16452223a2
PR: kern/168211 Submitted by: linimon Reviewed by: alc Approved by: cperciva MFC after: 3 days
3391 lines
83 KiB
C
3391 lines
83 KiB
C
/*-
|
|
* Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
|
|
* Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
|
|
* Copyright (c) 2004-2006 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* uma_core.c Implementation of the Universal Memory allocator
|
|
*
|
|
* This allocator is intended to replace the multitude of similar object caches
|
|
* in the standard FreeBSD kernel. The intent is to be flexible as well as
|
|
* effecient. A primary design goal is to return unused memory to the rest of
|
|
* the system. This will make the system as a whole more flexible due to the
|
|
* ability to move memory to subsystems which most need it instead of leaving
|
|
* pools of reserved memory unused.
|
|
*
|
|
* The basic ideas stem from similar slab/zone based allocators whose algorithms
|
|
* are well known.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
* - Improve memory usage for large allocations
|
|
* - Investigate cache size adjustments
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/* I should really use ktr.. */
|
|
/*
|
|
#define UMA_DEBUG 1
|
|
#define UMA_DEBUG_ALLOC 1
|
|
#define UMA_DEBUG_ALLOC_1 1
|
|
*/
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_param.h"
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/types.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/uma_int.h>
|
|
#include <vm/uma_dbg.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#ifdef DEBUG_MEMGUARD
|
|
#include <vm/memguard.h>
|
|
#endif
|
|
|
|
/*
|
|
* This is the zone and keg from which all zones are spawned. The idea is that
|
|
* even the zone & keg heads are allocated from the allocator, so we use the
|
|
* bss section to bootstrap us.
|
|
*/
|
|
static struct uma_keg masterkeg;
|
|
static struct uma_zone masterzone_k;
|
|
static struct uma_zone masterzone_z;
|
|
static uma_zone_t kegs = &masterzone_k;
|
|
static uma_zone_t zones = &masterzone_z;
|
|
|
|
/* This is the zone from which all of uma_slab_t's are allocated. */
|
|
static uma_zone_t slabzone;
|
|
static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */
|
|
|
|
/*
|
|
* The initial hash tables come out of this zone so they can be allocated
|
|
* prior to malloc coming up.
|
|
*/
|
|
static uma_zone_t hashzone;
|
|
|
|
/* The boot-time adjusted value for cache line alignment. */
|
|
int uma_align_cache = 64 - 1;
|
|
|
|
static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
|
|
|
|
/*
|
|
* Are we allowed to allocate buckets?
|
|
*/
|
|
static int bucketdisable = 1;
|
|
|
|
/* Linked list of all kegs in the system */
|
|
static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
|
|
|
|
/* This mutex protects the keg list */
|
|
static struct mtx uma_mtx;
|
|
|
|
/* Linked list of boot time pages */
|
|
static LIST_HEAD(,uma_slab) uma_boot_pages =
|
|
LIST_HEAD_INITIALIZER(uma_boot_pages);
|
|
|
|
/* This mutex protects the boot time pages list */
|
|
static struct mtx uma_boot_pages_mtx;
|
|
|
|
/* Is the VM done starting up? */
|
|
static int booted = 0;
|
|
#define UMA_STARTUP 1
|
|
#define UMA_STARTUP2 2
|
|
|
|
/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
|
|
static u_int uma_max_ipers;
|
|
static u_int uma_max_ipers_ref;
|
|
|
|
/*
|
|
* This is the handle used to schedule events that need to happen
|
|
* outside of the allocation fast path.
|
|
*/
|
|
static struct callout uma_callout;
|
|
#define UMA_TIMEOUT 20 /* Seconds for callout interval. */
|
|
|
|
/*
|
|
* This structure is passed as the zone ctor arg so that I don't have to create
|
|
* a special allocation function just for zones.
|
|
*/
|
|
struct uma_zctor_args {
|
|
char *name;
|
|
size_t size;
|
|
uma_ctor ctor;
|
|
uma_dtor dtor;
|
|
uma_init uminit;
|
|
uma_fini fini;
|
|
uma_keg_t keg;
|
|
int align;
|
|
u_int32_t flags;
|
|
};
|
|
|
|
struct uma_kctor_args {
|
|
uma_zone_t zone;
|
|
size_t size;
|
|
uma_init uminit;
|
|
uma_fini fini;
|
|
int align;
|
|
u_int32_t flags;
|
|
};
|
|
|
|
struct uma_bucket_zone {
|
|
uma_zone_t ubz_zone;
|
|
char *ubz_name;
|
|
int ubz_entries;
|
|
};
|
|
|
|
#define BUCKET_MAX 128
|
|
|
|
struct uma_bucket_zone bucket_zones[] = {
|
|
{ NULL, "16 Bucket", 16 },
|
|
{ NULL, "32 Bucket", 32 },
|
|
{ NULL, "64 Bucket", 64 },
|
|
{ NULL, "128 Bucket", 128 },
|
|
{ NULL, NULL, 0}
|
|
};
|
|
|
|
#define BUCKET_SHIFT 4
|
|
#define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1)
|
|
|
|
/*
|
|
* bucket_size[] maps requested bucket sizes to zones that allocate a bucket
|
|
* of approximately the right size.
|
|
*/
|
|
static uint8_t bucket_size[BUCKET_ZONES];
|
|
|
|
/*
|
|
* Flags and enumerations to be passed to internal functions.
|
|
*/
|
|
enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
|
|
|
|
#define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */
|
|
#define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */
|
|
|
|
/* Prototypes.. */
|
|
|
|
static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
|
|
static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
|
|
static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
|
|
static void page_free(void *, int, u_int8_t);
|
|
static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
|
|
static void cache_drain(uma_zone_t);
|
|
static void bucket_drain(uma_zone_t, uma_bucket_t);
|
|
static void bucket_cache_drain(uma_zone_t zone);
|
|
static int keg_ctor(void *, int, void *, int);
|
|
static void keg_dtor(void *, int, void *);
|
|
static int zone_ctor(void *, int, void *, int);
|
|
static void zone_dtor(void *, int, void *);
|
|
static int zero_init(void *, int, int);
|
|
static void keg_small_init(uma_keg_t keg);
|
|
static void keg_large_init(uma_keg_t keg);
|
|
static void zone_foreach(void (*zfunc)(uma_zone_t));
|
|
static void zone_timeout(uma_zone_t zone);
|
|
static int hash_alloc(struct uma_hash *);
|
|
static int hash_expand(struct uma_hash *, struct uma_hash *);
|
|
static void hash_free(struct uma_hash *hash);
|
|
static void uma_timeout(void *);
|
|
static void uma_startup3(void);
|
|
static void *zone_alloc_item(uma_zone_t, void *, int);
|
|
static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip,
|
|
int);
|
|
static void bucket_enable(void);
|
|
static void bucket_init(void);
|
|
static uma_bucket_t bucket_alloc(int, int);
|
|
static void bucket_free(uma_bucket_t);
|
|
static void bucket_zone_drain(void);
|
|
static int zone_alloc_bucket(uma_zone_t zone, int flags);
|
|
static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
|
|
static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
|
|
static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab);
|
|
static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
|
|
uma_fini fini, int align, u_int32_t flags);
|
|
static inline void zone_relock(uma_zone_t zone, uma_keg_t keg);
|
|
static inline void keg_relock(uma_keg_t keg, uma_zone_t zone);
|
|
|
|
void uma_print_zone(uma_zone_t);
|
|
void uma_print_stats(void);
|
|
static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
|
|
static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
|
|
|
|
SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
|
|
|
|
SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
|
|
0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
|
|
|
|
SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
|
|
0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
|
|
|
|
/*
|
|
* This routine checks to see whether or not it's safe to enable buckets.
|
|
*/
|
|
|
|
static void
|
|
bucket_enable(void)
|
|
{
|
|
bucketdisable = vm_page_count_min();
|
|
}
|
|
|
|
/*
|
|
* Initialize bucket_zones, the array of zones of buckets of various sizes.
|
|
*
|
|
* For each zone, calculate the memory required for each bucket, consisting
|
|
* of the header and an array of pointers. Initialize bucket_size[] to point
|
|
* the range of appropriate bucket sizes at the zone.
|
|
*/
|
|
static void
|
|
bucket_init(void)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
int i;
|
|
int j;
|
|
|
|
for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
|
|
int size;
|
|
|
|
ubz = &bucket_zones[j];
|
|
size = roundup(sizeof(struct uma_bucket), sizeof(void *));
|
|
size += sizeof(void *) * ubz->ubz_entries;
|
|
ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
|
|
UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET);
|
|
for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
|
|
bucket_size[i >> BUCKET_SHIFT] = j;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given a desired number of entries for a bucket, return the zone from which
|
|
* to allocate the bucket.
|
|
*/
|
|
static struct uma_bucket_zone *
|
|
bucket_zone_lookup(int entries)
|
|
{
|
|
int idx;
|
|
|
|
idx = howmany(entries, 1 << BUCKET_SHIFT);
|
|
return (&bucket_zones[bucket_size[idx]]);
|
|
}
|
|
|
|
static uma_bucket_t
|
|
bucket_alloc(int entries, int bflags)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
uma_bucket_t bucket;
|
|
|
|
/*
|
|
* This is to stop us from allocating per cpu buckets while we're
|
|
* running out of vm.boot_pages. Otherwise, we would exhaust the
|
|
* boot pages. This also prevents us from allocating buckets in
|
|
* low memory situations.
|
|
*/
|
|
if (bucketdisable)
|
|
return (NULL);
|
|
|
|
ubz = bucket_zone_lookup(entries);
|
|
bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags);
|
|
if (bucket) {
|
|
#ifdef INVARIANTS
|
|
bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
|
|
#endif
|
|
bucket->ub_cnt = 0;
|
|
bucket->ub_entries = ubz->ubz_entries;
|
|
}
|
|
|
|
return (bucket);
|
|
}
|
|
|
|
static void
|
|
bucket_free(uma_bucket_t bucket)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
|
|
ubz = bucket_zone_lookup(bucket->ub_entries);
|
|
zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
|
|
ZFREE_STATFREE);
|
|
}
|
|
|
|
static void
|
|
bucket_zone_drain(void)
|
|
{
|
|
struct uma_bucket_zone *ubz;
|
|
|
|
for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
|
|
zone_drain(ubz->ubz_zone);
|
|
}
|
|
|
|
static inline uma_keg_t
|
|
zone_first_keg(uma_zone_t zone)
|
|
{
|
|
|
|
return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
|
|
}
|
|
|
|
static void
|
|
zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
|
|
{
|
|
uma_klink_t klink;
|
|
|
|
LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
|
|
kegfn(klink->kl_keg);
|
|
}
|
|
|
|
/*
|
|
* Routine called by timeout which is used to fire off some time interval
|
|
* based calculations. (stats, hash size, etc.)
|
|
*
|
|
* Arguments:
|
|
* arg Unused
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
uma_timeout(void *unused)
|
|
{
|
|
bucket_enable();
|
|
zone_foreach(zone_timeout);
|
|
|
|
/* Reschedule this event */
|
|
callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
|
|
}
|
|
|
|
/*
|
|
* Routine to perform timeout driven calculations. This expands the
|
|
* hashes and does per cpu statistics aggregation.
|
|
*
|
|
* Returns nothing.
|
|
*/
|
|
static void
|
|
keg_timeout(uma_keg_t keg)
|
|
{
|
|
|
|
KEG_LOCK(keg);
|
|
/*
|
|
* Expand the keg hash table.
|
|
*
|
|
* This is done if the number of slabs is larger than the hash size.
|
|
* What I'm trying to do here is completely reduce collisions. This
|
|
* may be a little aggressive. Should I allow for two collisions max?
|
|
*/
|
|
if (keg->uk_flags & UMA_ZONE_HASH &&
|
|
keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
|
|
struct uma_hash newhash;
|
|
struct uma_hash oldhash;
|
|
int ret;
|
|
|
|
/*
|
|
* This is so involved because allocating and freeing
|
|
* while the keg lock is held will lead to deadlock.
|
|
* I have to do everything in stages and check for
|
|
* races.
|
|
*/
|
|
newhash = keg->uk_hash;
|
|
KEG_UNLOCK(keg);
|
|
ret = hash_alloc(&newhash);
|
|
KEG_LOCK(keg);
|
|
if (ret) {
|
|
if (hash_expand(&keg->uk_hash, &newhash)) {
|
|
oldhash = keg->uk_hash;
|
|
keg->uk_hash = newhash;
|
|
} else
|
|
oldhash = newhash;
|
|
|
|
KEG_UNLOCK(keg);
|
|
hash_free(&oldhash);
|
|
KEG_LOCK(keg);
|
|
}
|
|
}
|
|
KEG_UNLOCK(keg);
|
|
}
|
|
|
|
static void
|
|
zone_timeout(uma_zone_t zone)
|
|
{
|
|
|
|
zone_foreach_keg(zone, &keg_timeout);
|
|
}
|
|
|
|
/*
|
|
* Allocate and zero fill the next sized hash table from the appropriate
|
|
* backing store.
|
|
*
|
|
* Arguments:
|
|
* hash A new hash structure with the old hash size in uh_hashsize
|
|
*
|
|
* Returns:
|
|
* 1 on sucess and 0 on failure.
