freebsd-skq/sys/dev/cs/if_cs.c
Robert Watson eb956cd041 Use if_maddr_rlock()/if_maddr_runlock() rather than IF_ADDR_LOCK()/
IF_ADDR_UNLOCK() across network device drivers when accessing the
per-interface multicast address list, if_multiaddrs.  This will
allow us to change the locking strategy without affecting our driver
programming interface or binary interface.

For two wireless drivers, remove unnecessary locking, since they
don't actually access the multicast address list.

Approved by:	re (kib)
MFC after:	6 weeks
2009-06-26 11:45:06 +00:00

1244 lines
28 KiB
C

/*-
* Copyright (c) 1997,1998 Maxim Bolotin and Oleg Sharoiko.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
*
* Device driver for Crystal Semiconductor CS8920 based ethernet
* adapters. By Maxim Bolotin and Oleg Sharoiko, 27-April-1997
*/
/*
#define CS_DEBUG
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/ethernet.h>
#include <net/bpf.h>
#include <dev/cs/if_csvar.h>
#include <dev/cs/if_csreg.h>
#ifdef CS_USE_64K_DMA
#define CS_DMA_BUFFER_SIZE 65536
#else
#define CS_DMA_BUFFER_SIZE 16384
#endif
static void cs_init(void *);
static void cs_init_locked(struct cs_softc *);
static int cs_ioctl(struct ifnet *, u_long, caddr_t);
static void cs_start(struct ifnet *);
static void cs_start_locked(struct ifnet *);
static void cs_stop(struct cs_softc *);
static void cs_reset(struct cs_softc *);
static void cs_watchdog(void *);
static int cs_mediachange(struct ifnet *);
static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
static int cs_mediaset(struct cs_softc *, int);
static void cs_write_mbufs(struct cs_softc*, struct mbuf*);
static void cs_xmit_buf(struct cs_softc*);
static int cs_get_packet(struct cs_softc*);
static void cs_setmode(struct cs_softc*);
static int get_eeprom_data(struct cs_softc *sc, int, int, uint16_t *);
static int get_eeprom_cksum(int, int, uint16_t *);
static int wait_eeprom_ready( struct cs_softc *);
static void control_dc_dc( struct cs_softc *, int );
static int enable_tp(struct cs_softc *);
static int enable_aui(struct cs_softc *);
static int enable_bnc(struct cs_softc *);
static int cs_duplex_auto(struct cs_softc *);
devclass_t cs_devclass;
driver_intr_t csintr;
/* sysctl vars */
SYSCTL_NODE(_hw, OID_AUTO, cs, CTLFLAG_RD, 0, "cs device parameters");
int cs_ignore_cksum_failure = 0;
TUNABLE_INT("hw.cs.ignore_checksum_failure", &cs_ignore_cksum_failure);
SYSCTL_INT(_hw_cs, OID_AUTO, ignore_checksum_failure, CTLFLAG_RW,
&cs_ignore_cksum_failure, 0,
"ignore checksum errors in cs card EEPROM");
static int cs_recv_delay = 570;
TUNABLE_INT("hw.cs.recv_delay", &cs_recv_delay);
SYSCTL_INT(_hw_cs, OID_AUTO, recv_delay, CTLFLAG_RW, &cs_recv_delay, 570, "");
static int cs8900_eeint2irq[16] = {
10, 11, 12, 5, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255
};
static int cs8900_irq2eeint[16] = {
255, 255, 255, 255, 255, 3, 255, 255,
255, 0, 1, 2, 255, 255, 255, 255
};
static int
get_eeprom_data(struct cs_softc *sc, int off, int len, uint16_t *buffer)
{
int i;
#ifdef CS_DEBUG
device_printf(sc->dev, "EEPROM data from %x for %x:\n", off, len);
#endif
for (i=0; i < len; i++) {
if (wait_eeprom_ready(sc) < 0)
return (-1);
/* Send command to EEPROM to read */
cs_writereg(sc, PP_EECMD, (off + i) | EEPROM_READ_CMD);
if (wait_eeprom_ready(sc) < 0)
return (-1);
buffer[i] = cs_readreg(sc, PP_EEData);
#ifdef CS_DEBUG
printf("%04x ",buffer[i]);
#endif
}
#ifdef CS_DEBUG
printf("\n");
#endif
return (0);
}
static int
get_eeprom_cksum(int off, int len, uint16_t *buffer)
{
int i;
uint16_t cksum=0;
for (i = 0; i < len; i++)
cksum += buffer[i];
cksum &= 0xffff;
if (cksum == 0 || cs_ignore_cksum_failure)
return (0);
return (-1);
}
static int
wait_eeprom_ready(struct cs_softc *sc)
{
int i;
/*
* From the CS8900A datasheet, section 3.5.2:
* "Before issuing any command to the EEPROM, the host must wait
* for the SIBUSY bit (Register 16, SelfST, bit 8) to clear. After
* each command has been issued, the host must wait again for SIBUSY
* to clear."
