emaste c802ed1f83 ctau.c: convert from KOI8-R to UTF-8 encoding
AFAICT this is the last source file (excluding contrib) that was not
ASCII or UTF-8.
2019-12-03 16:52:03 +00:00

1797 lines
45 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-
* Low-level subroutines for Cronyx-Tau adapter.
*
* Copyright (C) 1994-2001 Cronyx Engineering.
* Author: Serge Vakulenko, <vak@cronyx.ru>
*
* Copyright (C) 2003 Cronyx Engineering.
* Author: Roman Kurakin, <rik@cronyx.ru>
*
* This software is distributed with NO WARRANTIES, not even the implied
* warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Authors grant any other persons or organisations permission to use
* or modify this software as long as this message is kept with the software,
* all derivative works or modified versions.
*
* Cronyx Id: ctau.c,v 1.1.2.4 2003/12/11 17:33:43 rik Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/cx/machdep.h>
#include <dev/ctau/ctddk.h>
#include <dev/ctau/ctaureg.h>
#include <dev/ctau/hdc64570.h>
#include <dev/ctau/ds2153.h>
#include <dev/ctau/am8530.h>
#include <dev/ctau/lxt318.h>
#include <dev/cx/cronyxfw.h>
#define DMA_MASK 0xd4 /* DMA mask register */
#define DMA_MASK_CLEAR 0x04 /* DMA clear mask */
#define DMA_MODE 0xd6 /* DMA mode register */
#define DMA_MODE_MASTER 0xc0 /* DMA master mode */
#define BYTE *(unsigned char*)&
static unsigned char irqmask [] = {
BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_3,
BCR0_IRQ_DIS, BCR0_IRQ_5, BCR0_IRQ_DIS, BCR0_IRQ_7,
BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_10, BCR0_IRQ_11,
BCR0_IRQ_12, BCR0_IRQ_DIS, BCR0_IRQ_DIS, BCR0_IRQ_15,
};
static unsigned char dmamask [] = {
BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS, BCR0_DMA_DIS,
BCR0_DMA_DIS, BCR0_DMA_5, BCR0_DMA_6, BCR0_DMA_7,
};
static short porttab [] = { /* standard base port set */
0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0,
0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0
};
static short irqtab [] = { 3, 5, 7, 10, 11, 12, 15, 0 };
static short dmatab [] = { 5, 6, 7, 0 };
static int valid (short value, short *list)
{
while (*list)
if (value == *list++)
return 1;
return 0;
}
long ct_baud = 256000; /* default baud rate */
unsigned char ct_chan_mode = M_HDLC; /* default mode */
static void ct_init_chan (ct_board_t *b, int num);
static void ct_enable_loop (ct_chan_t *c);
static void ct_disable_loop (ct_chan_t *c);
int ct_download (port_t port, const unsigned char *firmware,
long bits, const cr_dat_tst_t *tst)
{
unsigned char cr1, sr2;
long i, n, maxn = (bits + 7) >> 3;
int v, b;
inb (BSR3(port));
for (i=n=0; n<maxn; ++n) {
v = ((firmware[n] ^ ' ') << 1) | ((firmware[n] >> 7) & 1);
for (b=0; b<7; b+=2, i+=2) {
if (i >= bits)
break;
cr1 = 0;
if (v >> b & 1)
cr1 |= BCR1_TMS;
if (v >> b & 2)
cr1 |= BCR1_TDI;
outb (BCR1(port), cr1);
sr2 = inb (BSR2(port));
outb (BCR0(port), BCR0_TCK);
outb (BCR0(port), 0);
if (i >= tst->end)
++tst;
if (i >= tst->start && (sr2 & BSR2_LERR))
return (0);
}
}
return (1);
}
/*
* Firmware unpack algorithm.
*/
typedef struct {
const unsigned char *ptr;
unsigned char byte;
unsigned char count;
} unpack_t;
static unsigned short unpack_init (unpack_t *t, const unsigned char *ptr)
{
unsigned short len;
len = *ptr++;
len |= *ptr++ << 8;
t->ptr = ptr;
t->byte = 0;
t->count = 0;
return len;
}
static unsigned char unpack_getchar (unpack_t *t)
{
if (t->count > 0) {
--t->count;
return t->byte;
}
t->byte = *t->ptr++;
if (t->byte == 0)
t->count = *t->ptr++;
return t->byte;
}
/*
* Firmware download signals.
*/
#define nstatus(b) (inb(BSR3(b)) & BSR3_NSTATUS)
#define confdone(b) (inb(BSR3(b)) & BSR3_CONF_DN)
#define nconfig_set(b) outb (bcr1_port, (bcr1 &= ~BCR1_NCONFIGI))
#define nconfig_clr(b) outb (bcr1_port, (bcr1 |= BCR1_NCONFIGI))
#define dclk_tick(b) outb (BCR3(b), 0)
#define putbit(b,bit) { if (bit) bcr1 |= BCR1_1KDAT; \
else bcr1 &= ~BCR1_1KDAT; \
outb (bcr1_port, bcr1); \
dclk_tick (b); }
#define CTAU_DEBUG(x) /*trace_str x*/
int ct_download2 (port_t port, const unsigned char *fwaddr)
{
unsigned short bytes;
unsigned char bcr1, val;
port_t bcr1_port;
unpack_t t;
/*
* Set NCONFIG and wait until NSTATUS is set.
*/
bcr1_port = BCR1(port);
bcr1 = 0;
nconfig_set(port);
for (val=0; val<255; ++val)
if (nstatus(port))
break;
/*
* Clear NCONFIG, wait 2 usec and check that NSTATUS is cleared.
*/
nconfig_clr(port);
for (val=0; val<2*3; ++val)
nconfig_clr(port);
if (nstatus(port)) {
CTAU_DEBUG (("Bad nstatus, downloading aborted (bsr3=0x%x).\n", inb(BSR3(port))));
nconfig_set(port);
return 0;
}
/*
* Set NCONFIG and wait 5 usec.
*/
nconfig_set(port);
for (val=0; val<5*3; ++val) /* Delay 5 msec. */
nconfig_set(port);
/*
* С адреса `fwaddr' в памяти должны лежать упакованные данные
* для загрузки firmware. Значение должно быть согласовано с параметром
* вызова утилиты `megaprog' в скрипте загрузки (и Makefile).
*/
bytes = unpack_init (&t, fwaddr);
for (; bytes>0; --bytes) {
val = unpack_getchar (&t);
if (nstatus(port) == 0) {
CTAU_DEBUG (("Bad nstatus, %d bytes remaining.\n", bytes));
goto failed;
}
if (confdone(port)) {
/* Ten extra clocks. Hope 50 is enough. */
for (val=0; val<50; ++val)
dclk_tick (port);
if (nstatus(port) == 0) {
CTAU_DEBUG (("Bad nstatus after confdone, %d bytes remaining (%d).\n",
bytes, t.ptr - fwaddr));
goto failed;
}
/* Succeeded. */
/*CTAU_DEBUG (("Download succeeded.\n"));*/
return 1;
}
putbit (port, val & 0x01);
putbit (port, val & 0x02);
putbit (port, val & 0x04);
putbit (port, val & 0x08);
putbit (port, val & 0x10);
putbit (port, val & 0x20);
putbit (port, val & 0x40);
putbit (port, val & 0x80);
/* if ((bytes & 1023) == 0) putch ('.'); */
}
CTAU_DEBUG (("Bad confdone.\n"));
failed:
CTAU_DEBUG (("Downloading aborted.\n"));
return 0;
}
/*
* Detect Tau2 adapter.
*/
static int ct_probe2_board (port_t port)
{
unsigned char sr3, osr3;
int i;
if (! valid (port, porttab))
return 0;
osr3 = inb (BSR3(port));
if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB &&
(osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG)
return (0);
for (i=0; i<100; ++i) {
/* Do it twice */
sr3 = inb (BSR3(port));
sr3 = inb (BSR3(port));
if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) !=
(BSR3_IB | BSR3_IB_NEG))
return (0);
osr3 = sr3;
}
/* Reset the controller. */
outb (BCR0(port), 0);
return 1;
}
/*
* Check if the Tau board is present at the given base port.