|
|
*/
|
|
static int
|
|
hash_alloc(struct uma_hash *hash)
|
|
{
|
|
int oldsize;
|
|
int alloc;
|
|
|
|
oldsize = hash->uh_hashsize;
|
|
|
|
/* We're just going to go to a power of two greater */
|
|
if (oldsize) {
|
|
hash->uh_hashsize = oldsize * 2;
|
|
alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
|
|
hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
|
|
M_UMAHASH, M_NOWAIT);
|
|
} else {
|
|
alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
|
|
hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
|
|
M_WAITOK);
|
|
hash->uh_hashsize = UMA_HASH_SIZE_INIT;
|
|
}
|
|
if (hash->uh_slab_hash) {
|
|
bzero(hash->uh_slab_hash, alloc);
|
|
hash->uh_hashmask = hash->uh_hashsize - 1;
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Expands the hash table for HASH zones. This is done from zone_timeout
|
|
* to reduce collisions. This must not be done in the regular allocation
|
|
* path, otherwise, we can recurse on the vm while allocating pages.
|
|
*
|
|
* Arguments:
|
|
* oldhash The hash you want to expand
|
|
* newhash The hash structure for the new table
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*
|
|
* Discussion:
|
|
*/
|
|
static int
|
|
hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
|
|
{
|
|
uma_slab_t slab;
|
|
int hval;
|
|
int i;
|
|
|
|
if (!newhash->uh_slab_hash)
|
|
return (0);
|
|
|
|
if (oldhash->uh_hashsize >= newhash->uh_hashsize)
|
|
return (0);
|
|
|
|
/*
|
|
* I need to investigate hash algorithms for resizing without a
|
|
* full rehash.
|
|
*/
|
|
|
|
for (i = 0; i < oldhash->uh_hashsize; i++)
|
|
while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
|
|
slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
|
|
SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
|
|
hval = UMA_HASH(newhash, slab->us_data);
|
|
SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
|
|
slab, us_hlink);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Free the hash bucket to the appropriate backing store.
|
|
*
|
|
* Arguments:
|
|
* slab_hash The hash bucket we're freeing
|
|
* hashsize The number of entries in that hash bucket
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
hash_free(struct uma_hash *hash)
|
|
{
|
|
if (hash->uh_slab_hash == NULL)
|
|
return;
|
|
if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
|
|
zone_free_item(hashzone,
|
|
hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
|
|
else
|
|
free(hash->uh_slab_hash, M_UMAHASH);
|
|
}
|
|
|
|
/*
|
|
* Frees all outstanding items in a bucket
|
|
*
|
|
* Arguments:
|
|
* zone The zone to free to, must be unlocked.
|
|
* bucket The free/alloc bucket with items, cpu queue must be locked.
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
|
|
static void
|
|
bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
|
|
{
|
|
void *item;
|
|
|
|
if (bucket == NULL)
|
|
return;
|
|
|
|
while (bucket->ub_cnt > 0) {
|
|
bucket->ub_cnt--;
|
|
item = bucket->ub_bucket[bucket->ub_cnt];
|
|
#ifdef INVARIANTS
|
|
bucket->ub_bucket[bucket->ub_cnt] = NULL;
|
|
KASSERT(item != NULL,
|
|
("bucket_drain: botched ptr, item is NULL"));
|
|
#endif
|
|
zone_free_item(zone, item, NULL, SKIP_DTOR, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drains the per cpu caches for a zone.
|
|
*
|
|
* NOTE: This may only be called while the zone is being turn down, and not
|
|
* during normal operation. This is necessary in order that we do not have
|
|
* to migrate CPUs to drain the per-CPU caches.
|
|
*
|
|
* Arguments:
|
|
* zone The zone to drain, must be unlocked.
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
cache_drain(uma_zone_t zone)
|
|
{
|
|
uma_cache_t cache;
|
|
int cpu;
|
|
|
|
/*
|
|
* XXX: It is safe to not lock the per-CPU caches, because we're
|
|
* tearing down the zone anyway. I.e., there will be no further use
|
|
* of the caches at this point.
|
|
*
|
|
* XXX: It would good to be able to assert that the zone is being
|
|
* torn down to prevent improper use of cache_drain().
|
|
*
|
|
* XXX: We lock the zone before passing into bucket_cache_drain() as
|
|
* it is used elsewhere. Should the tear-down path be made special
|
|
* there in some form?
|
|
*/
|
|
CPU_FOREACH(cpu) {
|
|
cache = &zone->uz_cpu[cpu];
|
|
bucket_drain(zone, cache->uc_allocbucket);
|
|
bucket_drain(zone, cache->uc_freebucket);
|
|
if (cache->uc_allocbucket != NULL)
|
|
bucket_free(cache->uc_allocbucket);
|
|
if (cache->uc_freebucket != NULL)
|
|
bucket_free(cache->uc_freebucket);
|
|
cache->uc_allocbucket = cache->uc_freebucket = NULL;
|
|
}
|
|
ZONE_LOCK(zone);
|
|
bucket_cache_drain(zone);
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/*
|
|
* Drain the cached buckets from a zone. Expects a locked zone on entry.
|
|
*/
|
|
static void
|
|
bucket_cache_drain(uma_zone_t zone)
|
|
{
|
|
uma_bucket_t bucket;
|
|
|
|
/*
|
|
* Drain the bucket queues and free the buckets, we just keep two per
|
|
* cpu (alloc/free).
|
|
*/
|
|
while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
|
|
LIST_REMOVE(bucket, ub_link);
|
|
ZONE_UNLOCK(zone);
|
|
bucket_drain(zone, bucket);
|
|
bucket_free(bucket);
|
|
ZONE_LOCK(zone);
|
|
}
|
|
|
|
/* Now we do the free queue.. */
|
|
while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
|
|
LIST_REMOVE(bucket, ub_link);
|
|
bucket_free(bucket);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Frees pages from a keg back to the system. This is done on demand from
|
|
* the pageout daemon.
|
|
*
|
|
* Returns nothing.
|
|
*/
|
|
static void
|
|
keg_drain(uma_keg_t keg)
|
|
{
|
|
struct slabhead freeslabs = { 0 };
|
|
uma_slab_t slab;
|
|
uma_slab_t n;
|
|
u_int8_t flags;
|
|
u_int8_t *mem;
|
|
int i;
|
|
|
|
/*
|
|
* We don't want to take pages from statically allocated kegs at this
|
|
* time
|
|
*/
|
|
if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
|
|
return;
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
|
|
#endif
|
|
KEG_LOCK(keg);
|
|
if (keg->uk_free == 0)
|
|
goto finished;
|
|
|
|
slab = LIST_FIRST(&keg->uk_free_slab);
|
|
while (slab) {
|
|
n = LIST_NEXT(slab, us_link);
|
|
|
|
/* We have no where to free these to */
|
|
if (slab->us_flags & UMA_SLAB_BOOT) {
|
|
slab = n;
|
|
continue;
|
|
}
|
|
|
|
LIST_REMOVE(slab, us_link);
|
|
keg->uk_pages -= keg->uk_ppera;
|
|
keg->uk_free -= keg->uk_ipers;
|
|
|
|
if (keg->uk_flags & UMA_ZONE_HASH)
|
|
UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
|
|
|
|
SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
|
|
|
|
slab = n;
|
|
}
|
|
finished:
|
|
KEG_UNLOCK(keg);
|
|
|
|
while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
|
|
SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
|
|
if (keg->uk_fini)
|
|
for (i = 0; i < keg->uk_ipers; i++)
|
|
keg->uk_fini(
|
|
slab->us_data + (keg->uk_rsize * i),
|
|
keg->uk_size);
|
|
flags = slab->us_flags;
|
|
mem = slab->us_data;
|
|
|
|
if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
|
|
vm_object_t obj;
|
|
|
|
if (flags & UMA_SLAB_KMEM)
|
|
obj = kmem_object;
|
|
else if (flags & UMA_SLAB_KERNEL)
|
|
obj = kernel_object;
|
|
else
|
|
obj = NULL;
|
|
for (i = 0; i < keg->uk_ppera; i++)
|
|
vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
|
|
obj);
|
|
}
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE)
|
|
zone_free_item(keg->uk_slabzone, slab, NULL,
|
|
SKIP_NONE, ZFREE_STATFREE);
|
|
#ifdef UMA_DEBUG
|
|
printf("%s: Returning %d bytes.\n",
|
|
keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera);
|
|
#endif
|
|
keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
|
|
}
|
|
}
|
|
|
|
static void
|
|
zone_drain_wait(uma_zone_t zone, int waitok)
|
|
{
|
|
|
|
/*
|
|
* Set draining to interlock with zone_dtor() so we can release our
|
|
* locks as we go. Only dtor() should do a WAITOK call since it
|
|
* is the only call that knows the structure will still be available
|
|
* when it wakes up.
|
|
*/
|
|
ZONE_LOCK(zone);
|
|
while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
|
|
if (waitok == M_NOWAIT)
|
|
goto out;
|
|
mtx_unlock(&uma_mtx);
|
|
msleep(zone, zone->uz_lock, PVM, "zonedrain", 1);
|
|
mtx_lock(&uma_mtx);
|
|
}
|
|
zone->uz_flags |= UMA_ZFLAG_DRAINING;
|
|
bucket_cache_drain(zone);
|
|
ZONE_UNLOCK(zone);
|
|
/*
|
|
* The DRAINING flag protects us from being freed while
|
|
* we're running. Normally the uma_mtx would protect us but we
|
|
* must be able to release and acquire the right lock for each keg.
|
|
*/
|
|
zone_foreach_keg(zone, &keg_drain);
|
|
ZONE_LOCK(zone);
|
|
zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
|
|
wakeup(zone);
|
|
out:
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
void
|
|
zone_drain(uma_zone_t zone)
|
|
{
|
|
|
|
zone_drain_wait(zone, M_NOWAIT);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new slab for a keg. This does not insert the slab onto a list.
|
|
*
|
|
* Arguments:
|
|
* wait Shall we wait?
|
|
*
|
|
* Returns:
|
|
* The slab that was allocated or NULL if there is no memory and the
|
|
* caller specified M_NOWAIT.
|
|
*/
|
|
static uma_slab_t
|
|
keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
|
|
{
|
|
uma_slabrefcnt_t slabref;
|
|
uma_alloc allocf;
|
|
uma_slab_t slab;
|
|
u_int8_t *mem;
|
|
u_int8_t flags;
|
|
int i;
|
|
|
|
mtx_assert(&keg->uk_lock, MA_OWNED);
|
|
slab = NULL;
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name);
|
|
#endif
|
|
allocf = keg->uk_allocf;
|
|
KEG_UNLOCK(keg);
|
|
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
|
|
slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
|
|
if (slab == NULL) {
|
|
KEG_LOCK(keg);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This reproduces the old vm_zone behavior of zero filling pages the
|
|
* first time they are added to a zone.
|
|
*
|
|
* Malloced items are zeroed in uma_zalloc.
|
|
*/
|
|
|
|
if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
|
|
wait |= M_ZERO;
|
|
else
|
|
wait &= ~M_ZERO;
|
|
|
|
if (keg->uk_flags & UMA_ZONE_NODUMP)
|
|
wait |= M_NODUMP;
|
|
|
|
/* zone is passed for legacy reasons. */
|
|
mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait);
|
|
if (mem == NULL) {
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE)
|
|
zone_free_item(keg->uk_slabzone, slab, NULL,
|
|
SKIP_NONE, ZFREE_STATFREE);
|
|
KEG_LOCK(keg);
|
|
return (NULL);
|
|
}
|
|
|
|
/* Point the slab into the allocated memory */
|
|
if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
|
|
slab = (uma_slab_t )(mem + keg->uk_pgoff);
|
|
|
|
if (keg->uk_flags & UMA_ZONE_VTOSLAB)
|
|
for (i = 0; i < keg->uk_ppera; i++)
|
|
vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
|
|
|
|
slab->us_keg = keg;
|
|
slab->us_data = mem;
|
|
slab->us_freecount = keg->uk_ipers;
|
|
slab->us_firstfree = 0;
|
|
slab->us_flags = flags;
|
|
|
|
if (keg->uk_flags & UMA_ZONE_REFCNT) {
|
|
slabref = (uma_slabrefcnt_t)slab;
|
|
for (i = 0; i < keg->uk_ipers; i++) {
|
|
slabref->us_freelist[i].us_refcnt = 0;
|
|
slabref->us_freelist[i].us_item = i+1;
|
|
}
|
|
} else {
|
|
for (i = 0; i < keg->uk_ipers; i++)
|
|
slab->us_freelist[i].us_item = i+1;
|
|
}
|
|
|
|
if (keg->uk_init != NULL) {
|
|
for (i = 0; i < keg->uk_ipers; i++)
|
|
if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
|
|
keg->uk_size, wait) != 0)
|
|
break;
|
|
if (i != keg->uk_ipers) {
|
|
if (keg->uk_fini != NULL) {
|
|
for (i--; i > -1; i--)
|
|
keg->uk_fini(slab->us_data +
|
|
(keg->uk_rsize * i),
|
|
keg->uk_size);
|
|
}
|
|
if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
|
|
vm_object_t obj;
|
|
|
|
if (flags & UMA_SLAB_KMEM)
|
|
obj = kmem_object;
|
|
else if (flags & UMA_SLAB_KERNEL)
|
|
obj = kernel_object;
|
|
else
|
|
obj = NULL;
|
|
for (i = 0; i < keg->uk_ppera; i++)
|
|
vsetobj((vm_offset_t)mem +
|
|
(i * PAGE_SIZE), obj);
|
|
}
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE)
|
|
zone_free_item(keg->uk_slabzone, slab,
|
|
NULL, SKIP_NONE, ZFREE_STATFREE);
|
|
keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
|
|
flags);
|
|
KEG_LOCK(keg);
|
|
return (NULL);
|
|
}
|
|
}
|
|
KEG_LOCK(keg);
|
|
|
|
if (keg->uk_flags & UMA_ZONE_HASH)
|
|
UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
|
|
|
|
keg->uk_pages += keg->uk_ppera;
|
|
keg->uk_free += keg->uk_ipers;
|
|
|
|
return (slab);
|
|
}
|
|
|
|
/*
|
|
* This function is intended to be used early on in place of page_alloc() so
|
|
* that we may use the boot time page cache to satisfy allocations before
|
|
* the VM is ready.