*
* Before we issue the command, we should be !busy, so that will
* be fast. The datasheet suggests that clock out from the part
* per word will be on the order of 25us, which is consistant with
* the 1MHz serial clock and 16bits... We should never hit 100,
* let alone 15,000 here. The original code did an unconditional
* 30ms DELAY here. Bad Kharma. cs_readreg takes ~2us.
*/
for (i = 0; i < 15000; i++) /* 30ms max */
if (!(cs_readreg(sc, PP_SelfST) & SI_BUSY))
return (0);
return (1);
}
static void
control_dc_dc(struct cs_softc *sc, int on_not_off)
{
unsigned int self_control = HCB1_ENBL;
if (((sc->adapter_cnf & A_CNF_DC_DC_POLARITY)!=0) ^ on_not_off)
self_control |= HCB1;
else
self_control &= ~HCB1;
cs_writereg(sc, PP_SelfCTL, self_control);
DELAY(500000); /* Bad! */
}
static int
cs_duplex_auto(struct cs_softc *sc)
{
int i, error=0;
cs_writereg(sc, PP_AutoNegCTL,
RE_NEG_NOW | ALLOW_FDX | AUTO_NEG_ENABLE);
for (i=0; cs_readreg(sc, PP_AutoNegST) & AUTO_NEG_BUSY; i++) {
if (i > 4000) {
device_printf(sc->dev,
"full/half duplex auto negotiation timeout\n");
error = ETIMEDOUT;
break;
}
DELAY(1000);
}
return (error);
}
static int
enable_tp(struct cs_softc *sc)
{
cs_writereg(sc, PP_LineCTL, sc->line_ctl & ~AUI_ONLY);
control_dc_dc(sc, 0);
return (0);
}
static int
enable_aui(struct cs_softc *sc)
{
cs_writereg(sc, PP_LineCTL,
(sc->line_ctl & ~AUTO_AUI_10BASET) | AUI_ONLY);
control_dc_dc(sc, 0);
return (0);
}
static int
enable_bnc(struct cs_softc *sc)
{
cs_writereg(sc, PP_LineCTL,
(sc->line_ctl & ~AUTO_AUI_10BASET) | AUI_ONLY);
control_dc_dc(sc, 1);
return (0);
}
int
cs_cs89x0_probe(device_t dev)
{
int i;
int error;
u_long irq, junk;
struct cs_softc *sc = device_get_softc(dev);
unsigned rev_type = 0;
uint16_t id;
char chip_revision;
uint16_t eeprom_buff[CHKSUM_LEN];
int chip_type, pp_isaint, pp_isadma;
sc->dev = dev;
error = cs_alloc_port(dev, 0, CS_89x0_IO_PORTS);
if (error)
return (error);
sc->nic_addr = rman_get_start(sc->port_res);
if ((cs_inw(sc, ADD_PORT) & ADD_MASK) != ADD_SIG) {
/* Chip not detected. Let's try to reset it */
if (bootverbose)
device_printf(dev, "trying to reset the chip.\n");
cs_outw(sc, ADD_PORT, PP_SelfCTL);
i = cs_inw(sc, DATA_PORT);
cs_outw(sc, ADD_PORT, PP_SelfCTL);
cs_outw(sc, DATA_PORT, i | POWER_ON_RESET);
if ((cs_inw(sc, ADD_PORT) & ADD_MASK) != ADD_SIG)
return (ENXIO);
}
for (i = 0; i < 10000; i++) {
id = cs_readreg(sc, PP_ChipID);
if (id == CHIP_EISA_ID_SIG)
break;
}
if (i == 10000)
return (ENXIO);
rev_type = cs_readreg(sc, PRODUCT_ID_ADD);
chip_type = rev_type & ~REVISON_BITS;
chip_revision = ((rev_type & REVISON_BITS) >> 8) + 'A';
sc->chip_type = chip_type;
if (chip_type == CS8900) {
pp_isaint = PP_CS8900_ISAINT;
pp_isadma = PP_CS8900_ISADMA;
sc->send_cmd = TX_CS8900_AFTER_ALL;
} else {
pp_isaint = PP_CS8920_ISAINT;
pp_isadma = PP_CS8920_ISADMA;
sc->send_cmd = TX_CS8920_AFTER_ALL;
}
/*
* Clear some fields so that fail of EEPROM will left them clean
*/
sc->auto_neg_cnf = 0;
sc->adapter_cnf = 0;
sc->isa_config = 0;
/*
* If no interrupt specified, use what the board tells us.
