_BODY(aio_unix_socketpair_test, tc)
{
struct aio_unix_socketpair_arg arg;
struct aio_context ac;
struct rusage ru_before, ru_after;
int sockets[2];
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_MSG(socketpair(PF_UNIX, SOCK_STREAM, 0, sockets) != -1,
"socketpair failed: %s", strerror(errno));
arg.asa_sockets[0] = sockets[0];
arg.asa_sockets[1] = sockets[1];
aio_context_init(&ac, sockets[0],
sockets[1], UNIX_SOCKETPAIR_LEN, UNIX_SOCKETPAIR_TIMEOUT,
aio_unix_socketpair_cleanup, &arg);
ATF_REQUIRE_MSG(getrusage(RUSAGE_SELF, &ru_before) != -1,
"getrusage failed: %s", strerror(errno));
aio_write_test(&ac);
ATF_REQUIRE_MSG(getrusage(RUSAGE_SELF, &ru_after) != -1,
"getrusage failed: %s", strerror(errno));
ATF_REQUIRE(ru_after.ru_msgsnd == ru_before.ru_msgsnd + 1);
ru_before = ru_after;
aio_read_test(&ac);
ATF_REQUIRE_MSG(getrusage(RUSAGE_SELF, &ru_after) != -1,
"getrusage failed: %s", strerror(errno));
ATF_REQUIRE(ru_after.ru_msgrcv == ru_before.ru_msgrcv + 1);
aio_unix_socketpair_cleanup(&arg);
}
struct aio_pty_arg {
int apa_read_fd;
int apa_write_fd;
};
static void
aio_pty_cleanup(void *arg)
{
struct aio_pty_arg *apa;
apa = arg;
close(apa->apa_read_fd);
close(apa->apa_write_fd);
};
#define PTY_LEN 256
#define PTY_TIMEOUT 30
ATF_TC_WITHOUT_HEAD(aio_pty_test);
ATF_TC_BODY(aio_pty_test, tc)
{
struct aio_pty_arg arg;
struct aio_context ac;
int read_fd, write_fd;
struct termios ts;
int error;
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
ATF_REQUIRE_MSG(openpty(&read_fd, &write_fd, NULL, NULL, NULL) == 0,
"openpty failed: %s", strerror(errno));
arg.apa_read_fd = read_fd;
arg.apa_write_fd = write_fd;
if (tcgetattr(write_fd, &ts) < 0) {
error = errno;
aio_pty_cleanup(&arg);
errno = error;
atf_tc_fail("tcgetattr failed: %s", strerror(errno));
}
cfmakeraw(&ts);
if (tcsetattr(write_fd, TCSANOW, &ts) < 0) {
error = errno;
aio_pty_cleanup(&arg);
errno = error;
atf_tc_fail("tcsetattr failed: %s", strerror(errno));
}
aio_context_init(&ac, read_fd, write_fd, PTY_LEN,
PTY_TIMEOUT, aio_pty_cleanup, &arg);
aio_write_test(&ac);
aio_read_test(&ac);
aio_pty_cleanup(&arg);
}
static void
aio_pipe_cleanup(void *arg)
{
int *pipes = arg;
close(pipes[0]);
close(pipes[1]);
}
#define PIPE_LEN 256
#define PIPE_TIMEOUT 30
ATF_TC_WITHOUT_HEAD(aio_pipe_test);
ATF_TC_BODY(aio_pipe_test, tc)
{
struct aio_context ac;
int pipes[2];
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
ATF_REQUIRE_MSG(pipe(pipes) != -1,
"pipe failed: %s", strerror(errno));
aio_context_init(&ac, pipes[0], pipes[1], PIPE_LEN,
PIPE_TIMEOUT, aio_pipe_cleanup, pipes);
aio_write_test(&ac);
aio_read_test(&ac);
aio_pipe_cleanup(pipes);
}
struct aio_md_arg {
int ama_mdctl_fd;
int ama_unit;
int ama_fd;
};
static void
aio_md_cleanup(void *arg)
{
struct aio_md_arg *ama;
struct md_ioctl mdio;
int error;
ama = arg;
if (ama->ama_fd != -1)
close(ama->ama_fd);
if (ama->ama_unit != -1) {
bzero(&mdio, sizeof(mdio));
mdio.md_version = MDIOVERSION;
mdio.md_unit = ama->ama_unit;
if (ioctl(ama->ama_mdctl_fd, MDIOCDETACH, &mdio) == -1) {
error = errno;
close(ama->ama_mdctl_fd);