|
|
*/
|
|
static void *
|
|
startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
|
|
{
|
|
uma_keg_t keg;
|
|
uma_slab_t tmps;
|
|
int pages, check_pages;
|
|
|
|
keg = zone_first_keg(zone);
|
|
pages = howmany(bytes, PAGE_SIZE);
|
|
check_pages = pages - 1;
|
|
KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
|
|
|
|
/*
|
|
* Check our small startup cache to see if it has pages remaining.
|
|
*/
|
|
mtx_lock(&uma_boot_pages_mtx);
|
|
|
|
/* First check if we have enough room. */
|
|
tmps = LIST_FIRST(&uma_boot_pages);
|
|
while (tmps != NULL && check_pages-- > 0)
|
|
tmps = LIST_NEXT(tmps, us_link);
|
|
if (tmps != NULL) {
|
|
/*
|
|
* It's ok to lose tmps references. The last one will
|
|
* have tmps->us_data pointing to the start address of
|
|
* "pages" contiguous pages of memory.
|
|
*/
|
|
while (pages-- > 0) {
|
|
tmps = LIST_FIRST(&uma_boot_pages);
|
|
LIST_REMOVE(tmps, us_link);
|
|
}
|
|
mtx_unlock(&uma_boot_pages_mtx);
|
|
*pflag = tmps->us_flags;
|
|
return (tmps->us_data);
|
|
}
|
|
mtx_unlock(&uma_boot_pages_mtx);
|
|
if (booted < UMA_STARTUP2)
|
|
panic("UMA: Increase vm.boot_pages");
|
|
/*
|
|
* Now that we've booted reset these users to their real allocator.
|
|
*/
|
|
#ifdef UMA_MD_SMALL_ALLOC
|
|
keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
|
|
#else
|
|
keg->uk_allocf = page_alloc;
|
|
#endif
|
|
return keg->uk_allocf(zone, bytes, pflag, wait);
|
|
}
|
|
|
|
/*
|
|
* Allocates a number of pages from the system
|
|
*
|
|
* Arguments:
|
|
* bytes The number of bytes requested
|
|
* wait Shall we wait?
|
|
*
|
|
* Returns:
|
|
* A pointer to the alloced memory or possibly
|
|
* NULL if M_NOWAIT is set.
|
|
*/
|
|
static void *
|
|
page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
|
|
{
|
|
void *p; /* Returned page */
|
|
|
|
*pflag = UMA_SLAB_KMEM;
|
|
p = (void *) kmem_malloc(kmem_map, bytes, wait);
|
|
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Allocates a number of pages from within an object
|
|
*
|
|
* Arguments:
|
|
* bytes The number of bytes requested
|
|
* wait Shall we wait?
|
|
*
|
|
* Returns:
|
|
* A pointer to the alloced memory or possibly
|
|
* NULL if M_NOWAIT is set.
|
|
*/
|
|
static void *
|
|
obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
|
|
{
|
|
vm_object_t object;
|
|
vm_offset_t retkva, zkva;
|
|
vm_page_t p;
|
|
int pages, startpages;
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
object = keg->uk_obj;
|
|
retkva = 0;
|
|
|
|
/*
|
|
* This looks a little weird since we're getting one page at a time.
|
|
*/
|
|
VM_OBJECT_LOCK(object);
|
|
p = TAILQ_LAST(&object->memq, pglist);
|
|
pages = p != NULL ? p->pindex + 1 : 0;
|
|
startpages = pages;
|
|
zkva = keg->uk_kva + pages * PAGE_SIZE;
|
|
for (; bytes > 0; bytes -= PAGE_SIZE) {
|
|
p = vm_page_alloc(object, pages,
|
|
VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
|
|
if (p == NULL) {
|
|
if (pages != startpages)
|
|
pmap_qremove(retkva, pages - startpages);
|
|
while (pages != startpages) {
|
|
pages--;
|
|
p = TAILQ_LAST(&object->memq, pglist);
|
|
vm_page_unwire(p, 0);
|
|
vm_page_free(p);
|
|
}
|
|
retkva = 0;
|
|
goto done;
|
|
}
|
|
pmap_qenter(zkva, &p, 1);
|
|
if (retkva == 0)
|
|
retkva = zkva;
|
|
zkva += PAGE_SIZE;
|
|
pages += 1;
|
|
}
|
|
done:
|
|
VM_OBJECT_UNLOCK(object);
|
|
*flags = UMA_SLAB_PRIV;
|
|
|
|
return ((void *)retkva);
|
|
}
|
|
|
|
/*
|
|
* Frees a number of pages to the system
|
|
*
|
|
* Arguments:
|
|
* mem A pointer to the memory to be freed
|
|
* size The size of the memory being freed
|
|
* flags The original p->us_flags field
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
page_free(void *mem, int size, u_int8_t flags)
|
|
{
|
|
vm_map_t map;
|
|
|
|
if (flags & UMA_SLAB_KMEM)
|
|
map = kmem_map;
|
|
else if (flags & UMA_SLAB_KERNEL)
|
|
map = kernel_map;
|
|
else
|
|
panic("UMA: page_free used with invalid flags %d", flags);
|
|
|
|
kmem_free(map, (vm_offset_t)mem, size);
|
|
}
|
|
|
|
/*
|
|
* Zero fill initializer
|
|
*
|
|
* Arguments/Returns follow uma_init specifications
|
|
*/
|
|
static int
|
|
zero_init(void *mem, int size, int flags)
|
|
{
|
|
bzero(mem, size);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Finish creating a small uma keg. This calculates ipers, and the keg size.
|
|
*
|
|
* Arguments
|
|
* keg The zone we should initialize
|
|
*
|
|
* Returns
|
|
* Nothing
|
|
*/
|
|
static void
|
|
keg_small_init(uma_keg_t keg)
|
|
{
|
|
u_int rsize;
|
|
u_int memused;
|
|
u_int wastedspace;
|
|
u_int shsize;
|
|
|
|
KASSERT(keg != NULL, ("Keg is null in keg_small_init"));
|
|
rsize = keg->uk_size;
|
|
|
|
if (rsize < UMA_SMALLEST_UNIT)
|
|
rsize = UMA_SMALLEST_UNIT;
|
|
if (rsize & keg->uk_align)
|
|
rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
|
|
|
|
keg->uk_rsize = rsize;
|
|
keg->uk_ppera = 1;
|
|
|
|
if (keg->uk_flags & UMA_ZONE_REFCNT) {
|
|
rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */
|
|
shsize = sizeof(struct uma_slab_refcnt);
|
|
} else {
|
|
rsize += UMA_FRITM_SZ; /* Account for linkage */
|
|
shsize = sizeof(struct uma_slab);
|
|
}
|
|
|
|
keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
|
|
KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0"));
|
|
memused = keg->uk_ipers * rsize + shsize;
|
|
wastedspace = UMA_SLAB_SIZE - memused;
|
|
|
|
/*
|
|
* We can't do OFFPAGE if we're internal or if we've been
|
|
* asked to not go to the VM for buckets. If we do this we
|
|
* may end up going to the VM (kmem_map) for slabs which we
|
|
* do not want to do if we're UMA_ZFLAG_CACHEONLY as a
|
|
* result of UMA_ZONE_VM, which clearly forbids it.
|
|
*/
|
|
if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
|
|
(keg->uk_flags & UMA_ZFLAG_CACHEONLY))
|
|
return;
|
|
|
|
if ((wastedspace >= UMA_MAX_WASTE) &&
|
|
(keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
|
|
keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
|
|
KASSERT(keg->uk_ipers <= 255,
|
|
("keg_small_init: keg->uk_ipers too high!"));
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA decided we need offpage slab headers for "
|
|
"keg: %s, calculated wastedspace = %d, "
|
|
"maximum wasted space allowed = %d, "
|
|
"calculated ipers = %d, "
|
|
"new wasted space = %d\n", keg->uk_name, wastedspace,
|
|
UMA_MAX_WASTE, keg->uk_ipers,
|
|
UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
|
|
#endif
|
|
keg->uk_flags |= UMA_ZONE_OFFPAGE;
|
|
if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
|
|
keg->uk_flags |= UMA_ZONE_HASH;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do
|
|
* OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
|
|
* more complicated.
|
|
*
|
|
* Arguments
|
|
* keg The keg we should initialize
|
|
*
|
|
* Returns
|
|
* Nothing
|
|
*/
|
|
static void
|
|
keg_large_init(uma_keg_t keg)
|
|
{
|
|
int pages;
|
|
|
|
KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
|
|
KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
|
|
("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
|
|
|
|
pages = keg->uk_size / UMA_SLAB_SIZE;
|
|
|
|
/* Account for remainder */
|
|
if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
|
|
pages++;
|
|
|
|
keg->uk_ppera = pages;
|
|
keg->uk_ipers = 1;
|
|
keg->uk_rsize = keg->uk_size;
|
|
|
|
/* We can't do OFFPAGE if we're internal, bail out here. */
|
|
if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
|
|
return;
|
|
|
|
keg->uk_flags |= UMA_ZONE_OFFPAGE;
|
|
if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
|
|
keg->uk_flags |= UMA_ZONE_HASH;
|
|
}
|
|
|
|
static void
|
|
keg_cachespread_init(uma_keg_t keg)
|
|
{
|
|
int alignsize;
|
|
int trailer;
|
|
int pages;
|
|
int rsize;
|
|
|
|
alignsize = keg->uk_align + 1;
|
|
rsize = keg->uk_size;
|
|
/*
|
|
* We want one item to start on every align boundary in a page. To
|
|
* do this we will span pages. We will also extend the item by the
|
|
* size of align if it is an even multiple of align. Otherwise, it
|
|
* would fall on the same boundary every time.
|
|
*/
|
|
if (rsize & keg->uk_align)
|
|
rsize = (rsize & ~keg->uk_align) + alignsize;
|
|
if ((rsize & alignsize) == 0)
|
|
rsize += alignsize;
|
|
trailer = rsize - keg->uk_size;
|
|
pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
|
|
pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
|
|
keg->uk_rsize = rsize;
|
|
keg->uk_ppera = pages;
|
|
keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
|
|
keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
|
|
KASSERT(keg->uk_ipers <= uma_max_ipers,
|
|
("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers",
|
|
keg->uk_ipers));
|
|
}
|
|
|
|
/*
|
|
* Keg header ctor. This initializes all fields, locks, etc. And inserts
|
|
* the keg onto the global keg list.
|
|
*
|
|
* Arguments/Returns follow uma_ctor specifications
|
|
* udata Actually uma_kctor_args
|
|
*/
|
|
static int
|
|
keg_ctor(void *mem, int size, void *udata, int flags)
|
|
{
|
|
struct uma_kctor_args *arg = udata;
|
|
uma_keg_t keg = mem;
|
|
uma_zone_t zone;
|
|
|
|
bzero(keg, size);
|
|
keg->uk_size = arg->size;
|
|
keg->uk_init = arg->uminit;
|
|
keg->uk_fini = arg->fini;
|
|
keg->uk_align = arg->align;
|
|
keg->uk_free = 0;
|
|
keg->uk_pages = 0;
|
|
keg->uk_flags = arg->flags;
|
|
keg->uk_allocf = page_alloc;
|
|
keg->uk_freef = page_free;
|
|
keg->uk_recurse = 0;
|
|
keg->uk_slabzone = NULL;
|
|
|
|
/*
|
|
* The master zone is passed to us at keg-creation time.
|
|
*/
|
|
zone = arg->zone;
|
|
keg->uk_name = zone->uz_name;
|
|
|
|
if (arg->flags & UMA_ZONE_VM)
|
|
keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
|
|
|
|
if (arg->flags & UMA_ZONE_ZINIT)
|
|
keg->uk_init = zero_init;
|
|
|
|
if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
|
|
keg->uk_flags |= UMA_ZONE_VTOSLAB;
|
|
|
|
/*
|
|
* The +UMA_FRITM_SZ added to uk_size is to account for the
|
|
* linkage that is added to the size in keg_small_init(). If
|
|
* we don't account for this here then we may end up in
|
|
* keg_small_init() with a calculated 'ipers' of 0.
|
|
*/
|
|
if (keg->uk_flags & UMA_ZONE_REFCNT) {
|
|
if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
|
|
keg_cachespread_init(keg);
|
|
else if ((keg->uk_size+UMA_FRITMREF_SZ) >
|
|
(UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
|
|
keg_large_init(keg);
|
|
else
|
|
keg_small_init(keg);
|
|
} else {
|
|
if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
|
|
keg_cachespread_init(keg);
|
|
else if ((keg->uk_size+UMA_FRITM_SZ) >
|
|
(UMA_SLAB_SIZE - sizeof(struct uma_slab)))
|
|
keg_large_init(keg);
|
|
else
|
|
keg_small_init(keg);
|
|
}
|
|
|
|
if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
|
|
if (keg->uk_flags & UMA_ZONE_REFCNT)
|
|
keg->uk_slabzone = slabrefzone;
|
|
else
|
|
keg->uk_slabzone = slabzone;
|
|
}
|
|
|
|
/*
|
|
* If we haven't booted yet we need allocations to go through the
|
|
* startup cache until the vm is ready.