*/
error = bus_get_resource(dev, SYS_RES_IRQ, 0, &irq, &junk);
/*
* Get data from EEPROM
*/
if((cs_readreg(sc, PP_SelfST) & EEPROM_PRESENT) == 0) {
device_printf(dev, "No EEPROM, assuming defaults.\n");
} else if (get_eeprom_data(sc,START_EEPROM_DATA,CHKSUM_LEN, eeprom_buff)<0) {
device_printf(dev, "EEPROM read failed, assuming defaults.\n");
} else if (get_eeprom_cksum(START_EEPROM_DATA,CHKSUM_LEN, eeprom_buff)<0) {
device_printf(dev, "EEPROM cheksum bad, assuming defaults.\n");
} else {
sc->auto_neg_cnf = eeprom_buff[AUTO_NEG_CNF_OFFSET];
sc->adapter_cnf = eeprom_buff[ADAPTER_CNF_OFFSET];
sc->isa_config = eeprom_buff[ISA_CNF_OFFSET];
for (i=0; i<ETHER_ADDR_LEN/2; i++) {
sc->enaddr[i*2] = eeprom_buff[i];
sc->enaddr[i*2+1] = eeprom_buff[i] >> 8;
}
/*
* If no interrupt specified, use what the
* board tells us.
*/
if (error) {
irq = sc->isa_config & INT_NO_MASK;
error = 0;
if (chip_type == CS8900) {
irq = cs8900_eeint2irq[irq];
} else {
if (irq > CS8920_NO_INTS)
irq = 255;
}
if (irq == 255) {
device_printf(dev, "invalid irq in EEPROM.\n");
error = EINVAL;
}
if (!error)
bus_set_resource(dev, SYS_RES_IRQ, 0,
irq, 1);
}
}
if (!error && !(sc->flags & CS_NO_IRQ)) {
if (chip_type == CS8900) {
if (irq >= 0 || irq < 16)
irq = cs8900_irq2eeint[irq];
else
irq = 255;
} else {
if (irq > CS8920_NO_INTS)
irq = 255;
}
if (irq == 255)
error = EINVAL;
}
if (error) {
device_printf(dev, "Unknown or invalid irq\n");
return (error);
}
if (!(sc->flags & CS_NO_IRQ))
cs_writereg(sc, pp_isaint, irq);
/*
* Temporary disabled
*
if (drq>0)
cs_writereg(sc, pp_isadma, drq);
else {
device_printf(dev, "incorrect drq\n",);
return (0);
}
*/
if (bootverbose)
device_printf(dev, "CS89%c0%s rev %c media%s%s%s\n",
chip_type == CS8900 ? '0' : '2',
chip_type == CS8920M ? "M" : "",
chip_revision,
(sc->adapter_cnf & A_CNF_10B_T) ? " TP" : "",
(sc->adapter_cnf & A_CNF_AUI) ? " AUI" : "",
(sc->adapter_cnf & A_CNF_10B_2) ? " BNC" : "");
if ((sc->adapter_cnf & A_CNF_EXTND_10B_2) &&
(sc->adapter_cnf & A_CNF_LOW_RX_SQUELCH))
sc->line_ctl = LOW_RX_SQUELCH;
else
sc->line_ctl = 0;
return (0);
}
/*
* Allocate a port resource with the given resource id.