* Read board status register 1 and check identification bits
* which should invert every next read.
* The "zero" bit should remain stable.
*/
int ct_probe_board (port_t port, int irq, int dma)
{
unsigned char sr3, osr3;
int i;
if (! valid (port, porttab))
return 0;
if ((irq > 0) && (!valid (irq, irqtab)))
return 0;
if ((dma > 0) && (!valid (dma, dmatab)))
return 0;
osr3 = inb (BSR3(port));
if ((osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB &&
(osr3 & (BSR3_IB | BSR3_IB_NEG)) != BSR3_IB_NEG)
return (0);
for (i=0; i<100; ++i) {
sr3 = inb (BSR3(port));
if (((sr3 ^ osr3) & (BSR3_IB | BSR3_IB_NEG | BSR3_ZERO)) !=
(BSR3_IB | BSR3_IB_NEG))
return ct_probe2_board (port);
osr3 = sr3;
}
/* Reset the controller. */
outb (BCR0(port), 0);
return (1);
}
/*
* Check that the irq is functional.
* irq>0 - activate the interrupt from the adapter (irq=on)
* irq<0 - deactivate the interrupt (irq=off)
* irq==0 - free the interrupt line (irq=tri-state)
* Return the interrupt mask _before_ activating irq.
*/
int ct_probe_irq (ct_board_t *b, int irq)
{
int mask;
outb (0x20, 0x0a);
mask = inb (0x20);
outb (0xa0, 0x0a);
mask |= inb (0xa0) << 8;
if (irq > 0) {
outb (BCR0(b->port), BCR0_HDRUN | irqmask[irq]);
outb (R(b->port,HD_TEPR_0R), 0);
outw (R(b->port,HD_TCONR_0R), 1);
outw (R(b->port,HD_TCNT_0R), 0);
outb (R(b->port,HD_TCSR_0R), TCSR_ENABLE | TCSR_INTR);
outb (IER2(b->port), IER2_RX_TME_0);
} else if (irq < 0) {
outb (BCR0(b->port), BCR0_HDRUN | irqmask[-irq]);
outb (IER0(b->port), 0);
outb (IER1(b->port), 0);
outb (IER2(b->port), 0);
outb (R(b->port,HD_TCSR_0R), 0);
cte_out (E1CS0 (b->port), DS_IMR2, 0);
cte_out (E1CS1 (b->port), DS_IMR2, 0);
if (-irq > 7) {
outb (0xa0, 0x60 | ((-irq) & 7));
outb (0x20, 0x62);
} else
outb (0x20, 0x60 | (-irq));
} else {
outb (BCR0(b->port), b->bcr0);
cte_out (E1CS0 (b->port), DS_IMR2, SR2_SEC);
cte_out (E1CS1 (b->port), DS_IMR2, SR2_SEC);
}
return mask;
}
void ct_init_board (ct_board_t *b, int num, port_t port, int irq, int dma,
int type, long osc)
{
int i;
/* Initialize board structure. */
b->type = type;
b->port = port;
b->num = num;
b->irq = irq;
b->dma = dma;
b->osc = osc;
/* Get the board type. */
if (b->type == B_TAU) strcpy (b->name, "Tau");
else if (b->type == B_TAU_E1) strcpy (b->name, "Tau/E1");
else if (b->type == B_TAU_E1C) strcpy (b->name, "Tau/E1c");
else if (b->type == B_TAU_E1D) strcpy (b->name, "Tau/E1d");
else if (b->type == B_TAU_G703) strcpy (b->name, "Tau/G.703");
else if (b->type == B_TAU_G703C) strcpy (b->name, "Tau/G.703c");
else if (b->type == B_TAU2) strcpy (b->name, "Tau2");
else if (b->type == B_TAU2_E1) strcpy (b->name, "Tau2/E1");
else if (b->type == B_TAU2_E1D) strcpy (b->name, "Tau2/E1d");
else if (b->type == B_TAU2_G703) strcpy (b->name, "Tau2/G.703");
else strcpy (b->name, "Tau/???");
/* Set DMA and IRQ. */
b->bcr0 = BCR0_HDRUN | dmamask[b->dma] | irqmask[b->irq];
/* Clear DTR[0..1]. */
b->bcr1 = 0;
b->e1cfg = 0;
/* Initialize channel structures. */
for (i=0; i<NCHAN; ++i)
ct_init_chan (b, i);
ct_reinit_board (b);
}
/*
* Initialize the board structure.
*/
void ct_init (ct_board_t *b, int num, port_t port, int irq, int dma,
const unsigned char *firmware, long bits, const cr_dat_tst_t *tst,
const unsigned char *firmware2)
{
static long tlen = 182;
static cr_dat_tst_t tvec [] = {{ 114, 178 }, { 182, 182 }};
static cr_dat_tst_t tvec2 [] = {{ 50, 178 }, { 182, 182 }};
static unsigned char tau [] = { 155,153,113,48,64,236,
48,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,183,};
static unsigned char e1 [] = { 155,153,113,48,64,236,
112,37,49,37,33,116,101,100,112,37,49,37,33,116,101,100,230,};
static unsigned char e1_2 [] = { 155,153,113,48,64,236,
112,37,49,37,33,116,101,100,96,97,53,49,49,96,97,100,230,};
static unsigned char e1_3 [] = { 155,153,113,48,64,236,
96,97,53,49,49,96,97,100,96,97,53,49,49,96,97,100,230,};
static unsigned char e1_4 [] = { 155,153,113,48,64,236,
96,97,53,49,49,96,97,100,112,37,49,37,33,116,101,100,230,};
static unsigned char g703 [] = { 155,153,113,48,64,236,
112,37,49,37,33,116,101,32,117,37,49,37,33,116,101,100,230,};
static unsigned char g703_2 [] = { 155,153,113,48,64,236,
112,37,49,37,33,116,101,32,101,97,53,49,49,96,97,100,230,};
static unsigned char g703_3 [] = { 155,153,113,48,64,236,
96,97,53,49,49,96,97,32,101,97,53,49,49,96,97,100,230,};
static unsigned char g703_4 [] = { 155,153,113,48,64,236,
96,97,53,49,49,96,97,32,117,37,49,37,33,116,101,100,230,};
int type = B_TAU;
long osc = (inb (BSR3(port)) & BSR3_ZERO) ? 8192000 : 10000000;
/* Get the board type. */
if (ct_probe2_board (port) && ct_download2 (port, firmware2)) {
/* Tau2, 1k30-based model */
unsigned char sr0 = inb (BSR0(port));
if (! (sr0 & BSR0_T703))
type = B_TAU2_G703;
else if (sr0 & BSR0_TE1)
type = B_TAU2;
else if (inb(E1SR(port)) & E1SR_REV)
type = B_TAU2_E1D;
else
type = B_TAU2_E1;
} else if (ct_download (port, tau, tlen, tvec)) {
if (! ct_download (port, firmware, bits, tst))
type = B_TAU;
else {
unsigned char sr0 = inb (BSR0(port));
if (! (sr0 & BSR0_T703))
type = B_TAU_G703C;
else if (sr0 & BSR0_TE1)
type = B_TAU;
else if (inb(E1SR(port)) & E1SR_REV)
type = B_TAU_E1D;
else
type = B_TAU_E1C;
}
} else if (ct_download (port, e1, tlen, tvec2) ||
ct_download (port, e1_2, tlen, tvec2) ||
ct_download (port, e1_3, tlen, tvec2) ||
ct_download (port, e1_4, tlen, tvec2))
type = B_TAU_E1;
else if (ct_download (port, g703, tlen, tvec2) ||
ct_download (port, g703_2, tlen, tvec2) ||
ct_download (port, g703_3, tlen, tvec2) ||
ct_download (port, g703_4, tlen, tvec2))
type = B_TAU_G703;
ct_init_board (b, num, port, irq, dma, type, osc);
}
/*
* Initialize the channel structure.