|
|
*/
|
|
if (keg->uk_ppera == 1) {
|
|
#ifdef UMA_MD_SMALL_ALLOC
|
|
keg->uk_allocf = uma_small_alloc;
|
|
keg->uk_freef = uma_small_free;
|
|
|
|
if (booted < UMA_STARTUP)
|
|
keg->uk_allocf = startup_alloc;
|
|
#else
|
|
if (booted < UMA_STARTUP2)
|
|
keg->uk_allocf = startup_alloc;
|
|
#endif
|
|
} else if (booted < UMA_STARTUP2 &&
|
|
(keg->uk_flags & UMA_ZFLAG_INTERNAL))
|
|
keg->uk_allocf = startup_alloc;
|
|
|
|
/*
|
|
* Initialize keg's lock (shared among zones).
|
|
*/
|
|
if (arg->flags & UMA_ZONE_MTXCLASS)
|
|
KEG_LOCK_INIT(keg, 1);
|
|
else
|
|
KEG_LOCK_INIT(keg, 0);
|
|
|
|
/*
|
|
* If we're putting the slab header in the actual page we need to
|
|
* figure out where in each page it goes. This calculates a right
|
|
* justified offset into the memory on an ALIGN_PTR boundary.
|
|
*/
|
|
if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
|
|
u_int totsize;
|
|
|
|
/* Size of the slab struct and free list */
|
|
if (keg->uk_flags & UMA_ZONE_REFCNT)
|
|
totsize = sizeof(struct uma_slab_refcnt) +
|
|
keg->uk_ipers * UMA_FRITMREF_SZ;
|
|
else
|
|
totsize = sizeof(struct uma_slab) +
|
|
keg->uk_ipers * UMA_FRITM_SZ;
|
|
|
|
if (totsize & UMA_ALIGN_PTR)
|
|
totsize = (totsize & ~UMA_ALIGN_PTR) +
|
|
(UMA_ALIGN_PTR + 1);
|
|
keg->uk_pgoff = (UMA_SLAB_SIZE * keg->uk_ppera) - totsize;
|
|
|
|
if (keg->uk_flags & UMA_ZONE_REFCNT)
|
|
totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
|
|
+ keg->uk_ipers * UMA_FRITMREF_SZ;
|
|
else
|
|
totsize = keg->uk_pgoff + sizeof(struct uma_slab)
|
|
+ keg->uk_ipers * UMA_FRITM_SZ;
|
|
|
|
/*
|
|
* The only way the following is possible is if with our
|
|
* UMA_ALIGN_PTR adjustments we are now bigger than
|
|
* UMA_SLAB_SIZE. I haven't checked whether this is
|
|
* mathematically possible for all cases, so we make
|
|
* sure here anyway.
|
|
*/
|
|
if (totsize > UMA_SLAB_SIZE * keg->uk_ppera) {
|
|
printf("zone %s ipers %d rsize %d size %d\n",
|
|
zone->uz_name, keg->uk_ipers, keg->uk_rsize,
|
|
keg->uk_size);
|
|
panic("UMA slab won't fit.");
|
|
}
|
|
}
|
|
|
|
if (keg->uk_flags & UMA_ZONE_HASH)
|
|
hash_alloc(&keg->uk_hash);
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
|
|
zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
|
|
keg->uk_ipers, keg->uk_ppera,
|
|
(keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
|
|
#endif
|
|
|
|
LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
|
|
|
|
mtx_lock(&uma_mtx);
|
|
LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
|
|
mtx_unlock(&uma_mtx);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Zone header ctor. This initializes all fields, locks, etc.
|
|
*
|
|
* Arguments/Returns follow uma_ctor specifications
|
|
* udata Actually uma_zctor_args
|
|
*/
|
|
static int
|
|
zone_ctor(void *mem, int size, void *udata, int flags)
|
|
{
|
|
struct uma_zctor_args *arg = udata;
|
|
uma_zone_t zone = mem;
|
|
uma_zone_t z;
|
|
uma_keg_t keg;
|
|
|
|
bzero(zone, size);
|
|
zone->uz_name = arg->name;
|
|
zone->uz_ctor = arg->ctor;
|
|
zone->uz_dtor = arg->dtor;
|
|
zone->uz_slab = zone_fetch_slab;
|
|
zone->uz_init = NULL;
|
|
zone->uz_fini = NULL;
|
|
zone->uz_allocs = 0;
|
|
zone->uz_frees = 0;
|
|
zone->uz_fails = 0;
|
|
zone->uz_sleeps = 0;
|
|
zone->uz_fills = zone->uz_count = 0;
|
|
zone->uz_flags = 0;
|
|
keg = arg->keg;
|
|
|
|
if (arg->flags & UMA_ZONE_SECONDARY) {
|
|
KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
|
|
zone->uz_init = arg->uminit;
|
|
zone->uz_fini = arg->fini;
|
|
zone->uz_lock = &keg->uk_lock;
|
|
zone->uz_flags |= UMA_ZONE_SECONDARY;
|
|
mtx_lock(&uma_mtx);
|
|
ZONE_LOCK(zone);
|
|
LIST_FOREACH(z, &keg->uk_zones, uz_link) {
|
|
if (LIST_NEXT(z, uz_link) == NULL) {
|
|
LIST_INSERT_AFTER(z, zone, uz_link);
|
|
break;
|
|
}
|
|
}
|
|
ZONE_UNLOCK(zone);
|
|
mtx_unlock(&uma_mtx);
|
|
} else if (keg == NULL) {
|
|
if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
|
|
arg->align, arg->flags)) == NULL)
|
|
return (ENOMEM);
|
|
} else {
|
|
struct uma_kctor_args karg;
|
|
int error;
|
|
|
|
/* We should only be here from uma_startup() */
|
|
karg.size = arg->size;
|
|
karg.uminit = arg->uminit;
|
|
karg.fini = arg->fini;
|
|
karg.align = arg->align;
|
|
karg.flags = arg->flags;
|
|
karg.zone = zone;
|
|
error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
|
|
flags);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
/*
|
|
* Link in the first keg.
|
|
*/
|
|
zone->uz_klink.kl_keg = keg;
|
|
LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
|
|
zone->uz_lock = &keg->uk_lock;
|
|
zone->uz_size = keg->uk_size;
|
|
zone->uz_flags |= (keg->uk_flags &
|
|
(UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
|
|
|
|
/*
|
|
* Some internal zones don't have room allocated for the per cpu
|
|
* caches. If we're internal, bail out here.
|
|
*/
|
|
if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
|
|
KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
|
|
("Secondary zone requested UMA_ZFLAG_INTERNAL"));
|
|
return (0);
|
|
}
|
|
|
|
if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
|
|
zone->uz_count = BUCKET_MAX;
|
|
else if (keg->uk_ipers <= BUCKET_MAX)
|
|
zone->uz_count = keg->uk_ipers;
|
|
else
|
|
zone->uz_count = BUCKET_MAX;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Keg header dtor. This frees all data, destroys locks, frees the hash
|
|
* table and removes the keg from the global list.
|
|
*
|
|
* Arguments/Returns follow uma_dtor specifications
|
|
* udata unused
|
|
*/
|
|
static void
|
|
keg_dtor(void *arg, int size, void *udata)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
keg = (uma_keg_t)arg;
|
|
KEG_LOCK(keg);
|
|
if (keg->uk_free != 0) {
|
|
printf("Freed UMA keg was not empty (%d items). "
|
|
" Lost %d pages of memory.\n",
|
|
keg->uk_free, keg->uk_pages);
|
|
}
|
|
KEG_UNLOCK(keg);
|
|
|
|
hash_free(&keg->uk_hash);
|
|
|
|
KEG_LOCK_FINI(keg);
|
|
}
|
|
|
|
/*
|
|
* Zone header dtor.
|
|
*
|
|
* Arguments/Returns follow uma_dtor specifications
|
|
* udata unused
|
|
*/
|
|
static void
|
|
zone_dtor(void *arg, int size, void *udata)
|
|
{
|
|
uma_klink_t klink;
|
|
uma_zone_t zone;
|
|
uma_keg_t keg;
|
|
|
|
zone = (uma_zone_t)arg;
|
|
keg = zone_first_keg(zone);
|
|
|
|
if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
|
|
cache_drain(zone);
|
|
|
|
mtx_lock(&uma_mtx);
|
|
LIST_REMOVE(zone, uz_link);
|
|
mtx_unlock(&uma_mtx);
|
|
/*
|
|
* XXX there are some races here where
|
|
* the zone can be drained but zone lock
|
|
* released and then refilled before we
|
|
* remove it... we dont care for now
|
|
*/
|
|
zone_drain_wait(zone, M_WAITOK);
|
|
/*
|
|
* Unlink all of our kegs.
|
|
*/
|
|
while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
|
|
klink->kl_keg = NULL;
|
|
LIST_REMOVE(klink, kl_link);
|
|
if (klink == &zone->uz_klink)
|
|
continue;
|
|
free(klink, M_TEMP);
|
|
}
|
|
/*
|
|
* We only destroy kegs from non secondary zones.
|
|
*/
|
|
if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) {
|
|
mtx_lock(&uma_mtx);
|
|
LIST_REMOVE(keg, uk_link);
|
|
mtx_unlock(&uma_mtx);
|
|
zone_free_item(kegs, keg, NULL, SKIP_NONE,
|
|
ZFREE_STATFREE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Traverses every zone in the system and calls a callback
|
|
*
|
|
* Arguments:
|
|
* zfunc A pointer to a function which accepts a zone
|
|
* as an argument.
|
|
*
|
|
* Returns:
|
|
* Nothing
|
|
*/
|
|
static void
|
|
zone_foreach(void (*zfunc)(uma_zone_t))
|
|
{
|
|
uma_keg_t keg;
|
|
uma_zone_t zone;
|
|
|
|
mtx_lock(&uma_mtx);
|
|
LIST_FOREACH(keg, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(zone, &keg->uk_zones, uz_link)
|
|
zfunc(zone);
|
|
}
|
|
mtx_unlock(&uma_mtx);
|
|
}
|
|
|
|
/* Public functions */
|
|
/* See uma.h */
|
|
void
|
|
uma_startup(void *bootmem, int boot_pages)
|
|
{
|
|
struct uma_zctor_args args;
|
|
uma_slab_t slab;
|
|
u_int slabsize;
|
|
u_int objsize, totsize, wsize;
|
|
int i;
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("Creating uma keg headers zone and keg.\n");
|
|
#endif
|
|
mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
|
|
|
|
/*
|
|
* Figure out the maximum number of items-per-slab we'll have if
|
|
* we're using the OFFPAGE slab header to track free items, given
|
|
* all possible object sizes and the maximum desired wastage
|
|
* (UMA_MAX_WASTE).
|
|
*
|
|
* We iterate until we find an object size for
|
|
* which the calculated wastage in keg_small_init() will be
|
|
* enough to warrant OFFPAGE. Since wastedspace versus objsize
|
|
* is an overall increasing see-saw function, we find the smallest
|
|
* objsize such that the wastage is always acceptable for objects
|
|
* with that objsize or smaller. Since a smaller objsize always
|
|
* generates a larger possible uma_max_ipers, we use this computed
|
|
* objsize to calculate the largest ipers possible. Since the
|
|
* ipers calculated for OFFPAGE slab headers is always larger than
|
|
* the ipers initially calculated in keg_small_init(), we use
|
|
* the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
|
|
* obtain the maximum ipers possible for offpage slab headers.
|
|
*
|
|
* It should be noted that ipers versus objsize is an inversly
|
|
* proportional function which drops off rather quickly so as
|
|
* long as our UMA_MAX_WASTE is such that the objsize we calculate
|
|
* falls into the portion of the inverse relation AFTER the steep
|
|
* falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
|
|
*
|
|
* Note that we have 8-bits (1 byte) to use as a freelist index
|
|
* inside the actual slab header itself and this is enough to
|
|
* accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized
|
|
* object with offpage slab header would have ipers =
|
|
* UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
|
|
* 1 greater than what our byte-integer freelist index can
|
|
* accomodate, but we know that this situation never occurs as
|
|
* for UMA_SMALLEST_UNIT-sized objects, we will never calculate
|
|
* that we need to go to offpage slab headers. Or, if we do,
|
|
* then we trap that condition below and panic in the INVARIANTS case.
|
|
*/
|
|
wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
|
|
totsize = wsize;
|
|
objsize = UMA_SMALLEST_UNIT;
|
|
while (totsize >= wsize) {
|
|
totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
|
|
(objsize + UMA_FRITM_SZ);
|
|
totsize *= (UMA_FRITM_SZ + objsize);
|
|
objsize++;
|
|
}
|
|
if (objsize > UMA_SMALLEST_UNIT)
|
|
objsize--;
|
|
uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64);
|
|
|
|
wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
|
|
totsize = wsize;
|
|
objsize = UMA_SMALLEST_UNIT;
|
|
while (totsize >= wsize) {
|
|
totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
|
|
(objsize + UMA_FRITMREF_SZ);
|
|
totsize *= (UMA_FRITMREF_SZ + objsize);
|
|
objsize++;
|
|
}
|
|
if (objsize > UMA_SMALLEST_UNIT)
|
|
objsize--;
|
|
uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64);
|
|
|
|
KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
|
|
("uma_startup: calculated uma_max_ipers values too large!"));
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
|
|
printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n",
|
|
uma_max_ipers_ref);
|
|
#endif
|
|
|
|
/* "manually" create the initial zone */
|
|
args.name = "UMA Kegs";
|
|
args.size = sizeof(struct uma_keg);
|
|
args.ctor = keg_ctor;
|
|
args.dtor = keg_dtor;
|
|
args.uminit = zero_init;
|
|
args.fini = NULL;
|
|
args.keg = &masterkeg;
|
|
args.align = 32 - 1;
|
|
args.flags = UMA_ZFLAG_INTERNAL;
|
|
/* The initial zone has no Per cpu queues so it's smaller */
|
|
zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("Filling boot free list.\n");
|
|
#endif
|
|
for (i = 0; i < boot_pages; i++) {
|
|
slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
|
|
slab->us_data = (u_int8_t *)slab;
|
|
slab->us_flags = UMA_SLAB_BOOT;
|
|
LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
|
|
}
|
|
mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("Creating uma zone headers zone and keg.\n");
|
|
#endif
|
|
args.name = "UMA Zones";
|
|
args.size = sizeof(struct uma_zone) +
|
|
(sizeof(struct uma_cache) * (mp_maxid + 1));
|
|
args.ctor = zone_ctor;
|
|
args.dtor = zone_dtor;
|
|
args.uminit = zero_init;
|
|
args.fini = NULL;
|
|
args.keg = NULL;
|
|
args.align = 32 - 1;
|
|
args.flags = UMA_ZFLAG_INTERNAL;
|
|
/* The initial zone has no Per cpu queues so it's smaller */
|
|
zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("Initializing pcpu cache locks.\n");
|
|
#endif
|
|
#ifdef UMA_DEBUG
|
|
printf("Creating slab and hash zones.\n");
|
|
#endif
|
|
|
|
/*
|
|
* This is the max number of free list items we'll have with
|
|
* offpage slabs.