*/
int
cs_alloc_port(device_t dev, int rid, int size)
{
struct cs_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
0ul, ~0ul, size, RF_ACTIVE);
if (res == NULL)
return (ENOENT);
sc->port_rid = rid;
sc->port_res = res;
return (0);
}
/*
* Allocate an irq resource with the given resource id.
*/
int
cs_alloc_irq(device_t dev, int rid)
{
struct cs_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE);
if (res == NULL)
return (ENOENT);
sc->irq_rid = rid;
sc->irq_res = res;
return (0);
}
/*
* Release all resources
*/
void
cs_release_resources(device_t dev)
{
struct cs_softc *sc = device_get_softc(dev);
if (sc->port_res) {
bus_release_resource(dev, SYS_RES_IOPORT,
sc->port_rid, sc->port_res);
sc->port_res = 0;
}
if (sc->irq_res) {
bus_release_resource(dev, SYS_RES_IRQ,
sc->irq_rid, sc->irq_res);
sc->irq_res = 0;
}
}
/*
* Install the interface into kernel networking data structures
*/
int
cs_attach(device_t dev)
{
int error, media=0;
struct cs_softc *sc = device_get_softc(dev);;
struct ifnet *ifp;
sc->dev = dev;
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
cs_release_resources(dev);
return (ENOMEM);
}
mtx_init(&sc->lock, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->timer, &sc->lock, 0);
CS_LOCK(sc);
cs_stop(sc);
CS_UNLOCK(sc);
ifp->if_softc=sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_start=cs_start;
ifp->if_ioctl=cs_ioctl;
ifp->if_init=cs_init;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_flags=(IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
/*
* this code still in progress (DMA support)
*
sc->recv_ring=malloc(CS_DMA_BUFFER_SIZE<<1, M_DEVBUF, M_NOWAIT);
if (sc->recv_ring == NULL) {
log(LOG_ERR,
"%s: Couldn't allocate memory for NIC\n", ifp->if_xname);
return(0);
}
if ((sc->recv_ring-(sc->recv_ring & 0x1FFFF))
< (128*1024-CS_DMA_BUFFER_SIZE))
sc->recv_ring+=16*1024;
*/
sc->buffer=malloc(ETHER_MAX_LEN-ETHER_CRC_LEN,M_DEVBUF,M_NOWAIT);
if (sc->buffer == NULL) {
device_printf(sc->dev, "Couldn't allocate memory for NIC\n");
if_free(ifp);
mtx_destroy(&sc->lock);
cs_release_resources(dev);
return(ENOMEM);
}
/*
* Initialize the media structures.
*/
ifmedia_init(&sc->media, 0, cs_mediachange, cs_mediastatus);
if (sc->adapter_cnf & A_CNF_10B_T) {
ifmedia_add(&sc->media, IFM_ETHER|IFM_10_T, 0, NULL);
if (sc->chip_type != CS8900) {
ifmedia_add(&sc->media,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->media,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
}
}
if (sc->adapter_cnf & A_CNF_10B_2)
ifmedia_add(&sc->media, IFM_ETHER|IFM_10_2, 0, NULL);
if (sc->adapter_cnf & A_CNF_AUI)
ifmedia_add(&sc->media, IFM_ETHER|IFM_10_5, 0, NULL);
if (sc->adapter_cnf & A_CNF_MEDIA)
ifmedia_add(&sc->media, IFM_ETHER|IFM_AUTO, 0, NULL);
/* Set default media from EEPROM */
switch (sc->adapter_cnf & A_CNF_MEDIA_TYPE) {
case A_CNF_MEDIA_AUTO: media = IFM_ETHER|IFM_AUTO; break;
case A_CNF_MEDIA_10B_T: media = IFM_ETHER|IFM_10_T; break;