*/
static void ct_init_chan (ct_board_t *b, int i)
{
ct_chan_t *c = b->chan + i;
port_t port = b->port;
c->num = i;
c->board = b;
switch (b->type) {
case B_TAU:
case B_TAU2: c->type = T_SERIAL; break;
case B_TAU_E1:
case B_TAU_E1C:
case B_TAU_E1D:
case B_TAU2_E1:
case B_TAU2_E1D: c->type = T_E1; break;
case B_TAU_G703:
case B_TAU_G703C:
case B_TAU2_G703: c->type = T_G703; break;
}
if (c->num)
c->type |= T_SERIAL;
#define reg(X,N) HD_##X##_##N
#define set(X,N) c->X = R(port,reg(X,N))
#define srx(X,N) c->RX.X = R(port,reg(X,N##R))
#define stx(X,N) c->TX.X = R(port,reg(X,N##T))
if (i == 0) {
set(MD0, 0); set(MD1, 0); set(MD2, 0); set(CTL, 0);
set(RXS, 0); set(TXS, 0); set(TMC, 0); set(CMD, 0);
set(ST0, 0); set(ST1, 0); set(ST2, 0); set(ST3, 0);
set(FST, 0); set(IE0, 0); set(IE1, 0); set(IE2, 0);
set(FST, 0); set(IE0, 0); set(IE1, 0); set(IE2, 0);
set(FIE, 0); set(SA0, 0); set(SA1, 0); set(IDL, 0);
set(TRB, 0); set(RRC, 0); set(TRC0,0); set(TRC1,0);
set(CST, 0);
srx(DAR, 0); srx(DARB,0); srx(SAR, 0); srx(SARB,0);
srx(CDA, 0); srx(EDA, 0); srx(BFL, 0); srx(BCR, 0);
srx(DSR, 0); srx(DMR, 0); srx(FCT, 0); srx(DIR, 0);
srx(DCR, 0);
srx(TCNT,0); srx(TCONR,0); srx(TCSR,0); srx(TEPR,0);
stx(DAR, 0); stx(DARB,0); stx(SAR, 0); stx(SARB,0);
stx(CDA, 0); stx(EDA, 0); stx(BCR, 0);
stx(DSR, 0); stx(DMR, 0); stx(FCT, 0); stx(DIR, 0);
stx(DCR, 0);
stx(TCNT,0); stx(TCONR,0); stx(TCSR,0); stx(TEPR,0);
} else {
set(MD0, 1); set(MD1, 1); set(MD2, 1); set(CTL, 1);
set(RXS, 1); set(TXS, 1); set(TMC, 1); set(CMD, 1);
set(ST0, 1); set(ST1, 1); set(ST2, 1); set(ST3, 1);
set(FST, 1); set(IE0, 1); set(IE1, 1); set(IE2, 1);
set(FST, 1); set(IE0, 1); set(IE1, 1); set(IE2, 1);
set(FIE, 1); set(SA0, 1); set(SA1, 1); set(IDL, 1);
set(TRB, 1); set(RRC, 1); set(TRC0,1); set(TRC1,1);
set(CST, 1);
srx(DAR, 1); srx(DARB,1); srx(SAR, 1); srx(SARB,1);
srx(CDA, 1); srx(EDA, 1); srx(BFL, 1); srx(BCR, 1);
srx(DSR, 1); srx(DMR, 1); srx(FCT, 1); srx(DIR, 1);
srx(DCR, 1);
srx(TCNT,1); srx(TCONR,1); srx(TCSR,1); srx(TEPR,1);
stx(DAR, 1); stx(DARB,1); stx(SAR, 1); stx(SARB,1);
stx(CDA, 1); stx(EDA, 1); stx(BCR, 1);
stx(DSR, 1); stx(DMR, 1); stx(FCT, 1); stx(DIR, 1);
stx(DCR, 1);
stx(TCNT,1); stx(TCONR,1); stx(TCSR,1); stx(TEPR,1);
}
#undef set
#undef srx
#undef stx
#undef reg
}
/*
* Reinitialize the channels, using new options.
*/
void ct_reinit_chan (ct_chan_t *c)
{
ct_board_t *b = c->board;
long s;
int i;
if (c->hopt.txs == CLK_LINE) {
/* External clock mode -- set zero baud rate. */
if (c->mode != M_ASYNC)
c->baud = 0;
} else if (c->baud == 0) {
/* No baud rate in internal clock mode -- set default values. */
if (c->mode == M_ASYNC)
c->baud = 9600;
else if (c->mode == M_HDLC)
c->baud = 64000;
}
switch (c->type) {
case T_E1_SERIAL:
if (b->opt.cfg == CFG_B)
break;
/* Fall through... */
case T_E1:
c->mode = M_E1;
c->hopt.txs = CLK_LINE;
/* Compute the baud value. */
if (c->num) {
s = b->opt.s1;
if (b->opt.cfg == CFG_C)
s &=~ b->opt.s0;
} else
s = b->opt.s0;
/* Skip timeslot 16 in CAS mode. */
if (c->gopt.cas)
s &=~ (1L << 16);
c->baud = 0;
for (i=0; i<32; ++i)
if ((s >> i) & 1)
c->baud += 64000;
c->gopt.rate = c->baud / 1000;
/* Set NRZ and clear INVCLK. */
c->opt.md2.encod = MD2_ENCOD_NRZ;
c->board->opt.bcr2 &= c->num ?
~(BCR2_INVTXC1 | BCR2_INVRXC1) :
~(BCR2_INVTXC0 | BCR2_INVRXC0);
break;
case T_G703_SERIAL:
if (b->opt.cfg == CFG_B)
break;
/* Fall through... */
case T_G703:
c->mode = M_G703;
c->hopt.txs = CLK_LINE;
c->baud = c->gopt.rate * 1000L;
/* Set NRZ/NRZI and clear INVCLK. */
if (c->opt.md2.encod != MD2_ENCOD_NRZ &&
c->opt.md2.encod != MD2_ENCOD_NRZI)
c->opt.md2.encod = MD2_ENCOD_NRZ;
c->board->opt.bcr2 &= c->num ?
~(BCR2_INVTXC1 | BCR2_INVRXC1) :
~(BCR2_INVTXC0 | BCR2_INVRXC0);
break;
}
}
/*
* Reinitialize all channels, using new options and baud rate.
*/
void ct_reinit_board (ct_board_t *b)
{
ct_chan_t *c;
b->opt = ct_board_opt_dflt;
for (c=b->chan; c<b->chan+NCHAN; ++c) {
c->opt = ct_chan_opt_dflt;
c->hopt = ct_opt_hdlc_dflt;
c->gopt = ct_opt_g703_dflt;
c->mode = ct_chan_mode;
c->baud = ct_baud;
ct_reinit_chan (c);
}
}
/*
* Set up the E1 controller of the Tau/E1 board.