|
|
*/
|
|
slabsize = uma_max_ipers * UMA_FRITM_SZ;
|
|
slabsize += sizeof(struct uma_slab);
|
|
|
|
/* Now make a zone for slab headers */
|
|
slabzone = uma_zcreate("UMA Slabs",
|
|
slabsize,
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
|
|
|
|
/*
|
|
* We also create a zone for the bigger slabs with reference
|
|
* counts in them, to accomodate UMA_ZONE_REFCNT zones.
|
|
*/
|
|
slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
|
|
slabsize += sizeof(struct uma_slab_refcnt);
|
|
slabrefzone = uma_zcreate("UMA RCntSlabs",
|
|
slabsize,
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR,
|
|
UMA_ZFLAG_INTERNAL);
|
|
|
|
hashzone = uma_zcreate("UMA Hash",
|
|
sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
|
|
NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
|
|
|
|
bucket_init();
|
|
|
|
booted = UMA_STARTUP;
|
|
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA startup complete.\n");
|
|
#endif
|
|
}
|
|
|
|
/* see uma.h */
|
|
void
|
|
uma_startup2(void)
|
|
{
|
|
booted = UMA_STARTUP2;
|
|
bucket_enable();
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA startup2 complete.\n");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Initialize our callout handle
|
|
*
|
|
*/
|
|
|
|
static void
|
|
uma_startup3(void)
|
|
{
|
|
#ifdef UMA_DEBUG
|
|
printf("Starting callout.\n");
|
|
#endif
|
|
callout_init(&uma_callout, CALLOUT_MPSAFE);
|
|
callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA startup3 complete.\n");
|
|
#endif
|
|
}
|
|
|
|
static uma_keg_t
|
|
uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
|
|
int align, u_int32_t flags)
|
|
{
|
|
struct uma_kctor_args args;
|
|
|
|
args.size = size;
|
|
args.uminit = uminit;
|
|
args.fini = fini;
|
|
args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
|
|
args.flags = flags;
|
|
args.zone = zone;
|
|
return (zone_alloc_item(kegs, &args, M_WAITOK));
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_set_align(int align)
|
|
{
|
|
|
|
if (align != UMA_ALIGN_CACHE)
|
|
uma_align_cache = align;
|
|
}
|
|
|
|
/* See uma.h */
|
|
uma_zone_t
|
|
uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
|
|
uma_init uminit, uma_fini fini, int align, u_int32_t flags)
|
|
|
|
{
|
|
struct uma_zctor_args args;
|
|
|
|
/* This stuff is essential for the zone ctor */
|
|
args.name = name;
|
|
args.size = size;
|
|
args.ctor = ctor;
|
|
args.dtor = dtor;
|
|
args.uminit = uminit;
|
|
args.fini = fini;
|
|
args.align = align;
|
|
args.flags = flags;
|
|
args.keg = NULL;
|
|
|
|
return (zone_alloc_item(zones, &args, M_WAITOK));
|
|
}
|
|
|
|
/* See uma.h */
|
|
uma_zone_t
|
|
uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
|
|
uma_init zinit, uma_fini zfini, uma_zone_t master)
|
|
{
|
|
struct uma_zctor_args args;
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(master);
|
|
args.name = name;
|
|
args.size = keg->uk_size;
|
|
args.ctor = ctor;
|
|
args.dtor = dtor;
|
|
args.uminit = zinit;
|
|
args.fini = zfini;
|
|
args.align = keg->uk_align;
|
|
args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
|
|
args.keg = keg;
|
|
|
|
/* XXX Attaches only one keg of potentially many. */
|
|
return (zone_alloc_item(zones, &args, M_WAITOK));
|
|
}
|
|
|
|
static void
|
|
zone_lock_pair(uma_zone_t a, uma_zone_t b)
|
|
{
|
|
if (a < b) {
|
|
ZONE_LOCK(a);
|
|
mtx_lock_flags(b->uz_lock, MTX_DUPOK);
|
|
} else {
|
|
ZONE_LOCK(b);
|
|
mtx_lock_flags(a->uz_lock, MTX_DUPOK);
|
|
}
|
|
}
|
|
|
|
static void
|
|
zone_unlock_pair(uma_zone_t a, uma_zone_t b)
|
|
{
|
|
|
|
ZONE_UNLOCK(a);
|
|
ZONE_UNLOCK(b);
|
|
}
|
|
|
|
int
|
|
uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
|
|
{
|
|
uma_klink_t klink;
|
|
uma_klink_t kl;
|
|
int error;
|
|
|
|
error = 0;
|
|
klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
|
|
|
|
zone_lock_pair(zone, master);
|
|
/*
|
|
* zone must use vtoslab() to resolve objects and must already be
|
|
* a secondary.
|
|
*/
|
|
if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
|
|
!= (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
/*
|
|
* The new master must also use vtoslab().
|
|
*/
|
|
if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Both must either be refcnt, or not be refcnt.
|
|
*/
|
|
if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
|
|
(master->uz_flags & UMA_ZONE_REFCNT)) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
/*
|
|
* The underlying object must be the same size. rsize
|
|
* may be different.
|
|
*/
|
|
if (master->uz_size != zone->uz_size) {
|
|
error = E2BIG;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Put it at the end of the list.
|
|
*/
|
|
klink->kl_keg = zone_first_keg(master);
|
|
LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
|
|
if (LIST_NEXT(kl, kl_link) == NULL) {
|
|
LIST_INSERT_AFTER(kl, klink, kl_link);
|
|
break;
|
|
}
|
|
}
|
|
klink = NULL;
|
|
zone->uz_flags |= UMA_ZFLAG_MULTI;
|
|
zone->uz_slab = zone_fetch_slab_multi;
|
|
|
|
out:
|
|
zone_unlock_pair(zone, master);
|
|
if (klink != NULL)
|
|
free(klink, M_TEMP);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zdestroy(uma_zone_t zone)
|
|
{
|
|
|
|
zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void *
|
|
uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
|
|
{
|
|
void *item;
|
|
uma_cache_t cache;
|
|
uma_bucket_t bucket;
|
|
int cpu;
|
|
|
|
/* This is the fast path allocation */
|
|
#ifdef UMA_DEBUG_ALLOC_1
|
|
printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
|
|
#endif
|
|
CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
|
|
zone->uz_name, flags);
|
|
|
|
if (flags & M_WAITOK) {
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
|
|
"uma_zalloc_arg: zone \"%s\"", zone->uz_name);
|
|
}
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (memguard_cmp_zone(zone)) {
|
|
item = memguard_alloc(zone->uz_size, flags);
|
|
if (item != NULL) {
|
|
/*
|
|
* Avoid conflict with the use-after-free
|
|
* protecting infrastructure from INVARIANTS.
|
|
*/
|
|
if (zone->uz_init != NULL &&
|
|
zone->uz_init != mtrash_init &&
|
|
zone->uz_init(item, zone->uz_size, flags) != 0)
|
|
return (NULL);
|
|
if (zone->uz_ctor != NULL &&
|
|
zone->uz_ctor != mtrash_ctor &&
|
|
zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
|
|
zone->uz_fini(item, zone->uz_size);
|
|
return (NULL);
|
|
}
|
|
return (item);
|
|
}
|
|
/* This is unfortunate but should not be fatal. */
|
|
}
|
|
#endif
|
|
/*
|
|
* If possible, allocate from the per-CPU cache. There are two
|
|
* requirements for safe access to the per-CPU cache: (1) the thread
|
|
* accessing the cache must not be preempted or yield during access,
|
|
* and (2) the thread must not migrate CPUs without switching which
|
|
* cache it accesses. We rely on a critical section to prevent
|
|
* preemption and migration. We release the critical section in
|
|
* order to acquire the zone mutex if we are unable to allocate from
|
|
* the current cache; when we re-acquire the critical section, we
|
|
* must detect and handle migration if it has occurred.
|
|
*/
|
|
zalloc_restart:
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
|
|
zalloc_start:
|
|
bucket = cache->uc_allocbucket;
|
|
|
|
if (bucket) {
|
|
if (bucket->ub_cnt > 0) {
|
|
bucket->ub_cnt--;
|
|
item = bucket->ub_bucket[bucket->ub_cnt];
|
|
#ifdef INVARIANTS
|
|
bucket->ub_bucket[bucket->ub_cnt] = NULL;
|
|
#endif
|
|
KASSERT(item != NULL,
|
|
("uma_zalloc: Bucket pointer mangled."));
|
|
cache->uc_allocs++;
|
|
critical_exit();
|
|
#ifdef INVARIANTS
|
|
ZONE_LOCK(zone);
|
|
uma_dbg_alloc(zone, NULL, item);
|
|
ZONE_UNLOCK(zone);
|
|
#endif
|
|
if (zone->uz_ctor != NULL) {
|
|
if (zone->uz_ctor(item, zone->uz_size,
|
|
udata, flags) != 0) {
|
|
zone_free_item(zone, item, udata,
|
|
SKIP_DTOR, ZFREE_STATFAIL |
|
|
ZFREE_STATFREE);
|
|
return (NULL);
|
|
}
|
|
}
|
|
if (flags & M_ZERO)
|
|
bzero(item, zone->uz_size);
|
|
return (item);
|
|
} else if (cache->uc_freebucket) {
|
|
/*
|
|
* We have run out of items in our allocbucket.
|
|
* See if we can switch with our free bucket.
|
|
*/
|
|
if (cache->uc_freebucket->ub_cnt > 0) {
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("uma_zalloc: Swapping empty with"
|
|
" alloc.\n");
|
|
#endif
|
|
bucket = cache->uc_freebucket;
|
|
cache->uc_freebucket = cache->uc_allocbucket;
|
|
cache->uc_allocbucket = bucket;
|
|
|
|
goto zalloc_start;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Attempt to retrieve the item from the per-CPU cache has failed, so
|
|
* we must go back to the zone. This requires the zone lock, so we
|
|
* must drop the critical section, then re-acquire it when we go back
|
|
* to the cache. Since the critical section is released, we may be
|
|
* preempted or migrate. As such, make sure not to maintain any
|
|
* thread-local state specific to the cache from prior to releasing
|
|
* the critical section.
|
|
*/
|
|
critical_exit();
|
|
ZONE_LOCK(zone);
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
bucket = cache->uc_allocbucket;
|
|
if (bucket != NULL) {
|
|
if (bucket->ub_cnt > 0) {
|
|
ZONE_UNLOCK(zone);
|
|
goto zalloc_start;
|
|
}
|
|
bucket = cache->uc_freebucket;
|
|
if (bucket != NULL && bucket->ub_cnt > 0) {
|
|
ZONE_UNLOCK(zone);
|
|
goto zalloc_start;
|
|
}
|
|
}
|
|
|
|
/* Since we have locked the zone we may as well send back our stats */
|
|
zone->uz_allocs += cache->uc_allocs;
|
|
cache->uc_allocs = 0;
|
|
zone->uz_frees += cache->uc_frees;
|
|
cache->uc_frees = 0;
|
|
|
|
/* Our old one is now a free bucket */
|
|
if (cache->uc_allocbucket) {
|
|
KASSERT(cache->uc_allocbucket->ub_cnt == 0,
|
|
("uma_zalloc_arg: Freeing a non free bucket."));
|
|
LIST_INSERT_HEAD(&zone->uz_free_bucket,
|
|
cache->uc_allocbucket, ub_link);
|
|
cache->uc_allocbucket = NULL;
|
|
}
|
|
|
|
/* Check the free list for a new alloc bucket */
|
|
if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
|
|
KASSERT(bucket->ub_cnt != 0,
|
|
("uma_zalloc_arg: Returning an empty bucket."));
|
|
|
|
LIST_REMOVE(bucket, ub_link);
|
|
cache->uc_allocbucket = bucket;
|
|
ZONE_UNLOCK(zone);
|
|
goto zalloc_start;
|
|
}
|
|
/* We are no longer associated with this CPU. */
|
|
critical_exit();
|
|
|
|
/* Bump up our uz_count so we get here less */
|
|
if (zone->uz_count < BUCKET_MAX)
|
|
zone->uz_count++;
|
|
|
|
/*
|
|
* Now lets just fill a bucket and put it on the free list. If that
|
|
* works we'll restart the allocation from the begining.
|
|
*/
|
|
if (zone_alloc_bucket(zone, flags)) {
|
|
ZONE_UNLOCK(zone);
|
|
goto zalloc_restart;
|
|
}
|
|
ZONE_UNLOCK(zone);
|
|
/*
|
|
* We may not be able to get a bucket so return an actual item.