case A_CNF_MEDIA_10B_2: media = IFM_ETHER|IFM_10_2; break;
case A_CNF_MEDIA_AUI: media = IFM_ETHER|IFM_10_5; break;
default:
device_printf(sc->dev, "no media, assuming 10baseT\n");
sc->adapter_cnf |= A_CNF_10B_T;
ifmedia_add(&sc->media, IFM_ETHER|IFM_10_T, 0, NULL);
if (sc->chip_type != CS8900) {
ifmedia_add(&sc->media,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->media,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
}
media = IFM_ETHER | IFM_10_T;
break;
}
ifmedia_set(&sc->media, media);
cs_mediaset(sc, media);
ether_ifattach(ifp, sc->enaddr);
error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
NULL, csintr, sc, &sc->irq_handle);
if (error) {
ether_ifdetach(ifp);
free(sc->buffer, M_DEVBUF);
if_free(ifp);
mtx_destroy(&sc->lock);
cs_release_resources(dev);
return (error);
}
return (0);
}
int
cs_detach(device_t dev)
{
struct cs_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->ifp;
CS_LOCK(sc);
cs_stop(sc);
CS_UNLOCK(sc);
callout_drain(&sc->timer);
ether_ifdetach(ifp);
bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
cs_release_resources(dev);
free(sc->buffer, M_DEVBUF);
if_free(ifp);
mtx_destroy(&sc->lock);
return (0);
}
/*
* Initialize the board
*/
static void
cs_init(void *xsc)
{
struct cs_softc *sc=(struct cs_softc *)xsc;
CS_LOCK(sc);
cs_init_locked(sc);
CS_UNLOCK(sc);
}
static void
cs_init_locked(struct cs_softc *sc)
{
struct ifnet *ifp = sc->ifp;
int i, rx_cfg;
/*
* reset watchdog timer
*/
sc->tx_timeout = 0;
sc->buf_len = 0;
/*
* Hardware initialization of cs
*/
/* Enable receiver and transmitter */
cs_writereg(sc, PP_LineCTL,
cs_readreg(sc, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON);
/* Configure the receiver mode */
cs_setmode(sc);
/*
* This defines what type of frames will cause interrupts
* Bad frames should generate interrupts so that the driver
* could track statistics of discarded packets
*/
rx_cfg = RX_OK_ENBL | RX_CRC_ERROR_ENBL | RX_RUNT_ENBL |
RX_EXTRA_DATA_ENBL;
if (sc->isa_config & STREAM_TRANSFER)
rx_cfg |= RX_STREAM_ENBL;
cs_writereg(sc, PP_RxCFG, rx_cfg);
cs_writereg(sc, PP_TxCFG, TX_LOST_CRS_ENBL |
TX_SQE_ERROR_ENBL | TX_OK_ENBL | TX_LATE_COL_ENBL |
TX_JBR_ENBL | TX_ANY_COL_ENBL | TX_16_COL_ENBL);
cs_writereg(sc, PP_BufCFG, READY_FOR_TX_ENBL |
RX_MISS_COUNT_OVRFLOW_ENBL | TX_COL_COUNT_OVRFLOW_ENBL |
TX_UNDERRUN_ENBL /*| RX_DMA_ENBL*/);
/* Write MAC address into IA filter */
for (i=0; i<ETHER_ADDR_LEN/2; i++)
cs_writereg(sc, PP_IA + i * 2,
sc->enaddr[i * 2] |
(sc->enaddr[i * 2 + 1] << 8) );
/*
* Now enable everything
*/
/*
#ifdef CS_USE_64K_DMA
cs_writereg(sc, PP_BusCTL, ENABLE_IRQ | RX_DMA_SIZE_64K);
#else
cs_writereg(sc, PP_BusCTL, ENABLE_IRQ);
#endif
*/
cs_writereg(sc, PP_BusCTL, ENABLE_IRQ);
/*
* Set running and clear output active flags
*/
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->timer, hz, cs_watchdog, sc);
/*
* Start sending process
*/
cs_start_locked(ifp);
}
/*
* Get the packet from the board and send it to the upper layer.