* Frame sync signals:
* Configuration Rsync0 Tsync0 Rsync1 Tsync1
* ---------------------------------------------------
* A (II) out out out out
* B,C,D (HI,K,D) in out in out
* ---------------------------------------------------
* BI out out in in -- not implemented
* old B,C,D (HI,K,D) out in out in -- old
*/
static void ct_setup_ctlr (ct_chan_t *c)
{
ct_board_t *b = c->board;
port_t p = c->num ? E1CS1 (b->port) : E1CS0 (b->port);
unsigned char rcr1, rcr2, tcr1, tcr2, ccr1, licr;
unsigned long xcbr, tir;
int i;
rcr2 = RCR2_RSCLKM;
tcr1 = TCR1_TSIS | TCR1_TSO;
tcr2 = 0;
ccr1 = 0;
licr = 0;
if (b->opt.cfg != CFG_D) {
/* Enable monitoring channel, when not in telephony mode. */
rcr2 |= RCR2_SA_4;
tcr2 |= TCR2_SA_4;
}
if (b->opt.cfg == CFG_A) {
rcr1 = RCR1_RSO;
} else {
rcr1 = RCR1_RSI;
rcr2 |= RCR2_RESE;
}
if (c->gopt.cas)
tcr1 |= TCR1_T16S;
else
ccr1 |= CCR1_CCS;
if (c->gopt.hdb3)
ccr1 |= CCR1_THDB3 | CCR1_RHDB3;
if (c->gopt.crc4) {
ccr1 |= CCR1_TCRC4 | CCR1_RCRC4;
tcr2 |= TCR2_AEBE;
}
if (c->gopt.higain)
licr |= LICR_HIGAIN;
if (inb (E1SR (b->port)) & (c->num ? E1SR_TP1 : E1SR_TP0))
licr |= LICR_LB120P;
else
licr |= LICR_LB75P;
cte_out (p, DS_RCR1, rcr1); /* receive control 1 */
cte_out (p, DS_RCR2, rcr2); /* receive control 2 */
cte_out (p, DS_TCR1, tcr1); /* transmit control 1 */
cte_out (p, DS_TCR2, tcr2); /* transmit control 2 */
cte_out (p, DS_CCR1, ccr1); /* common control 1 */
cte_out (p, DS_CCR2, CCR2_CNTCV | CCR2_AUTORA | CCR2_LOFA1); /* common control 2 */
cte_out (p, DS_CCR3, CCR3_TSCLKM); /* common control 3 */
cte_out (p, DS_LICR, licr); /* line interface control */
cte_out (p, DS_IMR1, 0); /* interrupt mask 1 */
cte_out (p, DS_IMR2, SR2_SEC); /* interrupt mask 2 */
cte_out (p, DS_TEST1, 0);
cte_out (p, DS_TEST2, 0);
cte_out (p, DS_TAF, 0x9b); /* transmit align frame */
cte_out (p, DS_TNAF, 0xdf); /* transmit non-align frame */
cte_out (p, DS_TIDR, 0xff); /* transmit idle definition */
cte_out (p, DS_TS, 0x0b); /* transmit signaling 1 */
for (i=1; i<16; ++i)
/* transmit signaling 2..16 */
cte_out (p, (unsigned char) (DS_TS+i), 0xff);
/*
* S0 == list of timeslots for channel 0
* S1 == list of timeslots for channel 1
* S2 == list of timeslots for E1 subchannel (pass through)
*
* Each channel uses the same timeslots for receive and transmit,
* i.e. RCBRi == TCBRi.
*/
if (b->opt.cfg == CFG_B)
b->opt.s1 = 0;
else if (b->opt.cfg == CFG_C)
b->opt.s1 &=~ b->opt.s0;
if (c->gopt.cas) {
/* Skip timeslot 16 in CAS mode. */
b->opt.s0 &=~ (1L << 16);
b->opt.s1 &=~ (1L << 16);
}
b->opt.s2 &=~ b->opt.s0;
b->opt.s2 &=~ b->opt.s1;
/*
* Configuration A:
* xCBRi := Si
* TIRi := ~Si
*
* Configuration B:
* xCBRi := Si
* TIRi := 0
*
* Configuration C: (S0 & S2 == 0)
* xCBR0 := S0
* xCBR1 := 0
* TIR0 := ~S0 & ~S2
* TIR1 := ~S2
*
* Configuration D: (Si & Sj == 0)
* xCBR0 := S0
* xCBR1 := S1
* TIR0 := ~S0 & ~S1 & ~S2
* TIR1 := ~S2
*/
xcbr = c->num ? b->opt.s1 : b->opt.s0;
if (b->opt.cfg == CFG_A)
tir = ~xcbr;
else if (b->opt.cfg == CFG_D)
tir = 0;
else if (c->num == 0)
tir = ~(b->opt.s0 | b->opt.s1 | b->opt.s2);
else
tir = ~b->opt.s2;
/* Mark idle channels. */
cte_out (p, DS_TIR, (unsigned char) (tir & 0xfe));
cte_out (p, DS_TIR+1, (unsigned char) (tir >> 8));
cte_out (p, DS_TIR+2, (unsigned char) (tir >> 16));
cte_out (p, DS_TIR+3, (unsigned char) (tir >> 24));
/* Set up rx/tx timeslots. */
cte_out (p, DS_RCBR, (unsigned char) (xcbr & 0xfe));
cte_out (p, DS_RCBR+1, (unsigned char) (xcbr >> 8));
cte_out (p, DS_RCBR+2, (unsigned char) (xcbr >> 16));
cte_out (p, DS_RCBR+3, (unsigned char) (xcbr >> 24));
cte_out (p, DS_TCBR, (unsigned char) (xcbr & 0xfe));
cte_out (p, DS_TCBR+1, (unsigned char) (xcbr >> 8));
cte_out (p, DS_TCBR+2, (unsigned char) (xcbr >> 16));
cte_out (p, DS_TCBR+3, (unsigned char) (xcbr >> 24));
/* Reset the line interface. */
cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_LIRESET);
cte_out (p, DS_CCR3, CCR3_TSCLKM);
/* Reset the elastic store. */
cte_out (p, DS_CCR3, CCR3_TSCLKM | CCR3_ESRESET);
cte_out (p, DS_CCR3, CCR3_TSCLKM);
/* Clear status registers. */
cte_ins (p, DS_SR1, 0xff);
cte_ins (p, DS_SR2, 0xff);
cte_ins (p, DS_RIR, 0xff);
}
/*
* Set up the serial controller of the Tau/E1 board.
*/
static void ct_setup_scc (port_t port)
{
#define SET(r,v) { cte_out2 (port, r, v); cte_out2 (port, AM_A | r, v); }
/* hardware reset */
cte_out2 (port, AM_MICR, MICR_RESET_HW);
SET (AM_PMR, 0x0c); /* 2 stop bits */
SET (AM_IMR, 0); /* no W/REQ signal */
cte_out2 (port, AM_IVR, 0); /* interrupt vector */
SET (AM_RCR, 0xc0); /* rx 8 bits/char */
SET (AM_TCR, 0x60); /* tx 8 bits/char */
SET (AM_SAF, 0); /* sync address field */
SET (AM_SFR, 0x7e); /* sync flag register */
cte_out2 (port, AM_MICR, 0); /* master interrupt control */
SET (AM_MCR, 0); /* NRZ mode */
SET (AM_CMR, 0x08); /* rxclk=RTxC, txclk=TRxC */
SET (AM_TCL, 0); /* time constant low */
SET (AM_TCH, 0); /* time constant high */
SET (AM_BCR, 0); /* disable baud rate generator */
SET (AM_RCR, 0xc1); /* enable rx */
SET (AM_TCR, 0x68); /* enable tx */
SET (AM_SICR, 0); /* no status interrupt */
SET (AM_CR, CR_RST_EXTINT); /* reset external status */
SET (AM_CR, CR_RST_EXTINT); /* reset ext/status twice */
#undef SET
}
/*
* Set up the Tau/E1 board.
*/
void ct_setup_e1 (ct_board_t *b)
{
/*
* Control register 0:
* 1) board configuration
* 2) clock modes
*/
b->e1cfg &= E1CFG_LED;
switch (b->opt.cfg){
case CFG_C: b->e1cfg |= E1CFG_K; break;
case CFG_B: b->e1cfg |= E1CFG_HI; break;
case CFG_D: b->e1cfg |= E1CFG_D; break;
default: b->e1cfg |= E1CFG_II; break;
}
if (b->opt.clk0 == GCLK_RCV) b->e1cfg |= E1CFG_CLK0_RCV;
if (b->opt.clk0 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK0_RCLK1;
else b->e1cfg |= E1CFG_CLK0_INT;
if (b->opt.clk1 == GCLK_RCV) b->e1cfg |= E1CFG_CLK1_RCV;
if (b->opt.clk1 == GCLK_RCLKO) b->e1cfg |= E1CFG_CLK1_RCLK0;
else b->e1cfg |= E1CFG_CLK1_INT;
outb (E1CFG (b->port), b->e1cfg);
/*
* Set up serial controller.
*/
ct_setup_scc (b->port);
/*
* Set up E1 controllers.
*/
ct_setup_ctlr (b->chan + 0); /* channel 0 */
ct_setup_ctlr (b->chan + 1); /* channel 1 */
/* Start the board (GRUN). */
b->e1cfg |= E1CFG_GRUN;
outb (E1CFG (b->port), b->e1cfg);
}
/*
* Set up the G.703 controller of the Tau/G.703 board.
