freebsd-skq/sys/kern/kern_switch.c
John Baldwin 7e1f6dfe9d Modify the critical section API as follows:
- The MD functions critical_enter/exit are renamed to start with a cpu_
  prefix.
- MI wrapper functions critical_enter/exit maintain a per-thread nesting
  count and a per-thread critical section saved state set when entering
  a critical section while at nesting level 0 and restored when exiting
  to nesting level 0.  This moves the saved state out of spin mutexes so
  that interlocking spin mutexes works properly.
- Most low-level MD code that used critical_enter/exit now use
  cpu_critical_enter/exit.  MI code such as device drivers and spin
  mutexes use the MI wrappers.  Note that since the MI wrappers store
  the state in the current thread, they do not have any return values or
  arguments.
- mtx_intr_enable() is replaced with a constant CRITICAL_FORK which is
  assigned to curthread->td_savecrit during fork_exit().

Tested on:	i386, alpha
2001-12-18 00:27:18 +00:00

303 lines
7.2 KiB
C

/*
* Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
/*
* Global run queue.
*/
static struct runq runq;
SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
/*
* Wrappers which implement old interface; act on global run queue.
*/
struct thread *
choosethread(void)
{
return (runq_choose(&runq)->ke_thread);
}
int
procrunnable(void)
{
return runq_check(&runq);
}
void
remrunqueue(struct thread *td)
{
runq_remove(&runq, td->td_kse);
}
void
setrunqueue(struct thread *td)
{
runq_add(&runq, td->td_kse);
}
/* Critical sections that prevent preemption. */
void
critical_enter(void)
{
struct thread *td;
td = curthread;
if (td->td_critnest == 0)
td->td_savecrit = cpu_critical_enter();
td->td_critnest++;
}
void
critical_exit(void)
{
struct thread *td;
td = curthread;
if (td->td_critnest == 1) {
td->td_critnest = 0;
cpu_critical_exit(td->td_savecrit);
} else
td->td_critnest--;
}
/*
* Clear the status bit of the queue corresponding to priority level pri,
* indicating that it is empty.
*/
static __inline void
runq_clrbit(struct runq *rq, int pri)
{
struct rqbits *rqb;
rqb = &rq->rq_status;
CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
rqb->rqb_bits[RQB_WORD(pri)],
rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
RQB_BIT(pri), RQB_WORD(pri));
rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
}
/*
* Find the index of the first non-empty run queue. This is done by
* scanning the status bits, a set bit indicates a non-empty queue.
*/
static __inline int
runq_findbit(struct runq *rq)
{
struct rqbits *rqb;
int pri;
int i;
rqb = &rq->rq_status;
for (i = 0; i < RQB_LEN; i++)
if (rqb->rqb_bits[i]) {
pri = (RQB_FFS(rqb->rqb_bits[i]) - 1) +
(i << RQB_L2BPW);
CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
rqb->rqb_bits[i], i, pri);
return (pri);
}
return (-1);
}
/*
* Set the status bit of the queue corresponding to priority level pri,
* indicating that it is non-empty.
*/
static __inline void
runq_setbit(struct runq *rq, int pri)
{
struct rqbits *rqb;
rqb = &rq->rq_status;
CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
rqb->rqb_bits[RQB_WORD(pri)],
rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
RQB_BIT(pri), RQB_WORD(pri));
rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
}
#ifdef INVARIANT_SUPPORT
/*
* Return true if the specified process is already in the run queue.
*/
static __inline int
runq_find(struct runq *rq, struct kse *ke)
{
struct kse *ke2;
int i;
mtx_assert(&sched_lock, MA_OWNED);
for (i = 0; i < RQB_LEN; i++)
TAILQ_FOREACH(ke2, &rq->rq_queues[i], ke_procq)
if (ke2 == ke)
return 1;
return 0;
}
#endif
/*
* Add the process to the queue specified by its priority, and set the
* corresponding status bit.
*/
void
runq_add(struct runq *rq, struct kse *ke)
{
struct rqhead *rqh;
int pri;
struct ksegrp *kg = ke->ke_ksegrp;
#ifdef INVARIANTS
struct proc *p = ke->ke_proc;
#endif
if (ke->ke_flags & KEF_ONRUNQ)
return;
mtx_assert(&sched_lock, MA_OWNED);
KASSERT(p->p_stat == SRUN, ("runq_add: proc %p (%s) not SRUN",
p, p->p_comm));
KASSERT(runq_find(rq, ke) == 0,
("runq_add: proc %p (%s) already in run queue", ke, p->p_comm));
pri = kg->kg_pri.pri_level / RQ_PPQ;
ke->ke_rqindex = pri;
runq_setbit(rq, pri);
rqh = &rq->rq_queues[pri];
CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p",
ke->ke_proc, kg->kg_pri.pri_level, pri, rqh);
TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
ke->ke_flags |= KEF_ONRUNQ;
}
/*
* Return true if there are runnable processes of any priority on the run
* queue, false otherwise. Has no side effects, does not modify the run
* queue structure.
*/
int
runq_check(struct runq *rq)
{
struct rqbits *rqb;
int i;
rqb = &rq->rq_status;
for (i = 0; i < RQB_LEN; i++)
if (rqb->rqb_bits[i]) {
CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
rqb->rqb_bits[i], i);
return (1);
}
CTR0(KTR_RUNQ, "runq_check: empty");
return (0);
}
/*
* Find and remove the highest priority process from the run queue.
* If there are no runnable processes, the per-cpu idle process is
* returned. Will not return NULL under any circumstances.
*/
struct kse *
runq_choose(struct runq *rq)
{
struct rqhead *rqh;
struct kse *ke;
int pri;
mtx_assert(&sched_lock, MA_OWNED);
if ((pri = runq_findbit(rq)) != -1) {
rqh = &rq->rq_queues[pri];
ke = TAILQ_FIRST(rqh);
KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
KASSERT(ke->ke_proc->p_stat == SRUN,
("runq_choose: process %d(%s) in state %d", ke->ke_proc->p_pid,
ke->ke_proc->p_comm, ke->ke_proc->p_stat));
CTR3(KTR_RUNQ, "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
TAILQ_REMOVE(rqh, ke, ke_procq);
if (TAILQ_EMPTY(rqh)) {
CTR0(KTR_RUNQ, "runq_choose: empty");
runq_clrbit(rq, pri);
}
ke->ke_flags &= ~KEF_ONRUNQ;
return (ke);
}
CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
return (PCPU_GET(idlethread)->td_kse);
}
/*
* Initialize a run structure.
*/
void
runq_init(struct runq *rq)
{
int i;
bzero(rq, sizeof *rq);
for (i = 0; i < RQ_NQS; i++)
TAILQ_INIT(&rq->rq_queues[i]);
}
/*
* Remove the process from the queue specified by its priority, and clear the
* corresponding status bit if the queue becomes empty.
*/
void
runq_remove(struct runq *rq, struct kse *ke)
{
#ifdef KTR
struct ksegrp *kg = ke->ke_ksegrp;
#endif
struct rqhead *rqh;
int pri;
if (!(ke->ke_flags & KEF_ONRUNQ))
return;
mtx_assert(&sched_lock, MA_OWNED);
pri = ke->ke_rqindex;
rqh = &rq->rq_queues[pri];
CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p",
ke, kg->kg_pri.pri_level, pri, rqh);
KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
TAILQ_REMOVE(rqh, ke, ke_procq);
if (TAILQ_EMPTY(rqh)) {
CTR0(KTR_RUNQ, "runq_remove: empty");
runq_clrbit(rq, pri);
}
ke->ke_flags &= ~KEF_ONRUNQ;
}