errno = error;
atf_tc_fail("ioctl MDIOCDETACH failed: %s",
strerror(errno));
}
}
close(ama->ama_mdctl_fd);
}
#define MD_LEN GLOBAL_MAX
#define MD_TIMEOUT 30
ATF_TC(aio_md_test);
ATF_TC_HEAD(aio_md_test, tc)
{
atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(aio_md_test, tc)
{
int error, fd, mdctl_fd, unit;
char pathname[PATH_MAX];
struct aio_md_arg arg;
struct aio_context ac;
struct md_ioctl mdio;
ATF_REQUIRE_KERNEL_MODULE("aio");
mdctl_fd = open("/dev/" MDCTL_NAME, O_RDWR, 0);
ATF_REQUIRE_MSG(mdctl_fd != -1,
"opening /dev/%s failed: %s", MDCTL_NAME, strerror(errno));
bzero(&mdio, sizeof(mdio));
mdio.md_version = MDIOVERSION;
mdio.md_type = MD_MALLOC;
mdio.md_options = MD_AUTOUNIT | MD_COMPRESS;
mdio.md_mediasize = GLOBAL_MAX;
mdio.md_sectorsize = 512;
arg.ama_mdctl_fd = mdctl_fd;
arg.ama_unit = -1;
arg.ama_fd = -1;
if (ioctl(mdctl_fd, MDIOCATTACH, &mdio) < 0) {
error = errno;
aio_md_cleanup(&arg);
errno = error;
atf_tc_fail("ioctl MDIOCATTACH failed: %s", strerror(errno));
}
arg.ama_unit = unit = mdio.md_unit;
snprintf(pathname, PATH_MAX, "/dev/md%d", unit);
fd = open(pathname, O_RDWR);
ATF_REQUIRE_MSG(fd != -1,
"opening %s failed: %s", pathname, strerror(errno));
arg.ama_fd = fd;
aio_context_init(&ac, fd, fd, MD_LEN, MD_TIMEOUT,
aio_md_cleanup, &arg);
aio_write_test(&ac);
aio_read_test(&ac);
aio_md_cleanup(&arg);
}
ATF_TC_WITHOUT_HEAD(aio_large_read_test);
ATF_TC_BODY(aio_large_read_test, tc)
{
char pathname[PATH_MAX];
struct aiocb cb, *cbp;
ssize_t nread;
size_t len;
int fd;
#ifdef __LP64__
int clamped;
#endif
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
#ifdef __LP64__
len = sizeof(clamped);
if (sysctlbyname("debug.iosize_max_clamp", &clamped, &len, NULL, 0) ==
-1)
atf_libc_error(errno, "Failed to read debug.iosize_max_clamp");
#endif
/* Determine the maximum supported read(2) size. */
len = SSIZE_MAX;
#ifdef __LP64__
if (clamped)
len = INT_MAX;
#endif
strcpy(pathname, PATH_TEMPLATE);
fd = mkstemp(pathname);
ATF_REQUIRE_MSG(fd != -1, "mkstemp failed: %s", strerror(errno));
unlink(pathname);
memset(&cb, 0, sizeof(cb));
cb.aio_nbytes = len;
cb.aio_fildes = fd;
cb.aio_buf = NULL;
if (aio_read(&cb) == -1)
atf_tc_fail("aio_read() of maximum read size failed: %s",
strerror(errno));
nread = aio_waitcomplete(&cbp, NULL);
if (nread == -1)
atf_tc_fail("aio_waitcomplete() failed: %s", strerror(errno));
if (nread != 0)
atf_tc_fail("aio_read() from empty file returned data: %zd",
nread);
memset(&cb, 0, sizeof(cb));
cb.aio_nbytes = len + 1;
cb.aio_fildes = fd;
cb.aio_buf = NULL;
if (aio_read(&cb) == -1) {
if (errno == EINVAL)
goto finished;
atf_tc_fail("aio_read() of too large read size failed: %s",
strerror(errno));
}
nread = aio_waitcomplete(&cbp, NULL);
if (nread == -1) {
if (errno == EINVAL)
goto finished;
atf_tc_fail("aio_waitcomplete() failed: %s", strerror(errno));
}
atf_tc_fail("aio_read() of too large read size returned: %zd", nread);
finished:
close(fd);
}
/*
* This tests for a bug where arriving socket data can wakeup multiple
* AIO read requests resulting in an uncancellable request.
