1f3366270d
filesystem softdep_process_worklist() is called in a loop until it indicates that no dependancies remain, but the determination of that fact depends on there only being one softdep_process_worklist() instance running. It was possible for the syncer to also be running softdep_process_worklist() and the pre-existing checks in the code to prevent this were not sufficient to prevent the race. This patch solves the problem. Approved-by: mckusick |
||
---|---|---|
.. | ||
ffs_alloc.c | ||
ffs_balloc.c | ||
ffs_extern.h | ||
ffs_inode.c | ||
ffs_snapshot.c | ||
ffs_softdep_stub.c | ||
ffs_softdep.c | ||
ffs_subr.c | ||
ffs_tables.c | ||
ffs_vfsops.c | ||
ffs_vnops.c | ||
fs.h | ||
README.snapshot | ||
README.softupdates | ||
softdep.h |
$FreeBSD$ Using Soft Updates To enable the soft updates feature in your kernel, add option SOFTUPDATES to your kernel configuration. Once you are running a kernel with soft update support, you need to enable it for whichever filesystems you wish to run with the soft update policy. This is done with the -n option to tunefs(8) on the UNMOUNTED filesystems, e.g. from single-user mode you'd do something like: tunefs -n enable /usr To permanently enable soft updates on the /usr filesystem (or at least until a corresponding ``tunefs -n disable'' is done). Soft Updates Copyright Restrictions As of June 2000 the restrictive copyright has been removed and replaced with a `Berkeley-style' copyright. The files implementing soft updates now reside in the sys/ufs/ffs directory and are compiled into the generic kernel by default. Soft Updates Status The soft updates code has been running in production on many systems for the past two years generally quite successfully. The two current sets of shortcomings are: 1) On filesystems that are chronically full, the two minute lag from the time a file is deleted until its free space shows up will result in premature filesystem full failures. This failure mode is most evident in small filesystems such as the root. For this reason, use of soft updates is not recommended on the root filesystem. 2) If your system routines runs parallel processes each of which remove many files, the kernel memory rate limiting code may not be able to slow removal operations to a level sustainable by the disk subsystem. The result is that the kernel runs out of memory and hangs. Both of these problems are being addressed, but have not yet been resolved. There are no other known problems at this time. How Soft Updates Work For more general information on soft updates, please see: http://www.mckusick.com/softdep/ http://www.ece.cmu.edu/~ganger/papers/CSE-TR-254-95/ -- Marshall Kirk McKusick <mckusick@mckusick.com> July 2000