41db4b88e0
This is based on work done by jeff@ and jhb@, as well as the numa.diff patch that has been circulating when someone asks for first-touch NUMA on -10 or -11. * Introduce a simple set of VM policy and iterator types. * tie the policy types into the vm_phys path for now, mirroring how the initial first-touch allocation work was enabled. * add syscalls to control changing thread and process defaults. * add a global NUMA VM domain policy. * implement a simple cascade policy order - if a thread policy exists, use it; if a process policy exists, use it; use the default policy. * processes inherit policies from their parent processes, threads inherit policies from their parent threads. * add a simple tool (numactl) to query and modify default thread/process policities. * add documentation for the new syscalls, for numa and for numactl. * re-enable first touch NUMA again by default, as now policies can be set in a variety of methods. This is only relevant for very specific workloads. This doesn't pretend to be a final NUMA solution. The previous defaults in -HEAD (with MAXMEMDOM set) can be achieved by 'sysctl vm.default_policy=rr'. This is only relevant if MAXMEMDOM is set to something other than 1. Ie, if you're using GENERIC or a modified kernel with non-NUMA, then this is a glorified no-op for you. Thank you to Norse Corp for giving me access to rather large (for FreeBSD!) NUMA machines in order to develop and verify this. Thank you to Dell for providing me with dual socket sandybridge and westmere v3 hardware to do NUMA development with. Thank you to Scott Long at Netflix for providing me with access to the two-socket, four-domain haswell v3 hardware. Thank you to Peter Holm for running the stress testing suite against the NUMA branch during various stages of development! Tested: * MIPS (regression testing; non-NUMA) * i386 (regression testing; non-NUMA GENERIC) * amd64 (regression testing; non-NUMA GENERIC) * westmere, 2 socket (thankyou norse!) * sandy bridge, 2 socket (thankyou dell!) * ivy bridge, 2 socket (thankyou norse!) * westmere-EX, 4 socket / 1TB RAM (thankyou norse!) * haswell, 2 socket (thankyou norse!) * haswell v3, 2 socket (thankyou dell) * haswell v3, 2x18 core (thankyou scott long / netflix!) * Peter Holm ran a stress test suite on this work and found one issue, but has not been able to verify it (it doesn't look NUMA related, and he only saw it once over many testing runs.) * I've tested bhyve instances running in fixed NUMA domains and cpusets; all seems to work correctly. Verified: * intel-pcm - pcm-numa.x and pcm-memory.x, whilst selecting different NUMA policies for processes under test. Review: This was reviewed through phabricator (https://reviews.freebsd.org/D2559) as well as privately and via emails to freebsd-arch@. The git history with specific attributes is available at https://github.com/erikarn/freebsd/ in the NUMA branch (https://github.com/erikarn/freebsd/compare/local/adrian_numa_policy). This has been reviewed by a number of people (stas, rpaulo, kib, ngie, wblock) but not achieved a clear consensus. My hope is that with further exposure and testing more functionality can be implemented and evaluated. Notes: * The VM doesn't handle unbalanced domains very well, and if you have an overly unbalanced memory setup whilst under high memory pressure, VM page allocation may fail leading to a kernel panic. This was a problem in the past, but it's much more easily triggered now with these tools. * This work only controls the path through vm_phys; it doesn't yet strongly/predictably affect contigmalloc, KVA placement, UMA, etc. So, driver placement of memory isn't really guaranteed in any way. That's next on my plate. Sponsored by: Norse Corp, Inc.; Dell
1374 lines
34 KiB
C
1374 lines
34 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_compat.h"
|
|
#include "opt_ktrace.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/capsicum.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/procdesc.h>
|
|
#include <sys/pioctl.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/racct.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/acct.h> /* for acct_process() function prototype */
|
|
#include <sys/filedesc.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/shm.h>
|
|
#include <sys/sem.h>
|
|
#include <sys/umtx.h>
|
|
#ifdef KTRACE
|
|
#include <sys/ktrace.h>
|
|
#endif
|
|
|
|
#include <security/audit/audit.h>
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/vm_domain.h>
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
#include <sys/dtrace_bsd.h>
|
|
dtrace_execexit_func_t dtrace_fasttrap_exit;
|
|
#endif
|
|
|
|
SDT_PROVIDER_DECLARE(proc);
|
|
SDT_PROBE_DEFINE1(proc, kernel, , exit, "int");