*/
ATF_TC_WITHOUT_HEAD(aio_socket_two_reads);
ATF_TC_BODY(aio_socket_two_reads, tc)
{
struct ioreq {
struct aiocb iocb;
char buffer[1024];
} ioreq[2];
struct aiocb *iocb;
unsigned i;
int s[2];
char c;
ATF_REQUIRE_KERNEL_MODULE("aio");
#if __FreeBSD_version < 1100101
aft_tc_skip("kernel version %d is too old (%d required)",
__FreeBSD_version, 1100101);
#endif
ATF_REQUIRE(socketpair(PF_UNIX, SOCK_STREAM, 0, s) != -1);
/* Queue two read requests. */
memset(&ioreq, 0, sizeof(ioreq));
for (i = 0; i < nitems(ioreq); i++) {
ioreq[i].iocb.aio_nbytes = sizeof(ioreq[i].buffer);
ioreq[i].iocb.aio_fildes = s[0];
ioreq[i].iocb.aio_buf = ioreq[i].buffer;
ATF_REQUIRE(aio_read(&ioreq[i].iocb) == 0);
}
/* Send a single byte. This should complete one request. */
c = 0xc3;
ATF_REQUIRE(write(s[1], &c, sizeof(c)) == 1);
ATF_REQUIRE(aio_waitcomplete(&iocb, NULL) == 1);
/* Determine which request completed and verify the data was read. */
if (iocb == &ioreq[0].iocb)
i = 0;
else
i = 1;
ATF_REQUIRE(ioreq[i].buffer[0] == c);
i ^= 1;
/*
* Try to cancel the other request. On broken systems this
* will fail and the process will hang on exit.
*/
ATF_REQUIRE(aio_error(&ioreq[i].iocb) == EINPROGRESS);
ATF_REQUIRE(aio_cancel(s[0], &ioreq[i].iocb) == AIO_CANCELED);
close(s[1]);
close(s[0]);
}
/*
* This test ensures that aio_write() on a blocking socket of a "large"
* buffer does not return a short completion.
*/
ATF_TC_WITHOUT_HEAD(aio_socket_blocking_short_write);
ATF_TC_BODY(aio_socket_blocking_short_write, tc)
{
struct aiocb iocb, *iocbp;
char *buffer[2];
ssize_t done;
int buffer_size, sb_size;
socklen_t len;
int s[2];
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE(socketpair(PF_UNIX, SOCK_STREAM, 0, s) != -1);
len = sizeof(sb_size);
ATF_REQUIRE(getsockopt(s[0], SOL_SOCKET, SO_RCVBUF, &sb_size, &len) !=
-1);
ATF_REQUIRE(len == sizeof(sb_size));
buffer_size = sb_size;
ATF_REQUIRE(getsockopt(s[1], SOL_SOCKET, SO_SNDBUF, &sb_size, &len) !=
-1);
ATF_REQUIRE(len == sizeof(sb_size));
if (sb_size > buffer_size)
buffer_size = sb_size;
/*
* Use twice the size of the MAX(receive buffer, send buffer)
* to ensure that the write is split up into multiple writes
* internally.
*/
buffer_size *= 2;
buffer[0] = malloc(buffer_size);
ATF_REQUIRE(buffer[0] != NULL);
buffer[1] = malloc(buffer_size);
ATF_REQUIRE(buffer[1] != NULL);
srandomdev();
aio_fill_buffer(buffer[1], buffer_size, random());
memset(&iocb, 0, sizeof(iocb));
iocb.aio_fildes = s[1];
iocb.aio_buf = buffer[1];
iocb.aio_nbytes = buffer_size;
ATF_REQUIRE(aio_write(&iocb) == 0);
done = recv(s[0], buffer[0], buffer_size, MSG_WAITALL);
ATF_REQUIRE(done == buffer_size);
done = aio_waitcomplete(&iocbp, NULL);
ATF_REQUIRE(iocbp == &iocb);
ATF_REQUIRE(done == buffer_size);
ATF_REQUIRE(memcmp(buffer[0], buffer[1], buffer_size) == 0);
close(s[1]);
close(s[0]);
}
/*
* This test verifies that cancelling a partially completed socket write
* returns a short write rather than ECANCELED.
*/
ATF_TC_WITHOUT_HEAD(aio_socket_short_write_cancel);
ATF_TC_BODY(aio_socket_short_write_cancel, tc)
{
struct aiocb iocb, *iocbp;
char *buffer[2];
ssize_t done;
int buffer_size, sb_size;
socklen_t len;
int s[2];
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE(socketpair(PF_UNIX, SOCK_STREAM, 0, s) != -1);
len = sizeof(sb_size);
ATF_REQUIRE(getsockopt(s[0], SOL_SOCKET, SO_RCVBUF, &sb_size, &len) !=
-1);
ATF_REQUIRE(len == sizeof(sb_size));
buffer_size = sb_size;
ATF_REQUIRE(getsockopt(s[1], SOL_SOCKET, SO_SNDBUF, &sb_size, &len) !=
-1);
ATF_REQUIRE(len == sizeof(sb_size));
if (sb_size > buffer_size)
buffer_size = sb_size;
/*
* Use three times the size of the MAX(receive buffer, send
* buffer) for the write to ensure that the write is split up
* into multiple writes internally. The recv() ensures that
* the write has partially completed, but a remaining size of
* two buffers should ensure that the write has not completed
* fully when it is cancelled.