*/
static void ct_setup_lxt (ct_chan_t *c)
{
ctg_outx (c, LX_CCR1, LX_RESET); /* reset the chip */
/* Delay */
ctg_inx (c, LX_CCR1);
c->lx = LX_LOS; /* disable loss of sync interrupt */
if (c->num && c->board->opt.cfg == CFG_B)
c->lx |= LX_TAOS; /* idle channel--transmit all ones */
if (c->gopt.hdb3)
c->lx |= LX_HDB3; /* enable HDB3 encoding */
ctg_outx (c, LX_CCR1, c->lx); /* setup the new mode */
ctg_outx (c, LX_CCR2, LX_CCR2_LH); /* setup Long Haul mode */
ctg_outx (c, LX_CCR3, LX_CCR3_E1_LH); /* setup Long Haul mode */
}
/*
* Set up the Tau/G.703 board.
*/
void ct_setup_g703 (ct_board_t *b)
{
b->gmd0 = GMD_2048;
if (b->chan[0].gopt.pce) {
if (b->chan[0].gopt.pce2) b->gmd0 |= GMD_PCE_PCM2;
else b->gmd0 |= GMD_PCE_PCM2D;
}
if (b->opt.clk0)
b->gmd0 |= GMD_RSYNC;
b->gmd1 = 0;
if (b->chan[1].gopt.pce) {
if (b->chan[1].gopt.pce2) b->gmd1 |= GMD_PCE_PCM2;
else b->gmd1 |= GMD_PCE_PCM2D;
}
if (b->opt.clk1)
b->gmd1 |= GMD_RSYNC;
switch (b->chan[0].gopt.rate) {
case 2048: b->gmd0 |= GMD_2048; break;
case 1024: b->gmd0 |= GMD_1024; break;
case 512: b->gmd0 |= GMD_512; break;
case 256: b->gmd0 |= GMD_256; break;
case 128: b->gmd0 |= GMD_128; break;
case 64: b->gmd0 |= GMD_64; break;
}
switch (b->chan[1].gopt.rate) {
case 2048: b->gmd1 |= GMD_2048; break;
case 1024: b->gmd1 |= GMD_1024; break;
case 512: b->gmd1 |= GMD_512; break;
case 256: b->gmd1 |= GMD_256; break;
case 128: b->gmd1 |= GMD_128; break;
case 64: b->gmd1 |= GMD_64; break;
}
outb (GMD0(b->port), b->gmd0);
outb (GMD1(b->port), b->gmd1 | GMD1_NCS0 | GMD1_NCS1);
b->gmd2 &= GMD2_LED;
if (b->opt.cfg == CFG_B) b->gmd2 |= GMD2_SERIAL;
outb (GMD2(b->port), b->gmd2);
/* Set up G.703 controllers. */
if ((b->chan + 0)->lx & LX_LLOOP) {
ct_setup_lxt (b->chan + 0); /* channel 0 */
ct_enable_loop (b->chan + 0);
} else {
ct_setup_lxt (b->chan + 0); /* channel 0 */
}
if ((b->chan + 1)->lx & LX_LLOOP) {
ct_setup_lxt (b->chan + 1); /* channel 1 */
ct_enable_loop (b->chan + 1);
} else {
ct_setup_lxt (b->chan + 1); /* channel 1 */
}
/* Clear errors. */
outb (GERR(b->port), 0xff);
outb (GLDR(b->port), 0xff);
}
/*
* Set up the board.
*/
int ct_setup_board (ct_board_t *b, const unsigned char *firmware,
long bits, const cr_dat_tst_t *tst)
{
ct_chan_t *c;
/* Disable DMA channel. */
outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR);
/* Reset the controller. */
outb (BCR0(b->port), 0);
/* Load the firmware. */
if (firmware && (b->type == B_TAU || b->type == B_TAU_E1 ||
b->type == B_TAU_G703) &&
! ct_download (b->port, firmware, bits, tst))
return (0);
if (firmware && (b->type == B_TAU2 || b->type == B_TAU2_E1 ||
b->type == B_TAU2_E1D || b->type == B_TAU2_G703) &&
! ct_download2 (b->port, firmware))
return (0);
/* Enable DMA and IRQ. */
outb (BCR0(b->port), BCR0_HDRUN);
outb (BCR0(b->port), b->bcr0);
/* Clear DTR[0..1]. */
outb (BCR1(b->port), b->bcr1);
/* Set bus timing. */
b->bcr2 = b->opt.bcr2;
outb (BCR2(b->port), b->bcr2);
/*
* Initialize the controller.
*/
/* Zero wait state mode. */
outb (WCRL(b->port), 0);
outb (WCRM(b->port), 0);
outb (WCRH(b->port), 0);
/* Clear interrupt modified vector register. */
outb (IMVR(b->port), 0);
outb (ITCR(b->port), ITCR_CYCLE_SINGLE | ITCR_VECT_MOD);
/* Disable all interrupts. */
outb (IER0(b->port), 0);
outb (IER1(b->port), 0);
outb (IER2(b->port), 0);
/* Set DMA parameters, enable master DMA mode. */
outb (PCR(b->port), BYTE b->opt.pcr);
outb (DMER(b->port), DME_ENABLE);
/* Set up DMA channel to master mode. */
outb (DMA_MODE, (b->dma & 3) | DMA_MODE_MASTER);
/* Enable DMA channel. */
outb (DMA_MASK, b->dma & 3);
/* Disable byte-sync mode for Tau/G.703. */
if (b->type == B_TAU_G703)
outb (GMD2(b->port), 0);
/* Initialize all channels. */
for (c=b->chan; c<b->chan+NCHAN; ++c)
ct_setup_chan (c);
switch (b->type) {
case B_TAU_G703:
case B_TAU_G703C:
case B_TAU2_G703:
ct_setup_g703 (b);
break;
case B_TAU_E1:
case B_TAU_E1C:
case B_TAU_E1D:
case B_TAU2_E1:
case B_TAU2_E1D:
ct_setup_e1 (b);
break;
}
return (1);
}
/*
* Update the channel mode options.
*/
void ct_update_chan (ct_chan_t *c)
{
int txbr, rxbr, tmc, txcout;
unsigned char rxs, txs, dmr = 0;
ct_md0_async_t amd0;
ct_md0_hdlc_t hmd0;
ct_md1_async_t amd1;
switch (c->mode) { /* initialize the channel mode */
case M_ASYNC: default:
rxs = CLK_INT;
txs = CLK_INT;
amd0.mode = MD0_MODE_ASYNC;
amd0.stopb = MD0_STOPB_1;
amd0.cts_rts_dcd = 0;
amd1.clk = MD1_CLK_16;
amd1.txclen = amd1.rxclen = MD1_CLEN_8;
amd1.parmode = MD1_PAR_NO;
outb (c->MD0, BYTE amd0);
outb (c->MD1, BYTE amd1);
outb (c->CTL, c->rts ? 0 : CTL_RTS_INV);
break;
case M_E1:
case M_G703:
case M_HDLC:
rxs = c->hopt.rxs;
txs = c->hopt.txs;
if (c->mode == M_E1 && c->board->opt.cfg == CFG_D) {
hmd0 = c->hopt.md0;
hmd0.crc = 0;
outb (c->MD0, BYTE hmd0);
outb (c->MD1, BYTE c->hopt.md1);
outb (c->CTL, c->hopt.ctl & ~CTL_IDLE_PTRN);
outb (c->SA0, c->hopt.sa0);
outb (c->SA1, c->hopt.sa1);
outb (c->IDL, 0x7e); /* HDLC flag 01111110 */
} else {
outb (c->MD0, BYTE c->hopt.md0);
outb (c->MD1, BYTE c->hopt.md1);
outb (c->SA0, c->hopt.sa0);
outb (c->SA1, c->hopt.sa1);
outb (c->IDL, 0x7e); /* HDLC flag 01111110 */
if (c->rts)
outb (c->CTL, c->hopt.ctl & ~CTL_RTS_INV);
else
outb (c->CTL, c->hopt.ctl | CTL_RTS_INV);
}
/* Chained-block DMA mode with frame counter. */
dmr |= DMR_CHAIN_CNTE | DMR_CHAIN_NF | DMR_TMOD;
break;
}
outb (c->RX.DMR, dmr);
outb (c->TX.DMR, dmr);
/* set mode-independent options */
c->opt.md2.dpll_clk = MD2_DPLL_CLK_8;
outb (c->MD2, BYTE c->opt.md2);
/* set up receiver and transmitter clocks */
if (c->baud > 1024000) {
/* turn off DPLL if the baud rate is too high */
if (rxs == CLK_RXS_LINE_NS) rxs = CLK_LINE;
else if (rxs == CLK_RXS_DPLL_INT) rxs = CLK_INT;
}
if (rxs == CLK_RXS_LINE_NS || rxs == CLK_RXS_DPLL_INT) {
/* Using 1:8 sampling rate. */
ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc);
txbr = rxbr + 3;
} else if (c->mode == M_ASYNC) {
/* Using 1:16 sampling rate. */
ct_compute_clock (c->board->osc, c->baud * 8, &rxbr, &tmc);
--rxbr;
txbr = rxbr;
} else {
ct_compute_clock (c->board->osc, c->baud, &rxbr, &tmc);
txbr = rxbr;
}
txs |= txbr;
rxs |= rxbr;
outb (c->TMC, tmc);
outb (c->RXS, rxs);
/* Disable TXCOUT before changing TXS
* to avoid two transmitters on the same line.