|
|
|
|
/* Hook for NFS teardown procedure. */
|
|
void (*nlminfo_release_p)(struct proc *p);
|
|
|
|
struct proc *
|
|
proc_realparent(struct proc *child)
|
|
{
|
|
struct proc *p, *parent;
|
|
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
if ((child->p_treeflag & P_TREE_ORPHANED) == 0) {
|
|
if (child->p_oppid == 0 ||
|
|
child->p_pptr->p_pid == child->p_oppid)
|
|
parent = child->p_pptr;
|
|
else
|
|
parent = initproc;
|
|
return (parent);
|
|
}
|
|
for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) {
|
|
/* Cannot use LIST_PREV(), since the list head is not known. */
|
|
p = __containerof(p->p_orphan.le_prev, struct proc,
|
|
p_orphan.le_next);
|
|
KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0,
|
|
("missing P_ORPHAN %p", p));
|
|
}
|
|
parent = __containerof(p->p_orphan.le_prev, struct proc,
|
|
p_orphans.lh_first);
|
|
return (parent);
|
|
}
|
|
|
|
void
|
|
reaper_abandon_children(struct proc *p, bool exiting)
|
|
{
|
|
struct proc *p1, *p2, *ptmp;
|
|
|
|
sx_assert(&proctree_lock, SX_LOCKED);
|
|
KASSERT(p != initproc, ("reaper_abandon_children for initproc"));
|
|
if ((p->p_treeflag & P_TREE_REAPER) == 0)
|
|
return;
|
|
p1 = p->p_reaper;
|
|
LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) {
|
|
LIST_REMOVE(p2, p_reapsibling);
|
|
p2->p_reaper = p1;
|
|
p2->p_reapsubtree = p->p_reapsubtree;
|
|
LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling);
|
|
if (exiting && p2->p_pptr == p) {
|
|
PROC_LOCK(p2);
|
|
proc_reparent(p2, p1);
|
|
PROC_UNLOCK(p2);
|
|
}
|
|
}
|
|
KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty"));
|
|
p->p_treeflag &= ~P_TREE_REAPER;
|
|
}
|
|
|
|
static void
|
|
clear_orphan(struct proc *p)
|
|
{
|
|
struct proc *p1;
|
|
|
|
sx_assert(&proctree_lock, SA_XLOCKED);
|
|
if ((p->p_treeflag & P_TREE_ORPHANED) == 0)
|
|
return;
|
|
if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) {
|
|
p1 = LIST_NEXT(p, p_orphan);
|
|
if (p1 != NULL)
|
|
p1->p_treeflag |= P_TREE_FIRST_ORPHAN;
|
|
p->p_treeflag &= ~P_TREE_FIRST_ORPHAN;
|
|
}
|
|
LIST_REMOVE(p, p_orphan);
|
|
p->p_treeflag &= ~P_TREE_ORPHANED;
|
|
}
|
|
|
|
/*
|
|
* exit -- death of process.
|
|
*/
|
|
void
|
|
sys_sys_exit(struct thread *td, struct sys_exit_args *uap)
|
|
{
|
|
|
|
exit1(td, W_EXITCODE(uap->rval, 0));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Exit: deallocate address space and other resources, change proc state to
|
|
* zombie, and unlink proc from allproc and parent's lists. Save exit status
|
|
* and rusage for wait(). Check for child processes and orphan them.
|
|
*/
|
|
void
|
|
exit1(struct thread *td, int rv)
|
|
{
|
|
struct proc *p, *nq, *q, *t;
|
|
struct thread *tdt;
|
|
struct vnode *ttyvp = NULL;
|
|
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
|
|
|
p = td->td_proc;
|
|
/*
|
|
* XXX in case we're rebooting we just let init die in order to
|
|
* work around an unsolved stack overflow seen very late during
|
|
* shutdown on sparc64 when the gmirror worker process exists.
|
|
*/
|
|
if (p == initproc && rebooting == 0) {
|
|
printf("init died (signal %d, exit %d)\n",
|
|
WTERMSIG(rv), WEXITSTATUS(rv));
|
|
panic("Going nowhere without my init!");
|
|
}
|
|
|
|
/*
|
|
* Deref SU mp, since the thread does not return to userspace.
|
|
*/
|
|
if (softdep_ast_cleanup != NULL)
|
|
softdep_ast_cleanup();
|
|
|
|
/*
|
|
* MUST abort all other threads before proceeding past here.
|
|
*/
|
|
PROC_LOCK(p);
|
|
/*
|
|
* First check if some other thread or external request got
|
|
* here before us. If so, act appropriately: exit or suspend.
|
|
* We must ensure that stop requests are handled before we set
|
|
* P_WEXIT.
|
|
*/
|
|
thread_suspend_check(0);
|
|
while (p->p_flag & P_HADTHREADS) {
|
|
/*
|
|
* Kill off the other threads. This requires
|
|
* some co-operation from other parts of the kernel
|
|
* so it may not be instantaneous. With this state set
|
|
* any thread entering the kernel from userspace will
|
|
* thread_exit() in trap(). Any thread attempting to
|
|
* sleep will return immediately with EINTR or EWOULDBLOCK
|
|
* which will hopefully force them to back out to userland
|
|
* freeing resources as they go. Any thread attempting
|
|
* to return to userland will thread_exit() from userret().
|
|
* thread_exit() will unsuspend us when the last of the
|
|
* other threads exits.
|
|
* If there is already a thread singler after resumption,
|
|
* calling thread_single will fail; in that case, we just
|
|
* re-check all suspension request, the thread should
|
|
* either be suspended there or exit.
|
|
*/
|
|
if (!thread_single(p, SINGLE_EXIT))
|
|
/*
|
|
* All other activity in this process is now
|
|
* stopped. Threading support has been turned
|
|
* off.