*/
buffer[0] = malloc(buffer_size);
ATF_REQUIRE(buffer[0] != NULL);
buffer[1] = malloc(buffer_size * 3);
ATF_REQUIRE(buffer[1] != NULL);
srandomdev();
aio_fill_buffer(buffer[1], buffer_size * 3, random());
memset(&iocb, 0, sizeof(iocb));
iocb.aio_fildes = s[1];
iocb.aio_buf = buffer[1];
iocb.aio_nbytes = buffer_size * 3;
ATF_REQUIRE(aio_write(&iocb) == 0);
done = recv(s[0], buffer[0], buffer_size, MSG_WAITALL);
ATF_REQUIRE(done == buffer_size);
ATF_REQUIRE(aio_error(&iocb) == EINPROGRESS);
ATF_REQUIRE(aio_cancel(s[1], &iocb) == AIO_NOTCANCELED);
done = aio_waitcomplete(&iocbp, NULL);
ATF_REQUIRE(iocbp == &iocb);
ATF_REQUIRE(done >= buffer_size && done <= buffer_size * 2);
ATF_REQUIRE(memcmp(buffer[0], buffer[1], buffer_size) == 0);
close(s[1]);
close(s[0]);
}
/*
* This test just performs a basic test of aio_fsync().
*/
ATF_TC_WITHOUT_HEAD(aio_fsync_test);
ATF_TC_BODY(aio_fsync_test, tc)
{
struct aiocb synccb, *iocbp;
struct {
struct aiocb iocb;
bool done;
char *buffer;
} buffers[16];
struct stat sb;
char pathname[PATH_MAX];
ssize_t rval;
unsigned i;
int fd;
ATF_REQUIRE_KERNEL_MODULE("aio");
ATF_REQUIRE_UNSAFE_AIO();
strcpy(pathname, PATH_TEMPLATE);
fd = mkstemp(pathname);
ATF_REQUIRE_MSG(fd != -1, "mkstemp failed: %s", strerror(errno));
unlink(pathname);
ATF_REQUIRE(fstat(fd, &sb) == 0);
ATF_REQUIRE(sb.st_blksize != 0);
ATF_REQUIRE(ftruncate(fd, sb.st_blksize * nitems(buffers)) == 0);
/*
* Queue several asynchronous write requests. Hopefully this
* forces the aio_fsync() request to be deferred. There is no
* reliable way to guarantee that however.
*/
srandomdev();
for (i = 0; i < nitems(buffers); i++) {
buffers[i].done = false;
memset(&buffers[i].iocb, 0, sizeof(buffers[i].iocb));
buffers[i].buffer = malloc(sb.st_blksize);
aio_fill_buffer(buffers[i].buffer, sb.st_blksize, random());
buffers[i].iocb.aio_fildes = fd;
buffers[i].iocb.aio_buf = buffers[i].buffer;
buffers[i].iocb.aio_nbytes = sb.st_blksize;
buffers[i].iocb.aio_offset = sb.st_blksize * i;
ATF_REQUIRE(aio_write(&buffers[i].iocb) == 0);
}
/* Queue the aio_fsync request. */
memset(&synccb, 0, sizeof(synccb));
synccb.aio_fildes = fd;
ATF_REQUIRE(aio_fsync(O_SYNC, &synccb) == 0);
/* Wait for requests to complete. */
for (;;) {
next:
rval = aio_waitcomplete(&iocbp, NULL);
ATF_REQUIRE(iocbp != NULL);
if (iocbp == &synccb) {
ATF_REQUIRE(rval == 0);
break;
}
for (i = 0; i < nitems(buffers); i++) {
if (iocbp == &buffers[i].iocb) {
ATF_REQUIRE(buffers[i].done == false);
ATF_REQUIRE(rval == sb.st_blksize);
buffers[i].done = true;
goto next;
}
}
ATF_REQUIRE_MSG(false, "unmatched AIO request");
}
for (i = 0; i < nitems(buffers); i++)
ATF_REQUIRE_MSG(buffers[i].done,
"AIO request %u did not complete", i);
close(fd);
}
ATF_TP_ADD_TCS(tp)
{
ATF_TP_ADD_TC(tp, aio_file_test);
ATF_TP_ADD_TC(tp, aio_fifo_test);
ATF_TP_ADD_TC(tp, aio_unix_socketpair_test);
ATF_TP_ADD_TC(tp, aio_pty_test);
ATF_TP_ADD_TC(tp, aio_pipe_test);
ATF_TP_ADD_TC(tp, aio_md_test);
ATF_TP_ADD_TC(tp, aio_large_read_test);
ATF_TP_ADD_TC(tp, aio_socket_two_reads);
ATF_TP_ADD_TC(tp, aio_socket_blocking_short_write);
ATF_TP_ADD_TC(tp, aio_socket_short_write_cancel);
ATF_TP_ADD_TC(tp, aio_fsync_test);
return (atf_no_error());
}