|
|
*/
|
|
#ifdef UMA_DEBUG
|
|
printf("uma_zalloc_arg: Bucketzone returned NULL\n");
|
|
#endif
|
|
|
|
item = zone_alloc_item(zone, udata, flags);
|
|
return (item);
|
|
}
|
|
|
|
static uma_slab_t
|
|
keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
|
|
mtx_assert(&keg->uk_lock, MA_OWNED);
|
|
slab = NULL;
|
|
|
|
for (;;) {
|
|
/*
|
|
* Find a slab with some space. Prefer slabs that are partially
|
|
* used over those that are totally full. This helps to reduce
|
|
* fragmentation.
|
|
*/
|
|
if (keg->uk_free != 0) {
|
|
if (!LIST_EMPTY(&keg->uk_part_slab)) {
|
|
slab = LIST_FIRST(&keg->uk_part_slab);
|
|
} else {
|
|
slab = LIST_FIRST(&keg->uk_free_slab);
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
|
|
us_link);
|
|
}
|
|
MPASS(slab->us_keg == keg);
|
|
return (slab);
|
|
}
|
|
|
|
/*
|
|
* M_NOVM means don't ask at all!
|
|
*/
|
|
if (flags & M_NOVM)
|
|
break;
|
|
|
|
if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
|
|
keg->uk_flags |= UMA_ZFLAG_FULL;
|
|
/*
|
|
* If this is not a multi-zone, set the FULL bit.
|
|
* Otherwise slab_multi() takes care of it.
|
|
*/
|
|
if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0)
|
|
zone->uz_flags |= UMA_ZFLAG_FULL;
|
|
if (flags & M_NOWAIT)
|
|
break;
|
|
zone->uz_sleeps++;
|
|
msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
|
|
continue;
|
|
}
|
|
keg->uk_recurse++;
|
|
slab = keg_alloc_slab(keg, zone, flags);
|
|
keg->uk_recurse--;
|
|
/*
|
|
* If we got a slab here it's safe to mark it partially used
|
|
* and return. We assume that the caller is going to remove
|
|
* at least one item.
|
|
*/
|
|
if (slab) {
|
|
MPASS(slab->us_keg == keg);
|
|
LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
|
|
return (slab);
|
|
}
|
|
/*
|
|
* We might not have been able to get a slab but another cpu
|
|
* could have while we were unlocked. Check again before we
|
|
* fail.
|
|
*/
|
|
flags |= M_NOVM;
|
|
}
|
|
return (slab);
|
|
}
|
|
|
|
static inline void
|
|
zone_relock(uma_zone_t zone, uma_keg_t keg)
|
|
{
|
|
if (zone->uz_lock != &keg->uk_lock) {
|
|
KEG_UNLOCK(keg);
|
|
ZONE_LOCK(zone);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
keg_relock(uma_keg_t keg, uma_zone_t zone)
|
|
{
|
|
if (zone->uz_lock != &keg->uk_lock) {
|
|
ZONE_UNLOCK(zone);
|
|
KEG_LOCK(keg);
|
|
}
|
|
}
|
|
|
|
static uma_slab_t
|
|
zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
|
|
if (keg == NULL)
|
|
keg = zone_first_keg(zone);
|
|
/*
|
|
* This is to prevent us from recursively trying to allocate
|
|
* buckets. The problem is that if an allocation forces us to
|
|
* grab a new bucket we will call page_alloc, which will go off
|
|
* and cause the vm to allocate vm_map_entries. If we need new
|
|
* buckets there too we will recurse in kmem_alloc and bad
|
|
* things happen. So instead we return a NULL bucket, and make
|
|
* the code that allocates buckets smart enough to deal with it
|
|
*/
|
|
if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0)
|
|
return (NULL);
|
|
|
|
for (;;) {
|
|
slab = keg_fetch_slab(keg, zone, flags);
|
|
if (slab)
|
|
return (slab);
|
|
if (flags & (M_NOWAIT | M_NOVM))
|
|
break;
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns
|
|
* with the keg locked. Caller must call zone_relock() afterwards if the
|
|
* zone lock is required. On NULL the zone lock is held.
|
|
*
|
|
* The last pointer is used to seed the search. It is not required.
|
|
*/
|
|
static uma_slab_t
|
|
zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
|
|
{
|
|
uma_klink_t klink;
|
|
uma_slab_t slab;
|
|
uma_keg_t keg;
|
|
int flags;
|
|
int empty;
|
|
int full;
|
|
|
|
/*
|
|
* Don't wait on the first pass. This will skip limit tests
|
|
* as well. We don't want to block if we can find a provider
|
|
* without blocking.
|
|
*/
|
|
flags = (rflags & ~M_WAITOK) | M_NOWAIT;
|
|
/*
|
|
* Use the last slab allocated as a hint for where to start
|
|
* the search.
|
|
*/
|
|
if (last) {
|
|
slab = keg_fetch_slab(last, zone, flags);
|
|
if (slab)
|
|
return (slab);
|
|
zone_relock(zone, last);
|
|
last = NULL;
|
|
}
|
|
/*
|
|
* Loop until we have a slab incase of transient failures
|
|
* while M_WAITOK is specified. I'm not sure this is 100%
|
|
* required but we've done it for so long now.
|
|
*/
|
|
for (;;) {
|
|
empty = 0;
|
|
full = 0;
|
|
/*
|
|
* Search the available kegs for slabs. Be careful to hold the
|
|
* correct lock while calling into the keg layer.
|
|
*/
|
|
LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
|
|
keg = klink->kl_keg;
|
|
keg_relock(keg, zone);
|
|
if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
|
|
slab = keg_fetch_slab(keg, zone, flags);
|
|
if (slab)
|
|
return (slab);
|
|
}
|
|
if (keg->uk_flags & UMA_ZFLAG_FULL)
|
|
full++;
|
|
else
|
|
empty++;
|
|
zone_relock(zone, keg);
|
|
}
|
|
if (rflags & (M_NOWAIT | M_NOVM))
|
|
break;
|
|
flags = rflags;
|
|
/*
|
|
* All kegs are full. XXX We can't atomically check all kegs
|
|
* and sleep so just sleep for a short period and retry.
|
|
*/
|
|
if (full && !empty) {
|
|
zone->uz_flags |= UMA_ZFLAG_FULL;
|
|
zone->uz_sleeps++;
|
|
msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100);
|
|
zone->uz_flags &= ~UMA_ZFLAG_FULL;
|
|
continue;
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static void *
|
|
slab_alloc_item(uma_zone_t zone, uma_slab_t slab)
|
|
{
|
|
uma_keg_t keg;
|
|
uma_slabrefcnt_t slabref;
|
|
void *item;
|
|
u_int8_t freei;
|
|
|
|
keg = slab->us_keg;
|
|
mtx_assert(&keg->uk_lock, MA_OWNED);
|
|
|
|
freei = slab->us_firstfree;
|
|
if (keg->uk_flags & UMA_ZONE_REFCNT) {
|
|
slabref = (uma_slabrefcnt_t)slab;
|
|
slab->us_firstfree = slabref->us_freelist[freei].us_item;
|
|
} else {
|
|
slab->us_firstfree = slab->us_freelist[freei].us_item;
|
|
}
|
|
item = slab->us_data + (keg->uk_rsize * freei);
|
|
|
|
slab->us_freecount--;
|
|
keg->uk_free--;
|
|
#ifdef INVARIANTS
|
|
uma_dbg_alloc(zone, slab, item);
|
|
#endif
|
|
/* Move this slab to the full list */
|
|
if (slab->us_freecount == 0) {
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
|
|
}
|
|
|
|
return (item);
|
|
}
|
|
|
|
static int
|
|
zone_alloc_bucket(uma_zone_t zone, int flags)
|
|
{
|
|
uma_bucket_t bucket;
|
|
uma_slab_t slab;
|
|
uma_keg_t keg;
|
|
int16_t saved;
|
|
int max, origflags = flags;
|
|
|
|
/*
|
|
* Try this zone's free list first so we don't allocate extra buckets.
|
|
*/
|
|
if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
|
|
KASSERT(bucket->ub_cnt == 0,
|
|
("zone_alloc_bucket: Bucket on free list is not empty."));
|
|
LIST_REMOVE(bucket, ub_link);
|
|
} else {
|
|
int bflags;
|
|
|
|
bflags = (flags & ~M_ZERO);
|
|
if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
|
|
bflags |= M_NOVM;
|
|
|
|
ZONE_UNLOCK(zone);
|
|
bucket = bucket_alloc(zone->uz_count, bflags);
|
|
ZONE_LOCK(zone);
|
|
}
|
|
|
|
if (bucket == NULL) {
|
|
return (0);
|
|
}
|
|
|
|
#ifdef SMP
|
|
/*
|
|
* This code is here to limit the number of simultaneous bucket fills
|
|
* for any given zone to the number of per cpu caches in this zone. This
|
|
* is done so that we don't allocate more memory than we really need.
|
|
*/
|
|
if (zone->uz_fills >= mp_ncpus)
|
|
goto done;
|
|
|
|
#endif
|
|
zone->uz_fills++;
|
|
|
|
max = MIN(bucket->ub_entries, zone->uz_count);
|
|
/* Try to keep the buckets totally full */
|
|
saved = bucket->ub_cnt;
|
|
slab = NULL;
|
|
keg = NULL;
|
|
while (bucket->ub_cnt < max &&
|
|
(slab = zone->uz_slab(zone, keg, flags)) != NULL) {
|
|
keg = slab->us_keg;
|
|
while (slab->us_freecount && bucket->ub_cnt < max) {
|
|
bucket->ub_bucket[bucket->ub_cnt++] =
|
|
slab_alloc_item(zone, slab);
|
|
}
|
|
|
|
/* Don't block on the next fill */
|
|
flags |= M_NOWAIT;
|
|
}
|
|
if (slab)
|
|
zone_relock(zone, keg);
|
|
|
|
/*
|
|
* We unlock here because we need to call the zone's init.
|
|
* It should be safe to unlock because the slab dealt with
|
|
* above is already on the appropriate list within the keg
|
|
* and the bucket we filled is not yet on any list, so we
|
|
* own it.
|
|
*/
|
|
if (zone->uz_init != NULL) {
|
|
int i;
|
|
|
|
ZONE_UNLOCK(zone);
|
|
for (i = saved; i < bucket->ub_cnt; i++)
|
|
if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
|
|
origflags) != 0)
|
|
break;
|
|
/*
|
|
* If we couldn't initialize the whole bucket, put the
|
|
* rest back onto the freelist.
|
|
*/
|
|
if (i != bucket->ub_cnt) {
|
|
int j;
|
|
|
|
for (j = i; j < bucket->ub_cnt; j++) {
|
|
zone_free_item(zone, bucket->ub_bucket[j],
|
|
NULL, SKIP_FINI, 0);
|
|
#ifdef INVARIANTS
|
|
bucket->ub_bucket[j] = NULL;
|
|
#endif
|
|
}
|
|
bucket->ub_cnt = i;
|
|
}
|
|
ZONE_LOCK(zone);
|
|
}
|
|
|
|
zone->uz_fills--;
|
|
if (bucket->ub_cnt != 0) {
|
|
LIST_INSERT_HEAD(&zone->uz_full_bucket,
|
|
bucket, ub_link);
|
|
return (1);
|
|
}
|
|
#ifdef SMP
|
|
done:
|
|
#endif
|
|
bucket_free(bucket);
|
|
|
|
return (0);
|
|
}
|
|
/*
|
|
* Allocates an item for an internal zone
|
|
*
|
|
* Arguments
|
|
* zone The zone to alloc for.
|
|
* udata The data to be passed to the constructor.
|
|
* flags M_WAITOK, M_NOWAIT, M_ZERO.
|
|
*
|
|
* Returns
|
|
* NULL if there is no memory and M_NOWAIT is set
|
|
* An item if successful
|
|
*/
|
|
|
|
static void *
|
|
zone_alloc_item(uma_zone_t zone, void *udata, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
void *item;
|
|
|
|
item = NULL;
|
|
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
|
|
#endif
|
|
ZONE_LOCK(zone);
|
|
|
|
slab = zone->uz_slab(zone, NULL, flags);
|
|
if (slab == NULL) {
|
|
zone->uz_fails++;
|
|
ZONE_UNLOCK(zone);
|
|
return (NULL);
|
|
}
|
|
|
|
item = slab_alloc_item(zone, slab);
|
|
|
|
zone_relock(zone, slab->us_keg);
|
|
zone->uz_allocs++;
|
|
ZONE_UNLOCK(zone);
|
|
|
|
/*
|
|
* We have to call both the zone's init (not the keg's init)
|
|
* and the zone's ctor. This is because the item is going from
|
|
* a keg slab directly to the user, and the user is expecting it
|
|
* to be both zone-init'd as well as zone-ctor'd.