*/
static int
cs_get_packet(struct cs_softc *sc)
{
struct ifnet *ifp = sc->ifp;
int iobase = sc->nic_addr, status, length;
struct ether_header *eh;
struct mbuf *m;
#ifdef CS_DEBUG
int i;
#endif
status = cs_inw(sc, RX_FRAME_PORT);
length = cs_inw(sc, RX_FRAME_PORT);
#ifdef CS_DEBUG
device_printf(sc->dev, "rcvd: stat %x, len %d\n",
status, length);
#endif
if (!(status & RX_OK)) {
#ifdef CS_DEBUG
device_printf(sc->dev, "bad pkt stat %x\n", status);
#endif
ifp->if_ierrors++;
return (-1);
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m==NULL)
return (-1);
if (length > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return (-1);
}
}
/* Initialize packet's header info */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = length;
m->m_len = length;
/* Get the data */
insw(iobase + RX_FRAME_PORT, m->m_data, (length+1)>>1);
eh = mtod(m, struct ether_header *);
#ifdef CS_DEBUG
for (i=0;i<length;i++)
printf(" %02x",(unsigned char)*((char *)(m->m_data+i)));
printf( "\n" );
#endif
if (status & (RX_IA | RX_BROADCAST) ||
(ifp->if_flags & IFF_MULTICAST && status & RX_HASHED)) {
/* Feed the packet to the upper layer */
(*ifp->if_input)(ifp, m);
ifp->if_ipackets++;
if (length == ETHER_MAX_LEN-ETHER_CRC_LEN)
DELAY(cs_recv_delay);
} else {
m_freem(m);
}
return (0);
}
/*
* Handle interrupts
*/
void
csintr(void *arg)
{
struct cs_softc *sc = (struct cs_softc*) arg;
struct ifnet *ifp = sc->ifp;
int status;
#ifdef CS_DEBUG
device_printf(sc->dev, "Interrupt.\n");
#endif
CS_LOCK(sc);
while ((status=cs_inw(sc, ISQ_PORT))) {
#ifdef CS_DEBUG
device_printf(sc->dev, "from ISQ: %04x\n", status);
#endif
switch (status & ISQ_EVENT_MASK) {
case ISQ_RECEIVER_EVENT:
cs_get_packet(sc);
break;
case ISQ_TRANSMITTER_EVENT:
if (status & TX_OK)
ifp->if_opackets++;
else
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->tx_timeout = 0;
break;
case ISQ_BUFFER_EVENT:
if (status & READY_FOR_TX) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->tx_timeout = 0;
}
if (status & TX_UNDERRUN) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->tx_timeout = 0;
ifp->if_oerrors++;
}
break;
case ISQ_RX_MISS_EVENT:
ifp->if_ierrors+=(status>>6);
break;
case ISQ_TX_COL_EVENT:
ifp->if_collisions+=(status>>6);
break;
}
}
if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
cs_start_locked(ifp);
}
CS_UNLOCK(sc);
}
/*
* Save the data in buffer
*/
static void
cs_write_mbufs( struct cs_softc *sc, struct mbuf *m )
{
int len;
struct mbuf *mp;
unsigned char *data, *buf;
for (mp=m, buf=sc->buffer, sc->buf_len=0; mp != NULL; mp=mp->m_next) {
len = mp->m_len;
/*
* Ignore empty parts
*/
if (!len)
continue;
/*
* Find actual data address
*/
data = mtod(mp, caddr_t);
bcopy((caddr_t) data, (caddr_t) buf, len);
buf += len;
sc->buf_len += len;
}
}
static void
cs_xmit_buf( struct cs_softc *sc )
{
outsw(sc->nic_addr+TX_FRAME_PORT, sc->buffer, (sc->buf_len+1)>>1);
sc->buf_len = 0;
}
static void
cs_start(struct ifnet *ifp)
{
struct cs_softc *sc = ifp->if_softc;
CS_LOCK(sc);
cs_start_locked(ifp);
CS_UNLOCK(sc);
}
static void
cs_start_locked(struct ifnet *ifp)
{
int length;
struct mbuf *m, *mp;
struct cs_softc *sc = ifp->if_softc;
for (;;) {
if (sc->buf_len)
length = sc->buf_len;
else {
IF_DEQUEUE( &ifp->if_snd, m );
if (m==NULL) {
return;
}
for (length=0, mp=m; mp != NULL; mp=mp->m_next)
length += mp->m_len;
/* Skip zero-length packets */
if (length == 0) {
m_freem(m);
continue;
}
cs_write_mbufs(sc, m);
BPF_MTAP(ifp, m);
m_freem(m);
}
/*
* Issue a SEND command
*/
cs_outw(sc, TX_CMD_PORT, sc->send_cmd);
cs_outw(sc, TX_LEN_PORT, length );
/*
* If there's no free space in the buffer then leave
* this packet for the next time: indicate output active
* and return.