* Enable it after TXS is set, if needed. */
txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
c->board->bcr1 &= ~txcout;
outb (BCR1(c->board->port), c->board->bcr1);
outb (c->TXS, txs);
if ((txs & CLK_MASK) != CLK_LINE) {
c->board->bcr1 |= txcout;
outb (BCR1(c->board->port), c->board->bcr1);
}
if (c->board->type == B_TAU_E1D ||
c->board->type == B_TAU2_E1D)
ct_set_phony (c, c->gopt.phony);
}
/*
* Initialize the channel.
*/
void ct_setup_chan (ct_chan_t *c)
{
/* reset the channel */
outb (c->RX.DSR, DSR_DMA_DISABLE);
outb (c->TX.DSR, DSR_DMA_DISABLE);
outb (c->CMD, CMD_TX_RESET);
outb (c->CMD, CMD_TX_ABORT);
outb (c->CMD, CMD_CHAN_RESET);
/* disable interrupts */
outb (c->IE0, 0);
outb (c->IE1, 0);
outb (c->IE2, 0);
outb (c->FIE, 0);
/* clear DTR, RTS */
ct_set_dtr (c, 0);
ct_set_rts (c, 0);
c->lx = LX_LOS;
ct_update_chan (c);
}
unsigned long ct_get_ts (ct_chan_t *c)
{
return c->num ? c->board->opt.s1 : c->board->opt.s0;
}
/*
* Data transfer speed
*/
unsigned long ct_get_baud (ct_chan_t *c)
{
unsigned long speed;
unsigned long ts;
if (c->mode == M_G703) {
speed = 1000 * c->gopt.rate;
} else if (c->mode == M_E1) {
ts = ct_get_ts (c);
for (speed=0; ts; ts >>= 1) /* Each timeslot is 64 Kbps */
if (ts & 1)
speed += 64000;
} else
speed = (c->hopt.txs == CLK_INT) ? c->baud : 0;
return speed;
}
/*
* Turn local loopback on
*/
static void ct_enable_loop (ct_chan_t *c)
{
if (c->mode == M_E1) {
unsigned short p = c->num ? E1CS1 (c->board->port) :
E1CS0 (c->board->port);
/* Local loopback. */
cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) | CCR2_LLOOP);
/* Enable jitter attenuator at the transmit side. */
cte_out (p, DS_LICR, cte_in (p, DS_LICR) | LICR_JA_TX);
return;
} else if (c->mode == M_G703) {
c->lx = LX_LOS | LX_HDB3;
ctg_outx (c, LX_CCR1, c->lx |= LX_LLOOP);
return;
} else if (c->mode == M_HDLC && ct_get_baud(c)) {
unsigned char rxs = inb (c->RXS) & ~CLK_MASK;
unsigned char txs = inb (c->TXS) & ~CLK_MASK;
int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
c->opt.md2.loop = MD2_LLOOP;
/* Disable TXCOUT before changing TXS */
/* to avoid two transmitters on the same line. */
/* Enable it after TXS is set. */
outb (BCR1(c->board->port), c->board->bcr1 & ~txcout);
outb (c->RXS, rxs | CLK_INT);
outb (c->TXS, txs | CLK_INT);
c->board->bcr1 |= txcout;
outb (BCR1(c->board->port), c->board->bcr1);
outb (c->MD2, *(unsigned char*)&c->opt.md2);
return;
}
}
/*
* Turn local loopback off
*/
static void ct_disable_loop (ct_chan_t *c)
{
if (c->mode == M_E1) {
unsigned short p = c->num ? E1CS1 (c->board->port) :
E1CS0 (c->board->port);
/* Local loopback. */
cte_out (p, DS_CCR2, cte_in (p, DS_CCR2) & ~CCR2_LLOOP);
/* Disable jitter attenuator at the transmit side. */
cte_out (p, DS_LICR, cte_in (p, DS_LICR) & ~LICR_JA_TX);
return;
} else if (c->mode == M_G703) {
c->lx = LX_LOS | LX_HDB3;
ctg_outx (c, LX_CCR1, c->lx);
return;
} else if (c->mode == M_HDLC && ct_get_baud(c)) {
unsigned char rxs = inb (c->RXS) & ~CLK_MASK;
unsigned char txs = inb (c->TXS) & ~CLK_MASK;
int txcout = c->num ? BCR1_TXCOUT1 : BCR1_TXCOUT0;
c->opt.md2.loop = MD2_FDX;
outb (BCR1(c->board->port), c->board->bcr1 & ~txcout);
outb (c->RXS, rxs | CLK_LINE);
if (ct_get_baud (c))
outb (c->TXS, txs | CLK_INT);
else
outb (c->TXS, txs | CLK_LINE);
c->board->bcr1 |= txcout;
outb (BCR1(c->board->port), c->board->bcr1);
outb (c->MD2, *(unsigned char*)&c->opt.md2);
return;
}
}
/*
* Turn local loopback on/off
*/
void ct_set_loop (ct_chan_t *c, int on)
{
if (on)
ct_enable_loop (c);
else
ct_disable_loop (c);
}
int ct_get_loop (ct_chan_t *c)
{
if (c->mode == M_E1) {
unsigned short p = c->num ? E1CS1 (c->board->port) :
E1CS0 (c->board->port);
return cte_in (p, DS_CCR2) & CCR2_LLOOP;
}
if (c->mode == M_G703)
return c->lx & LX_LLOOP;
/* M_HDLC */
return (c->opt.md2.loop & MD2_LLOOP) != 0;
}
void ct_set_phony (ct_chan_t *c, int on)
{
/* Valid only for TauPCI-E1. */
if (c->board->type != B_TAU_E1D &&
c->board->type != B_TAU2_E1D)
return;
c->gopt.phony = (on != 0);
if (c->gopt.phony) {
c->board->e1syn |= c->num ? E1SYN_ENS1 : E1SYN_ENS0;
/* No receive/transmit crc. */
c->hopt.md0.crc = 0;
} else {
c->board->e1syn &= ~(c->num ? E1SYN_ENS1 : E1SYN_ENS0);
/* Enable crc. */
c->hopt.md0.crc = 1;
}
outb (c->MD0, BYTE c->hopt.md0);
outb (E1SYN(c->board->port), c->board->e1syn);
}
void ct_start_receiver (ct_chan_t *c, int dma, unsigned long buf,
unsigned len, unsigned long desc, unsigned long lim)
{
int ier0 = inb (IER0(c->board->port));
int ier1 = inb (IER1(c->board->port));
int ier2 = inb (IER2(c->board->port));
int ie0 = inb (c->IE0);
int ie2 = inb (c->IE2);
if (dma) {
ier1 |= c->num ? (IER1_RX_DMERE_1 | IER1_RX_DME_1) :
(IER1_RX_DMERE_0 | IER1_RX_DME_0);
if (c->mode == M_ASYNC) {
ier0 |= c->num ? IER0_RX_INTE_1 : IER0_RX_INTE_0;
ie0 |= IE0_RX_INTE;