|
|
*/
|
|
if (zone->uz_init != NULL) {
|
|
if (zone->uz_init(item, zone->uz_size, flags) != 0) {
|
|
zone_free_item(zone, item, udata, SKIP_FINI,
|
|
ZFREE_STATFAIL | ZFREE_STATFREE);
|
|
return (NULL);
|
|
}
|
|
}
|
|
if (zone->uz_ctor != NULL) {
|
|
if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
|
|
zone_free_item(zone, item, udata, SKIP_DTOR,
|
|
ZFREE_STATFAIL | ZFREE_STATFREE);
|
|
return (NULL);
|
|
}
|
|
}
|
|
if (flags & M_ZERO)
|
|
bzero(item, zone->uz_size);
|
|
|
|
return (item);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
|
|
{
|
|
uma_cache_t cache;
|
|
uma_bucket_t bucket;
|
|
int bflags;
|
|
int cpu;
|
|
|
|
#ifdef UMA_DEBUG_ALLOC_1
|
|
printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
|
|
#endif
|
|
CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
|
|
zone->uz_name);
|
|
|
|
/* uma_zfree(..., NULL) does nothing, to match free(9). */
|
|
if (item == NULL)
|
|
return;
|
|
#ifdef DEBUG_MEMGUARD
|
|
if (is_memguard_addr(item)) {
|
|
if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
|
|
zone->uz_dtor(item, zone->uz_size, udata);
|
|
if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
|
|
zone->uz_fini(item, zone->uz_size);
|
|
memguard_free(item);
|
|
return;
|
|
}
|
|
#endif
|
|
if (zone->uz_dtor)
|
|
zone->uz_dtor(item, zone->uz_size, udata);
|
|
|
|
#ifdef INVARIANTS
|
|
ZONE_LOCK(zone);
|
|
if (zone->uz_flags & UMA_ZONE_MALLOC)
|
|
uma_dbg_free(zone, udata, item);
|
|
else
|
|
uma_dbg_free(zone, NULL, item);
|
|
ZONE_UNLOCK(zone);
|
|
#endif
|
|
/*
|
|
* The race here is acceptable. If we miss it we'll just have to wait
|
|
* a little longer for the limits to be reset.
|
|
*/
|
|
if (zone->uz_flags & UMA_ZFLAG_FULL)
|
|
goto zfree_internal;
|
|
|
|
/*
|
|
* If possible, free to the per-CPU cache. There are two
|
|
* requirements for safe access to the per-CPU cache: (1) the thread
|
|
* accessing the cache must not be preempted or yield during access,
|
|
* and (2) the thread must not migrate CPUs without switching which
|
|
* cache it accesses. We rely on a critical section to prevent
|
|
* preemption and migration. We release the critical section in
|
|
* order to acquire the zone mutex if we are unable to free to the
|
|
* current cache; when we re-acquire the critical section, we must
|
|
* detect and handle migration if it has occurred.
|
|
*/
|
|
zfree_restart:
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
|
|
zfree_start:
|
|
bucket = cache->uc_freebucket;
|
|
|
|
if (bucket) {
|
|
/*
|
|
* Do we have room in our bucket? It is OK for this uz count
|
|
* check to be slightly out of sync.
|
|
*/
|
|
|
|
if (bucket->ub_cnt < bucket->ub_entries) {
|
|
KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
|
|
("uma_zfree: Freeing to non free bucket index."));
|
|
bucket->ub_bucket[bucket->ub_cnt] = item;
|
|
bucket->ub_cnt++;
|
|
cache->uc_frees++;
|
|
critical_exit();
|
|
return;
|
|
} else if (cache->uc_allocbucket) {
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("uma_zfree: Swapping buckets.\n");
|
|
#endif
|
|
/*
|
|
* We have run out of space in our freebucket.
|
|
* See if we can switch with our alloc bucket.
|
|
*/
|
|
if (cache->uc_allocbucket->ub_cnt <
|
|
cache->uc_freebucket->ub_cnt) {
|
|
bucket = cache->uc_freebucket;
|
|
cache->uc_freebucket = cache->uc_allocbucket;
|
|
cache->uc_allocbucket = bucket;
|
|
goto zfree_start;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* We can get here for two reasons:
|
|
*
|
|
* 1) The buckets are NULL
|
|
* 2) The alloc and free buckets are both somewhat full.
|
|
*
|
|
* We must go back the zone, which requires acquiring the zone lock,
|
|
* which in turn means we must release and re-acquire the critical
|
|
* section. Since the critical section is released, we may be
|
|
* preempted or migrate. As such, make sure not to maintain any
|
|
* thread-local state specific to the cache from prior to releasing
|
|
* the critical section.
|
|
*/
|
|
critical_exit();
|
|
ZONE_LOCK(zone);
|
|
critical_enter();
|
|
cpu = curcpu;
|
|
cache = &zone->uz_cpu[cpu];
|
|
if (cache->uc_freebucket != NULL) {
|
|
if (cache->uc_freebucket->ub_cnt <
|
|
cache->uc_freebucket->ub_entries) {
|
|
ZONE_UNLOCK(zone);
|
|
goto zfree_start;
|
|
}
|
|
if (cache->uc_allocbucket != NULL &&
|
|
(cache->uc_allocbucket->ub_cnt <
|
|
cache->uc_freebucket->ub_cnt)) {
|
|
ZONE_UNLOCK(zone);
|
|
goto zfree_start;
|
|
}
|
|
}
|
|
|
|
/* Since we have locked the zone we may as well send back our stats */
|
|
zone->uz_allocs += cache->uc_allocs;
|
|
cache->uc_allocs = 0;
|
|
zone->uz_frees += cache->uc_frees;
|
|
cache->uc_frees = 0;
|
|
|
|
bucket = cache->uc_freebucket;
|
|
cache->uc_freebucket = NULL;
|
|
|
|
/* Can we throw this on the zone full list? */
|
|
if (bucket != NULL) {
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("uma_zfree: Putting old bucket on the free list.\n");
|
|
#endif
|
|
/* ub_cnt is pointing to the last free item */
|
|
KASSERT(bucket->ub_cnt != 0,
|
|
("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
|
|
LIST_INSERT_HEAD(&zone->uz_full_bucket,
|
|
bucket, ub_link);
|
|
}
|
|
if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
|
|
LIST_REMOVE(bucket, ub_link);
|
|
ZONE_UNLOCK(zone);
|
|
cache->uc_freebucket = bucket;
|
|
goto zfree_start;
|
|
}
|
|
/* We are no longer associated with this CPU. */
|
|
critical_exit();
|
|
|
|
/* And the zone.. */
|
|
ZONE_UNLOCK(zone);
|
|
|
|
#ifdef UMA_DEBUG_ALLOC
|
|
printf("uma_zfree: Allocating new free bucket.\n");
|
|
#endif
|
|
bflags = M_NOWAIT;
|
|
|
|
if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
|
|
bflags |= M_NOVM;
|
|
bucket = bucket_alloc(zone->uz_count, bflags);
|
|
if (bucket) {
|
|
ZONE_LOCK(zone);
|
|
LIST_INSERT_HEAD(&zone->uz_free_bucket,
|
|
bucket, ub_link);
|
|
ZONE_UNLOCK(zone);
|
|
goto zfree_restart;
|
|
}
|
|
|
|
/*
|
|
* If nothing else caught this, we'll just do an internal free.
|
|
*/
|
|
zfree_internal:
|
|
zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Frees an item to an INTERNAL zone or allocates a free bucket
|
|
*
|
|
* Arguments:
|
|
* zone The zone to free to
|
|
* item The item we're freeing
|
|
* udata User supplied data for the dtor
|
|
* skip Skip dtors and finis
|
|
*/
|
|
static void
|
|
zone_free_item(uma_zone_t zone, void *item, void *udata,
|
|
enum zfreeskip skip, int flags)
|
|
{
|
|
uma_slab_t slab;
|
|
uma_slabrefcnt_t slabref;
|
|
uma_keg_t keg;
|
|
u_int8_t *mem;
|
|
u_int8_t freei;
|
|
int clearfull;
|
|
|
|
if (skip < SKIP_DTOR && zone->uz_dtor)
|
|
zone->uz_dtor(item, zone->uz_size, udata);
|
|
|
|
if (skip < SKIP_FINI && zone->uz_fini)
|
|
zone->uz_fini(item, zone->uz_size);
|
|
|
|
ZONE_LOCK(zone);
|
|
|
|
if (flags & ZFREE_STATFAIL)
|
|
zone->uz_fails++;
|
|
if (flags & ZFREE_STATFREE)
|
|
zone->uz_frees++;
|
|
|
|
if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
|
|
mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
|
|
keg = zone_first_keg(zone); /* Must only be one. */
|
|
if (zone->uz_flags & UMA_ZONE_HASH) {
|
|
slab = hash_sfind(&keg->uk_hash, mem);
|
|
} else {
|
|
mem += keg->uk_pgoff;
|
|
slab = (uma_slab_t)mem;
|
|
}
|
|
} else {
|
|
/* This prevents redundant lookups via free(). */
|
|
if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL)
|
|
slab = (uma_slab_t)udata;
|
|
else
|
|
slab = vtoslab((vm_offset_t)item);
|
|
keg = slab->us_keg;
|
|
keg_relock(keg, zone);
|
|
}
|
|
MPASS(keg == slab->us_keg);
|
|
|
|
/* Do we need to remove from any lists? */
|
|
if (slab->us_freecount+1 == keg->uk_ipers) {
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
|
|
} else if (slab->us_freecount == 0) {
|
|
LIST_REMOVE(slab, us_link);
|
|
LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
|
|
}
|
|
|
|
/* Slab management stuff */
|
|
freei = ((unsigned long)item - (unsigned long)slab->us_data)
|
|
/ keg->uk_rsize;
|
|
|
|
#ifdef INVARIANTS
|
|
if (!skip)
|
|
uma_dbg_free(zone, slab, item);
|
|
#endif
|
|
|
|
if (keg->uk_flags & UMA_ZONE_REFCNT) {
|
|
slabref = (uma_slabrefcnt_t)slab;
|
|
slabref->us_freelist[freei].us_item = slab->us_firstfree;
|
|
} else {
|
|
slab->us_freelist[freei].us_item = slab->us_firstfree;
|
|
}
|
|
slab->us_firstfree = freei;
|
|
slab->us_freecount++;
|
|
|
|
/* Zone statistics */
|
|
keg->uk_free++;
|
|
|
|
clearfull = 0;
|
|
if (keg->uk_flags & UMA_ZFLAG_FULL) {
|
|
if (keg->uk_pages < keg->uk_maxpages) {
|
|
keg->uk_flags &= ~UMA_ZFLAG_FULL;
|
|
clearfull = 1;
|
|
}
|
|
|
|
/*
|
|
* We can handle one more allocation. Since we're clearing ZFLAG_FULL,
|
|
* wake up all procs blocked on pages. This should be uncommon, so
|
|
* keeping this simple for now (rather than adding count of blocked
|
|
* threads etc).
|
|
*/
|
|
wakeup(keg);
|
|
}
|
|
if (clearfull) {
|
|
zone_relock(zone, keg);
|
|
zone->uz_flags &= ~UMA_ZFLAG_FULL;
|
|
wakeup(zone);
|
|
ZONE_UNLOCK(zone);
|
|
} else
|
|
KEG_UNLOCK(keg);
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_set_max(uma_zone_t zone, int nitems)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
ZONE_LOCK(zone);
|
|
keg = zone_first_keg(zone);
|
|
keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
|
|
if (keg->uk_maxpages * keg->uk_ipers < nitems)
|
|
keg->uk_maxpages += keg->uk_ppera;
|
|
nitems = keg->uk_maxpages * keg->uk_ipers;
|
|
ZONE_UNLOCK(zone);
|
|
|
|
return (nitems);
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_get_max(uma_zone_t zone)
|
|
{
|
|
int nitems;
|
|
uma_keg_t keg;
|
|
|
|
ZONE_LOCK(zone);
|
|
keg = zone_first_keg(zone);
|
|
nitems = keg->uk_maxpages * keg->uk_ipers;
|
|
ZONE_UNLOCK(zone);
|
|
|
|
return (nitems);
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_get_cur(uma_zone_t zone)
|
|
{
|
|
int64_t nitems;
|
|
u_int i;
|
|
|
|
ZONE_LOCK(zone);
|
|
nitems = zone->uz_allocs - zone->uz_frees;
|
|
CPU_FOREACH(i) {
|
|
/*
|
|
* See the comment in sysctl_vm_zone_stats() regarding the
|
|
* safety of accessing the per-cpu caches. With the zone lock
|
|
* held, it is safe, but can potentially result in stale data.