*/
if (!(cs_readreg(sc, PP_BusST) & READY_FOR_TX_NOW)) {
sc->tx_timeout = sc->buf_len;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
}
cs_xmit_buf(sc);
/*
* Set the watchdog timer in case we never hear
* from board again. (I don't know about correct
* value for this timeout)
*/
sc->tx_timeout = length;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
}
}
/*
* Stop everything on the interface
*/
static void
cs_stop(struct cs_softc *sc)
{
CS_ASSERT_LOCKED(sc);
cs_writereg(sc, PP_RxCFG, 0);
cs_writereg(sc, PP_TxCFG, 0);
cs_writereg(sc, PP_BufCFG, 0);
cs_writereg(sc, PP_BusCTL, 0);
sc->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->tx_timeout = 0;
callout_stop(&sc->timer);
}
/*
* Reset the interface
*/
static void
cs_reset(struct cs_softc *sc)
{
CS_ASSERT_LOCKED(sc);
cs_stop(sc);
cs_init_locked(sc);
}
static uint16_t
cs_hash_index(struct sockaddr_dl *addr)
{
uint32_t crc;
uint16_t idx;
caddr_t lla;
lla = LLADDR(addr);
crc = ether_crc32_le(lla, ETHER_ADDR_LEN);
idx = crc >> 26;
return (idx);
}
static void
cs_setmode(struct cs_softc *sc)
{
int rx_ctl;
uint16_t af[4];
uint16_t port, mask, index;
struct ifnet *ifp = sc->ifp;
struct ifmultiaddr *ifma;
/* Stop the receiver while changing filters */
cs_writereg(sc, PP_LineCTL, cs_readreg(sc, PP_LineCTL) & ~SERIAL_RX_ON);
if (ifp->if_flags & IFF_PROMISC) {
/* Turn on promiscuous mode. */
rx_ctl = RX_OK_ACCEPT | RX_PROM_ACCEPT;
} else if (ifp->if_flags & IFF_MULTICAST) {
/* Allow receiving frames with multicast addresses */
rx_ctl = RX_IA_ACCEPT | RX_BROADCAST_ACCEPT |
RX_OK_ACCEPT | RX_MULTCAST_ACCEPT;
/* Start with an empty filter */
af[0] = af[1] = af[2] = af[3] = 0x0000;
if (ifp->if_flags & IFF_ALLMULTI) {
/* Accept all multicast frames */
af[0] = af[1] = af[2] = af[3] = 0xffff;
} else {
/*
* Set up the filter to only accept multicast
* frames we're interested in.
*/
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
struct sockaddr_dl *dl =
(struct sockaddr_dl *)ifma->ifma_addr;
index = cs_hash_index(dl);
port = (u_int16_t) (index >> 4);
mask = (u_int16_t) (1 << (index & 0xf));
af[port] |= mask;
}
if_maddr_runlock(ifp);
}
cs_writereg(sc, PP_LAF + 0, af[0]);
cs_writereg(sc, PP_LAF + 2, af[1]);
cs_writereg(sc, PP_LAF + 4, af[2]);
cs_writereg(sc, PP_LAF + 6, af[3]);
} else {
/*
* Receive only good frames addressed for us and
* good broadcasts.
*/
rx_ctl = RX_IA_ACCEPT | RX_BROADCAST_ACCEPT |
RX_OK_ACCEPT;
}
/* Set up the filter */
cs_writereg(sc, PP_RxCTL, RX_DEF_ACCEPT | rx_ctl);
/* Turn on receiver */
cs_writereg(sc, PP_LineCTL, cs_readreg(sc, PP_LineCTL) | SERIAL_RX_ON);
}
static int
cs_ioctl(register struct ifnet *ifp, u_long command, caddr_t data)
{
struct cs_softc *sc=ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error=0;
#ifdef CS_DEBUG
if_printf(ifp, "%s command=%lx\n", __func__, command);
#endif
switch (command) {
case SIOCSIFFLAGS:
/*
* Switch interface state between "running" and
* "stopped", reflecting the UP flag.