ie2 |= IE2_OVRNE | IE2_ASYNC_FRMEE | IE2_ASYNC_PEE;
}
} else {
ier0 |= c->num ? (IER0_RX_INTE_1 | IER0_RX_RDYE_1) :
(IER0_RX_INTE_0 | IER0_RX_RDYE_0);
ie0 |= IE0_RX_INTE | IE0_RX_RDYE;
}
/* Start timer. */
if (! dma) {
outb (c->RX.TEPR, TEPR_64); /* prescale to 16 kHz */
outw (c->RX.TCONR, 160); /* period is 10 msec */
outw (c->RX.TCNT, 0);
outb (c->RX.TCSR, TCSR_ENABLE | TCSR_INTR);
ier2 |= c->num ? IER2_RX_TME_1 : IER2_RX_TME_0;
}
/* Enable interrupts. */
outb (IER0(c->board->port), ier0);
outb (IER1(c->board->port), ier1);
outb (IER2(c->board->port), ier2);
outb (c->IE0, ie0);
outb (c->IE2, ie2);
/* RXRDY:=1 when the receive buffer has more than RRC chars */
outb (c->RRC, dma ? c->opt.dma_rrc : c->opt.pio_rrc);
/* Start receiver. */
if (dma) {
outb (c->RX.DCR, DCR_ABORT);
if (c->mode == M_ASYNC) {
/* Single-buffer DMA mode. */
outb (c->RX.DARB, (unsigned char) (buf >> 16));
outw (c->RX.DAR, (unsigned short) buf);
outw (c->RX.BCR, len);
outb (c->RX.DIR, DIR_EOTE);
} else {
/* Chained-buffer DMA mode. */
outb (c->RX.SARB, (unsigned char) (desc >> 16));
outw (c->RX.EDA, (unsigned short) lim);
outw (c->RX.CDA, (unsigned short) desc);
outw (c->RX.BFL, len);
outb (c->RX.DIR, DIR_CHAIN_EOME | DIR_CHAIN_BOFE |
DIR_CHAIN_COFE);
}
outb (c->RX.DSR, DSR_DMA_ENABLE);
}
outb (c->CMD, CMD_RX_ENABLE);
}
void ct_start_transmitter (ct_chan_t *c, int dma, unsigned long buf,
unsigned len, unsigned long desc, unsigned long lim)
{
int ier0 = inb (IER0(c->board->port));
int ier1 = inb (IER1(c->board->port));
int ie0 = inb (c->IE0);
int ie1 = inb (c->IE1);
/* Enable underrun interrupt in HDLC and raw modes. */
if (c->mode != M_ASYNC) {
ier0 |= c->num ? IER0_TX_INTE_1 : IER0_TX_INTE_0;
ie0 |= IE0_TX_INTE;
ie1 |= IE1_HDLC_UDRNE;
}
if (dma)
ier1 |= c->num ? (IER1_TX_DMERE_1 | IER1_TX_DME_1) :
(IER1_TX_DMERE_0 | IER1_TX_DME_0);
else {
ier0 |= c->num ? IER0_TX_RDYE_1 : IER0_TX_RDYE_0;
ie0 |= IE0_TX_RDYE;
}
/* Enable interrupts. */
outb (IER0(c->board->port), ier0);
outb (IER1(c->board->port), ier1);
outb (c->IE0, ie0);
outb (c->IE1, ie1);
/* TXRDY:=1 when the transmit buffer has TRC0 or less chars,
* TXRDY:=0 when the transmit buffer has more than TRC1 chars */
outb (c->TRC0, dma ? c->opt.dma_trc0 : c->opt.pio_trc0);
outb (c->TRC1, dma ? c->opt.dma_trc1 : c->opt.pio_trc1);
/* Start transmitter. */
if (dma) {
outb (c->TX.DCR, DCR_ABORT);
if (c->mode == M_ASYNC) {
/* Single-buffer DMA mode. */
outb (c->TX.SARB, (unsigned char) (buf >> 16));
outw (c->TX.SAR, (unsigned short) buf);
outw (c->TX.BCR, len);
outb (c->TX.DIR, DIR_EOTE);
} else {
/* Chained-buffer DMA mode. */
outb (c->TX.SARB, (unsigned char) (desc >> 16));
outw (c->TX.EDA, (unsigned short) lim);
outw (c->TX.CDA, (unsigned short) desc);
outb (c->TX.DIR, /* DIR_CHAIN_EOME | */ DIR_CHAIN_BOFE |
DIR_CHAIN_COFE);
}
/* Set DSR_DMA_ENABLE to begin! */
}
outb (c->CMD, CMD_TX_ENABLE);
/* Clear errors. */
if (c->board->type == B_TAU_G703) {
outb (GERR(c->board->port), 0xff);
outb (GLDR(c->board->port), 0xff);
}
}
/*
* Control DTR signal for the channel.
* Turn it on/off.
*/
void ct_set_dtr (ct_chan_t *c, int on)
{
if (on) {
c->dtr = 1;
c->board->bcr1 |= c->num ? BCR1_DTR1 : BCR1_DTR0;
} else {
c->dtr = 0;
c->board->bcr1 &= ~(c->num ? BCR1_DTR1 : BCR1_DTR0);
}
outb (BCR1(c->board->port), c->board->bcr1);
}
/*
* Control RTS signal for the channel.
* Turn it on/off.
*/
void ct_set_rts (ct_chan_t *c, int on)
{
c->rts = (on != 0);
if (c->rts)
outb (c->CTL, inb (c->CTL) & ~CTL_RTS_INV);
else
outb (c->CTL, inb (c->CTL) | CTL_RTS_INV);
}
/*
* Control BREAK state in asynchronous mode.
* Turn it on/off.
*/
void ct_set_brk (ct_chan_t *c, int on)
{
if (c->mode != M_ASYNC)
return;
if (on)
outb (c->CTL, inb (c->CTL) | CTL_BRK);
else
outb (c->CTL, inb (c->CTL) & ~CTL_BRK);
}
/*
* Get the state of DSR signal of the channel.
*/
int ct_get_dsr (ct_chan_t *c)
{
return (inb (BSR1(c->board->port)) &
(c->num ? BSR1_DSR1 : BSR1_DSR0)) != 0;
}
/*
* Get the G.703 line signal level.
*/
int ct_get_lq (ct_chan_t *c)
{
unsigned char q1, q2, q3;
static int lq_to_santibells [] = { 0, 95, 195, 285 };
int i;
if (! (c->type & T_G703))
return 0;
q1 = inb (GLQ (c->board->port));
/* Repeat reading the register to produce a 10-usec delay. */
for (i=0; i<20; ++i)
q2 = inb (GLQ (c->board->port));
for (i=0; i<20; ++i)
q3 = inb (GLQ (c->board->port));
if (c->num) {
q1 >>= GLQ_SHIFT;
q2 >>= GLQ_SHIFT;
q3 >>= GLQ_SHIFT;
}
q1 &= GLQ_MASK;
q2 &= GLQ_MASK;
q3 &= GLQ_MASK;
if (q1 <= q2 && q2 <= q3) return lq_to_santibells [q2];
if (q2 <= q3 && q3 <= q1) return lq_to_santibells [q3];
if (q3 <= q1 && q1 <= q2) return lq_to_santibells [q1];
if (q1 <= q3 && q3 <= q2) return lq_to_santibells [q3];
if (q3 <= q2 && q2 <= q1) return lq_to_santibells [q2];
/* if (q2 <= q1 && q1 <= q3) */ return lq_to_santibells [q1];
}
/*
* Get the state of CARRIER signal of the channel.