|
|
*/
|
|
nitems += zone->uz_cpu[i].uc_allocs -
|
|
zone->uz_cpu[i].uc_frees;
|
|
}
|
|
ZONE_UNLOCK(zone);
|
|
|
|
return (nitems < 0 ? 0 : nitems);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_init(uma_zone_t zone, uma_init uminit)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
ZONE_LOCK(zone);
|
|
keg = zone_first_keg(zone);
|
|
KASSERT(keg->uk_pages == 0,
|
|
("uma_zone_set_init on non-empty keg"));
|
|
keg->uk_init = uminit;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
ZONE_LOCK(zone);
|
|
keg = zone_first_keg(zone);
|
|
KASSERT(keg->uk_pages == 0,
|
|
("uma_zone_set_fini on non-empty keg"));
|
|
keg->uk_fini = fini;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
|
|
{
|
|
ZONE_LOCK(zone);
|
|
KASSERT(zone_first_keg(zone)->uk_pages == 0,
|
|
("uma_zone_set_zinit on non-empty keg"));
|
|
zone->uz_init = zinit;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
|
|
{
|
|
ZONE_LOCK(zone);
|
|
KASSERT(zone_first_keg(zone)->uk_pages == 0,
|
|
("uma_zone_set_zfini on non-empty keg"));
|
|
zone->uz_fini = zfini;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
/* XXX uk_freef is not actually used with the zone locked */
|
|
void
|
|
uma_zone_set_freef(uma_zone_t zone, uma_free freef)
|
|
{
|
|
|
|
ZONE_LOCK(zone);
|
|
zone_first_keg(zone)->uk_freef = freef;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
/* XXX uk_allocf is not actually used with the zone locked */
|
|
void
|
|
uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
|
|
{
|
|
uma_keg_t keg;
|
|
|
|
ZONE_LOCK(zone);
|
|
keg = zone_first_keg(zone);
|
|
keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
|
|
keg->uk_allocf = allocf;
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
|
|
{
|
|
uma_keg_t keg;
|
|
vm_offset_t kva;
|
|
int pages;
|
|
|
|
keg = zone_first_keg(zone);
|
|
pages = count / keg->uk_ipers;
|
|
|
|
if (pages * keg->uk_ipers < count)
|
|
pages++;
|
|
|
|
kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
|
|
|
|
if (kva == 0)
|
|
return (0);
|
|
if (obj == NULL)
|
|
obj = vm_object_allocate(OBJT_PHYS, pages);
|
|
else {
|
|
VM_OBJECT_LOCK_INIT(obj, "uma object");
|
|
_vm_object_allocate(OBJT_PHYS, pages, obj);
|
|
}
|
|
ZONE_LOCK(zone);
|
|
keg->uk_kva = kva;
|
|
keg->uk_obj = obj;
|
|
keg->uk_maxpages = pages;
|
|
keg->uk_allocf = obj_alloc;
|
|
keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
|
|
ZONE_UNLOCK(zone);
|
|
return (1);
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_prealloc(uma_zone_t zone, int items)
|
|
{
|
|
int slabs;
|
|
uma_slab_t slab;
|
|
uma_keg_t keg;
|
|
|
|
keg = zone_first_keg(zone);
|
|
ZONE_LOCK(zone);
|
|
slabs = items / keg->uk_ipers;
|
|
if (slabs * keg->uk_ipers < items)
|
|
slabs++;
|
|
while (slabs > 0) {
|
|
slab = keg_alloc_slab(keg, zone, M_WAITOK);
|
|
if (slab == NULL)
|
|
break;
|
|
MPASS(slab->us_keg == keg);
|
|
LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
|
|
slabs--;
|
|
}
|
|
ZONE_UNLOCK(zone);
|
|
}
|
|
|
|
/* See uma.h */
|
|
u_int32_t *
|
|
uma_find_refcnt(uma_zone_t zone, void *item)
|
|
{
|
|
uma_slabrefcnt_t slabref;
|
|
uma_keg_t keg;
|
|
u_int32_t *refcnt;
|
|
int idx;
|
|
|
|
slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
|
|
(~UMA_SLAB_MASK));
|
|
keg = slabref->us_keg;
|
|
KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
|
|
("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
|
|
idx = ((unsigned long)item - (unsigned long)slabref->us_data)
|
|
/ keg->uk_rsize;
|
|
refcnt = &slabref->us_freelist[idx].us_refcnt;
|
|
return refcnt;
|
|
}
|
|
|
|
/* See uma.h */
|
|
void
|
|
uma_reclaim(void)
|
|
{
|
|
#ifdef UMA_DEBUG
|
|
printf("UMA: vm asked us to release pages!\n");
|
|
#endif
|
|
bucket_enable();
|
|
zone_foreach(zone_drain);
|
|
/*
|
|
* Some slabs may have been freed but this zone will be visited early
|
|
* we visit again so that we can free pages that are empty once other
|
|
* zones are drained. We have to do the same for buckets.
|
|
*/
|
|
zone_drain(slabzone);
|
|
zone_drain(slabrefzone);
|
|
bucket_zone_drain();
|
|
}
|
|
|
|
/* See uma.h */
|
|
int
|
|
uma_zone_exhausted(uma_zone_t zone)
|
|
{
|
|
int full;
|
|
|
|
ZONE_LOCK(zone);
|
|
full = (zone->uz_flags & UMA_ZFLAG_FULL);
|
|
ZONE_UNLOCK(zone);
|
|
return (full);
|
|
}
|
|
|
|
int
|
|
uma_zone_exhausted_nolock(uma_zone_t zone)
|
|
{
|
|
return (zone->uz_flags & UMA_ZFLAG_FULL);
|
|
}
|
|
|
|
void *
|
|
uma_large_malloc(int size, int wait)
|
|
{
|
|
void *mem;
|
|
uma_slab_t slab;
|
|
u_int8_t flags;
|
|
|
|
slab = zone_alloc_item(slabzone, NULL, wait);
|
|
if (slab == NULL)
|
|
return (NULL);
|
|
mem = page_alloc(NULL, size, &flags, wait);
|
|
if (mem) {
|
|
vsetslab((vm_offset_t)mem, slab);
|
|
slab->us_data = mem;
|
|
slab->us_flags = flags | UMA_SLAB_MALLOC;
|
|
slab->us_size = size;
|
|
} else {
|
|
zone_free_item(slabzone, slab, NULL, SKIP_NONE,
|
|
ZFREE_STATFAIL | ZFREE_STATFREE);
|
|
}
|
|
|
|
return (mem);
|
|
}
|
|
|
|
void
|
|
uma_large_free(uma_slab_t slab)
|
|
{
|
|
vsetobj((vm_offset_t)slab->us_data, kmem_object);
|
|
page_free(slab->us_data, slab->us_size, slab->us_flags);
|
|
zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
|
|
}
|
|
|
|
void
|
|
uma_print_stats(void)
|
|
{
|
|
zone_foreach(uma_print_zone);
|
|
}
|
|
|
|
static void
|
|
slab_print(uma_slab_t slab)
|
|
{
|
|
printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
|
|
slab->us_keg, slab->us_data, slab->us_freecount,
|
|
slab->us_firstfree);
|
|
}
|
|
|
|
static void
|
|
cache_print(uma_cache_t cache)
|
|
{
|
|
printf("alloc: %p(%d), free: %p(%d)\n",
|
|
cache->uc_allocbucket,
|
|
cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
|
|
cache->uc_freebucket,
|
|
cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
|
|
}
|
|
|
|
static void
|
|
uma_print_keg(uma_keg_t keg)
|
|
{
|
|
uma_slab_t slab;
|
|
|
|
printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d "
|
|
"out %d free %d limit %d\n",
|
|
keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
|
|
keg->uk_ipers, keg->uk_ppera,
|
|
(keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
|
|
(keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
|
|
printf("Part slabs:\n");
|
|
LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
|
|
slab_print(slab);
|
|
printf("Free slabs:\n");
|
|
LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
|
|
slab_print(slab);
|
|
printf("Full slabs:\n");
|
|
LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
|
|
slab_print(slab);
|
|
}
|
|
|
|
void
|
|
uma_print_zone(uma_zone_t zone)
|
|
{
|
|
uma_cache_t cache;
|
|
uma_klink_t kl;
|
|
int i;
|
|
|
|
printf("zone: %s(%p) size %d flags %d\n",
|
|
zone->uz_name, zone, zone->uz_size, zone->uz_flags);
|
|
LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
|
|
uma_print_keg(kl->kl_keg);
|
|
CPU_FOREACH(i) {
|
|
cache = &zone->uz_cpu[i];
|
|
printf("CPU %d Cache:\n", i);
|
|
cache_print(cache);
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* Generate statistics across both the zone and its per-cpu cache's. Return
|
|
* desired statistics if the pointer is non-NULL for that statistic.
|
|
*
|
|
* Note: does not update the zone statistics, as it can't safely clear the
|
|
* per-CPU cache statistic.
|
|
*
|
|
* XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
|
|
* safe from off-CPU; we should modify the caches to track this information
|
|
* directly so that we don't have to.
|
|
*/
|
|
static void
|
|
uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
|
|
u_int64_t *freesp, u_int64_t *sleepsp)
|
|
{
|
|
uma_cache_t cache;
|
|
u_int64_t allocs, frees, sleeps;
|
|
int cachefree, cpu;
|
|
|
|
allocs = frees = sleeps = 0;
|
|
cachefree = 0;
|
|
CPU_FOREACH(cpu) {
|
|
cache = &z->uz_cpu[cpu];
|
|
if (cache->uc_allocbucket != NULL)
|
|
cachefree += cache->uc_allocbucket->ub_cnt;
|
|
if (cache->uc_freebucket != NULL)
|
|
cachefree += cache->uc_freebucket->ub_cnt;
|
|
allocs += cache->uc_allocs;
|
|
frees += cache->uc_frees;
|
|
}
|
|
allocs += z->uz_allocs;
|
|
frees += z->uz_frees;
|
|
sleeps += z->uz_sleeps;
|
|
if (cachefreep != NULL)
|
|
*cachefreep = cachefree;
|
|
if (allocsp != NULL)
|
|
*allocsp = allocs;
|
|
if (freesp != NULL)
|
|
*freesp = frees;
|
|
if (sleepsp != NULL)
|
|
*sleepsp = sleeps;
|
|
}
|
|
#endif /* DDB */
|
|
|
|
static int
|
|
sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
uma_keg_t kz;
|
|
uma_zone_t z;
|
|
int count;
|
|
|
|
count = 0;
|
|
mtx_lock(&uma_mtx);
|
|
LIST_FOREACH(kz, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(z, &kz->uk_zones, uz_link)
|
|
count++;
|
|
}
|
|
mtx_unlock(&uma_mtx);
|
|
return (sysctl_handle_int(oidp, &count, 0, req));
|
|
}
|
|
|
|
static int
|
|
sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct uma_stream_header ush;
|
|
struct uma_type_header uth;
|
|
struct uma_percpu_stat ups;
|
|
uma_bucket_t bucket;
|
|
struct sbuf sbuf;
|
|
uma_cache_t cache;
|
|
uma_klink_t kl;
|
|
uma_keg_t kz;
|
|
uma_zone_t z;
|
|
uma_keg_t k;
|
|
int count, error, i;
|
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
|
|
|
count = 0;
|
|
mtx_lock(&uma_mtx);
|
|
LIST_FOREACH(kz, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(z, &kz->uk_zones, uz_link)
|
|
count++;
|
|
}
|
|
|
|
/*
|
|
* Insert stream header.
|
|
*/
|
|
bzero(&ush, sizeof(ush));
|
|
ush.ush_version = UMA_STREAM_VERSION;
|
|
ush.ush_maxcpus = (mp_maxid + 1);
|
|
ush.ush_count = count;
|
|
(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
|
|
|
|
LIST_FOREACH(kz, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(z, &kz->uk_zones, uz_link) {
|
|
bzero(&uth, sizeof(uth));
|
|
ZONE_LOCK(z);
|
|
strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
|
|
uth.uth_align = kz->uk_align;
|
|
uth.uth_size = kz->uk_size;
|
|
uth.uth_rsize = kz->uk_rsize;
|
|
LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
|
|
k = kl->kl_keg;
|
|
uth.uth_maxpages += k->uk_maxpages;
|
|
uth.uth_pages += k->uk_pages;
|
|
uth.uth_keg_free += k->uk_free;
|
|
uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
|
|
* k->uk_ipers;
|
|
}
|
|
|
|
/*
|
|
* A zone is secondary is it is not the first entry
|
|
* on the keg's zone list.
|
|
*/
|
|
if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
|
|
(LIST_FIRST(&kz->uk_zones) != z))
|
|
uth.uth_zone_flags = UTH_ZONE_SECONDARY;
|
|
|
|
LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
|
|
uth.uth_zone_free += bucket->ub_cnt;
|
|
uth.uth_allocs = z->uz_allocs;
|
|
uth.uth_frees = z->uz_frees;
|
|
uth.uth_fails = z->uz_fails;
|
|
uth.uth_sleeps = z->uz_sleeps;
|
|
(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
|
|
/*
|
|
* While it is not normally safe to access the cache
|
|
* bucket pointers while not on the CPU that owns the
|
|
* cache, we only allow the pointers to be exchanged
|
|
* without the zone lock held, not invalidated, so
|
|
* accept the possible race associated with bucket
|
|
* exchange during monitoring.
|
|
*/
|
|
for (i = 0; i < (mp_maxid + 1); i++) {
|
|
bzero(&ups, sizeof(ups));
|
|
if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
|
|
goto skip;
|
|
if (CPU_ABSENT(i))
|
|
goto skip;
|
|
cache = &z->uz_cpu[i];
|
|
if (cache->uc_allocbucket != NULL)
|
|
ups.ups_cache_free +=
|
|
cache->uc_allocbucket->ub_cnt;
|
|
if (cache->uc_freebucket != NULL)
|
|
ups.ups_cache_free +=
|
|
cache->uc_freebucket->ub_cnt;
|
|
ups.ups_allocs = cache->uc_allocs;
|
|
ups.ups_frees = cache->uc_frees;
|
|
skip:
|
|
(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
|
|
}
|
|
ZONE_UNLOCK(z);
|
|
}
|
|
}
|
|
mtx_unlock(&uma_mtx);
|
|
error = sbuf_finish(&sbuf);
|
|
sbuf_delete(&sbuf);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef DDB
|
|
DB_SHOW_COMMAND(uma, db_show_uma)
|
|
{
|
|
u_int64_t allocs, frees, sleeps;
|
|
uma_bucket_t bucket;
|
|
uma_keg_t kz;
|
|
uma_zone_t z;
|
|
int cachefree;
|
|
|
|
db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
|
|
"Requests", "Sleeps");
|
|
LIST_FOREACH(kz, &uma_kegs, uk_link) {
|
|
LIST_FOREACH(z, &kz->uk_zones, uz_link) {
|
|
if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
|
|
allocs = z->uz_allocs;
|
|
frees = z->uz_frees;
|
|
sleeps = z->uz_sleeps;
|
|
cachefree = 0;
|
|
} else
|
|
uma_zone_sumstat(z, &cachefree, &allocs,
|
|
&frees, &sleeps);
|
|
if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
|
|
(LIST_FIRST(&kz->uk_zones) != z)))
|
|
cachefree += kz->uk_free;
|
|
LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
|
|
cachefree += bucket->ub_cnt;
|
|
db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name,
|
|
(uintmax_t)kz->uk_size,
|
|
(intmax_t)(allocs - frees), cachefree,
|
|
(uintmax_t)allocs, sleeps);
|
|
if (db_pager_quit)
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#endif
|