*/
CS_LOCK(sc);
if (sc->ifp->if_flags & IFF_UP) {
if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING)==0) {
cs_init_locked(sc);
}
} else {
if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING)!=0) {
cs_stop(sc);
}
}
/*
* Promiscuous and/or multicast flags may have changed,
* so reprogram the multicast filter and/or receive mode.
*
* See note about multicasts in cs_setmode
*/
cs_setmode(sc);
CS_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*
* See note about multicasts in cs_setmode
*/
CS_LOCK(sc);
cs_setmode(sc);
CS_UNLOCK(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to
* generate an interrupt after a transmit has been started on it.
*/
static void
cs_watchdog(void *arg)
{
struct cs_softc *sc = arg;
struct ifnet *ifp = sc->ifp;
CS_ASSERT_LOCKED(sc);
if (sc->tx_timeout && --sc->tx_timeout == 0) {
ifp->if_oerrors++;
log(LOG_ERR, "%s: device timeout\n", ifp->if_xname);
/* Reset the interface */
if (ifp->if_flags & IFF_UP)
cs_reset(sc);
else
cs_stop(sc);
}
callout_reset(&sc->timer, hz, cs_watchdog, sc);
}
static int
cs_mediachange(struct ifnet *ifp)
{
struct cs_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->media;
int error;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
CS_LOCK(sc);
error = cs_mediaset(sc, ifm->ifm_media);
CS_UNLOCK(sc);
return (error);
}
static void
cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
int line_status;
struct cs_softc *sc = ifp->if_softc;
CS_LOCK(sc);
ifmr->ifm_active = IFM_ETHER;
line_status = cs_readreg(sc, PP_LineST);
if (line_status & TENBASET_ON) {
ifmr->ifm_active |= IFM_10_T;
if (sc->chip_type != CS8900) {
if (cs_readreg(sc, PP_AutoNegST) & FDX_ACTIVE)
ifmr->ifm_active |= IFM_FDX;
if (cs_readreg(sc, PP_AutoNegST) & HDX_ACTIVE)
ifmr->ifm_active |= IFM_HDX;
}
ifmr->ifm_status = IFM_AVALID;
if (line_status & LINK_OK)
ifmr->ifm_status |= IFM_ACTIVE;
} else {
if (line_status & AUI_ON) {
cs_writereg(sc, PP_SelfCTL, cs_readreg(sc, PP_SelfCTL) |
HCB1_ENBL);
if (((sc->adapter_cnf & A_CNF_DC_DC_POLARITY)!=0)^
(cs_readreg(sc, PP_SelfCTL) & HCB1))
ifmr->ifm_active |= IFM_10_2;
else
ifmr->ifm_active |= IFM_10_5;
}
}
CS_UNLOCK(sc);
}
static int
cs_mediaset(struct cs_softc *sc, int media)
{
int error = 0;
/* Stop the receiver & transmitter */
cs_writereg(sc, PP_LineCTL, cs_readreg(sc, PP_LineCTL) &
~(SERIAL_RX_ON | SERIAL_TX_ON));
#ifdef CS_DEBUG
device_printf(sc->dev, "%s media=%x\n", __func__, media);
#endif
switch (IFM_SUBTYPE(media)) {
default:
case IFM_AUTO:
/*
* This chip makes it a little hard to support this, so treat
* it as IFM_10_T, auto duplex.
*/
enable_tp(sc);
cs_duplex_auto(sc);
break;
case IFM_10_T:
enable_tp(sc);
if (media & IFM_FDX)
cs_duplex_full(sc);
else if (media & IFM_HDX)
cs_duplex_half(sc);
else
error = cs_duplex_auto(sc);
break;
case IFM_10_2:
enable_bnc(sc);
break;
case IFM_10_5:
enable_aui(sc);
break;
}
/*
* Turn the transmitter & receiver back on
*/
cs_writereg(sc, PP_LineCTL, cs_readreg(sc, PP_LineCTL) |
SERIAL_RX_ON | SERIAL_TX_ON);
return (error);
}