*/
int ct_get_cd (ct_chan_t *c)
{
return (inb (c->ST3) & ST3_DCD_INV) == 0;
}
/*
* Get the state of CTS signal of the channel.
*/
int ct_get_cts (ct_chan_t *c)
{
return (inb (c->ST3) & ST3_CTS_INV) == 0;
}
/*
* Turn LED on/off.
*/
void ct_led (ct_board_t *b, int on)
{
switch (b->type) {
case B_TAU_G703:
case B_TAU_G703C:
case B_TAU2_G703:
if (on) b->gmd2 |= GMD2_LED;
else b->gmd2 &= ~GMD2_LED;
outb (GMD2(b->port), b->gmd2);
break;
default:
if (on) b->e1cfg |= E1CFG_LED;
else b->e1cfg &= ~E1CFG_LED;
outb (E1CFG(b->port), b->e1cfg);
break;
}
}
void ct_disable_dma (ct_board_t *b)
{
/* Disable DMA channel. */
outb (DMA_MASK, (b->dma & 3) | DMA_MASK_CLEAR);
}
void ct_compute_clock (long hz, long baud, int *txbr, int *tmc)
{
if (baud < 100)
baud = 100;
*txbr = 0;
if (4*baud > 3*hz)
*tmc = 1;
else {
while (((hz / baud) >> ++*txbr) > 256)
continue;
*tmc = (((2 * hz / baud) >> *txbr) + 1) / 2;
}
}
/*
* Access to DS2153 chips on the Tau/E1 board.
* Examples:
* val = cte_in (E1CSi (base), DS_RCR1)
* cte_out (E1CSi (base), DS_CCR1, val)
* val = cte_ins (E1CSi (base), DS_SSR)
*/
unsigned char cte_in (port_t base, unsigned char reg)
{
outb (base, reg);
return inb (E1DAT (base & 0x3e0));
}
void cte_out (port_t base, unsigned char reg, unsigned char val)
{
outb (base, reg);
outb (E1DAT (base & 0x3e0), val);
}
/*
* Get the DS2153 status register, using write-read-write scheme.
*/
unsigned char cte_ins (port_t base, unsigned char reg,
unsigned char mask)
{
unsigned char val;
port_t rw = E1DAT (base & 0x3e0);
outb (base, reg); outb (rw, mask); /* lock bits */
outb (base, reg); val = inb (rw) & mask; /* get values */
outb (base, reg); outb (rw, val); /* unlock bits */
return val;
}
/*
* Access to 8530 chip on the Tau/E1 board.
* Examples:
* val = cte_in2 (base, AM_RSR | AM_A)
* cte_out2 (base, AM_IMR, val)
*/
unsigned char cte_in2 (port_t base, unsigned char reg)
{
outb (E1CS2(base), E1CS2_SCC | reg >> 4);
outb (E1DAT(base), reg & 15);
return inb (E1DAT(base));
}
void cte_out2 (port_t base, unsigned char reg, unsigned char val)
{
outb (E1CS2(base), E1CS2_SCC | reg >> 4);
outb (E1DAT(base), reg & 15);
outb (E1DAT(base), val);
}
/*
* Read the data from the 8530 receive fifo.
*/
unsigned char cte_in2d (ct_chan_t *c)
{
outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC |
(c->num ? 0 : E1CS2_AB));
return inb (E1DAT(c->board->port));
}
/*
* Send the 8530 command.
*/
void cte_out2c (ct_chan_t *c, unsigned char val)
{
outb (E1CS2(c->board->port), E1CS2_SCC | (c->num ? 0 : E1CS2_AB));
outb (E1DAT(c->board->port), val);
}
/*
* Write the data to the 8530 transmit fifo.
*/
void cte_out2d (ct_chan_t *c, unsigned char val)
{
outb (E1CS2(c->board->port), E1CS2_SCC | E1CS2_DC |
(c->num ? 0 : E1CS2_AB));
outb (E1DAT(c->board->port), val);
}
/*
* Access to LXT318 chip on the Tau/G.703 board.
* Examples:
* val = ctg_inx (c)
* ctg_outx (c, val)
*/
static void ctg_output (port_t port, unsigned char val, unsigned char v0)
{
int i;
for (i=0; i<8; ++i) {
unsigned char v = v0;
if ((val >> i) & 1)
v |= GMD0_SDI;
outb (port, v);
outb (port, v);
outb (port, v);
outb (port, v);
outb (port, v | GMD0_SCLK);
outb (port, v | GMD0_SCLK);
outb (port, v | GMD0_SCLK);
outb (port, v | GMD0_SCLK);
}
outb (port, v0);
}
void ctg_outx (ct_chan_t *c, unsigned char reg, unsigned char val)
{
port_t port = GMD0(c->board->port);
outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
outb (GMD1(c->board->port), c->board->gmd1 |
(c->num ? GMD1_NCS0 : GMD1_NCS1));
ctg_output (port, (reg << 1) | LX_WRITE, c->board->gmd0);
ctg_output (port, val, c->board->gmd0);
outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
}
unsigned char ctg_inx (ct_chan_t *c, unsigned char reg)
{
port_t port = GMD0(c->board->port);
port_t data = GLDR(c->board->port);
unsigned char val = 0, mask = c->num ? GLDR_C1 : GLDR_C0;
int i;
outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
outb (GMD1(c->board->port), c->board->gmd1 |
(c->num ? GMD1_NCS0 : GMD1_NCS1));
ctg_output (port, (reg << 1) | LX_READ, c->board->gmd0);
for (i=0; i<8; ++i) {
outb (port, c->board->gmd0 | GMD0_SCLK);
if (inb (data) & mask)
val |= 1 << i;
outb (port, c->board->gmd0);
}
outb (GMD1(c->board->port), c->board->gmd1 | GMD1_NCS0 | GMD1_NCS1);
return val;
}
/*
* Adapter options
*/
ct_board_opt_t ct_board_opt_dflt = {
0, /* board control register 2 */
{ /* DMA priority control register */
PCR_PRIO_ROTATE,
0, /* all channels share the bus hold */
0, /* hold the bus until all transfers done */
},
CFG_A, /* E1/G.703 config: two independent channels */
GCLK_INT, /* E1/G.703 chan 0 internal tx clock source */
GCLK_INT, /* E1/G.703 chan 1 internal tx clock source */
~0UL << 1, /* E1 channel 0 timeslots 1..31 */
~0UL << 1, /* E1 channel 1 timeslots 1..31 */
0, /* no E1 subchannel timeslots */
};
/*
* Mode-independent channel options
*/
ct_chan_opt_t ct_chan_opt_dflt = {
{ /* mode register 2 */
MD2_FDX, /* full duplex communication */
0, /* empty ADPLL clock rate */
MD2_ENCOD_NRZ, /* NRZ encoding */
},
/* DMA mode FIFO marks */
15, 24, 30, /* rx ready, tx empty, tx full */
/* port i/o mode FIFO marks */
15, 16, 30, /* rx ready, tx empty, tx full */
};
/*
* Default HDLC options
*/
ct_opt_hdlc_t ct_opt_hdlc_dflt = {
{ /* mode register 0 */
1, /* CRC preset to all ones (V.41) */
1, /* CRC-CCITT */
1, /* enable CRC */
0, /* disable automatic CTS/DCD */
MD0_MODE_HDLC, /* HDLC mode */
},
{ /* mode register 1 */
MD1_ADDR_NOCHK, /* do not check address field */
},
CTL_IDLE_PTRN | CTL_UDRN_ABORT | CTL_RTS_INV, /* control register */
0, 0, /* empty sync/address registers 0,1 */
CLK_LINE, /* receive clock source: RXC line input */
CLK_LINE, /* transmit clock source: TXC line input */
};
/*
* Default E1/G.703 options
*/
ct_opt_g703_t ct_opt_g703_dflt = {
1, /* HDB3 enable */
0, /* precoder disable */
GTEST_DIS, /* test disabled, normal operation */
0, /* CRC4 disable */
0, /* CCS signaling */
0, /* low gain */
0, /* no raw mode */
0, /* no PCM2 precoder compatibility */
2048, /* data rate 2048 kbit/sec */
};