|
|
*/
|
|
break;
|
|
/*
|
|
* Recheck for new stop or suspend requests which
|
|
* might appear while process lock was dropped in
|
|
* thread_single().
|
|
*/
|
|
thread_suspend_check(0);
|
|
}
|
|
KASSERT(p->p_numthreads == 1,
|
|
("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
|
|
racct_sub(p, RACCT_NTHR, 1);
|
|
/*
|
|
* Wakeup anyone in procfs' PIOCWAIT. They should have a hold
|
|
* on our vmspace, so we should block below until they have
|
|
* released their reference to us. Note that if they have
|
|
* requested S_EXIT stops we will block here until they ack
|
|
* via PIOCCONT.
|
|
*/
|
|
_STOPEVENT(p, S_EXIT, rv);
|
|
|
|
/*
|
|
* Ignore any pending request to stop due to a stop signal.
|
|
* Once P_WEXIT is set, future requests will be ignored as
|
|
* well.
|
|
*/
|
|
p->p_flag &= ~P_STOPPED_SIG;
|
|
KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));
|
|
|
|
/*
|
|
* Note that we are exiting and do another wakeup of anyone in
|
|
* PIOCWAIT in case they aren't listening for S_EXIT stops or
|
|
* decided to wait again after we told them we are exiting.
|
|
*/
|
|
p->p_flag |= P_WEXIT;
|
|
wakeup(&p->p_stype);
|
|
|
|
/*
|
|
* Wait for any processes that have a hold on our vmspace to
|
|
* release their reference.
|
|
*/
|
|
while (p->p_lock > 0)
|
|
msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
|
|
|
|
p->p_xstat = rv; /* Let event handler change exit status */
|
|
PROC_UNLOCK(p);
|
|
/* Drain the limit callout while we don't have the proc locked */
|
|
callout_drain(&p->p_limco);
|
|
|
|
#ifdef AUDIT
|
|
/*
|
|
* The Sun BSM exit token contains two components: an exit status as
|
|
* passed to exit(), and a return value to indicate what sort of exit
|
|
* it was. The exit status is WEXITSTATUS(rv), but it's not clear
|
|
* what the return value is.
|
|
*/
|
|
AUDIT_ARG_EXIT(WEXITSTATUS(rv), 0);
|
|
AUDIT_SYSCALL_EXIT(0, td);
|
|
#endif
|
|
|
|
/* Are we a task leader with peers? */
|
|
if (p->p_peers != NULL && p == p->p_leader) {
|
|
mtx_lock(&ppeers_lock);
|
|
q = p->p_peers;
|
|
while (q != NULL) {
|
|
PROC_LOCK(q);
|
|
kern_psignal(q, SIGKILL);
|
|
PROC_UNLOCK(q);
|
|
q = q->p_peers;
|
|
}
|
|
while (p->p_peers != NULL)
|
|
msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
|
|
mtx_unlock(&ppeers_lock);
|
|
}
|
|
|
|
/*
|
|
* Check if any loadable modules need anything done at process exit.
|
|
* E.g. SYSV IPC stuff
|
|
* XXX what if one of these generates an error?
|
|
*/
|
|
EVENTHANDLER_INVOKE(process_exit, p);
|
|
|
|
/*
|
|
* If parent is waiting for us to exit or exec,
|
|
* P_PPWAIT is set; we will wakeup the parent below.
|
|
*/
|
|
PROC_LOCK(p);
|
|
rv = p->p_xstat; /* Event handler could change exit status */
|
|
stopprofclock(p);
|
|
p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);
|
|
|
|
/*
|
|
* Stop the real interval timer. If the handler is currently
|
|
* executing, prevent it from rearming itself and let it finish.
|
|
*/
|
|
if (timevalisset(&p->p_realtimer.it_value) &&
|
|
callout_stop(&p->p_itcallout) == 0) {
|
|
timevalclear(&p->p_realtimer.it_interval);
|
|
msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
|
|
KASSERT(!timevalisset(&p->p_realtimer.it_value),
|
|
("realtime timer is still armed"));
|
|
}
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* Reset any sigio structures pointing to us as a result of
|
|
* F_SETOWN with our pid.
|
|
*/
|
|
funsetownlst(&p->p_sigiolst);
|
|
|
|
/*
|
|
* If this process has an nlminfo data area (for lockd), release it
|
|
*/
|
|
if (nlminfo_release_p != NULL && p->p_nlminfo != NULL)
|
|
(*nlminfo_release_p)(p);
|
|
|
|
/*
|
|
* Close open files and release open-file table.
|
|
* This may block!
|
|
*/
|
|
fdescfree(td);
|
|
|
|
/*
|
|
* If this thread tickled GEOM, we need to wait for the giggling to
|
|
* stop before we return to userland
|
|
*/
|
|
if (td->td_pflags & TDP_GEOM)
|
|
g_waitidle();
|
|
|
|
/*
|
|
* Remove ourself from our leader's peer list and wake our leader.
|
|
*/
|
|
if (p->p_leader->p_peers != NULL) {
|
|
mtx_lock(&ppeers_lock);
|
|
if (p->p_leader->p_peers != NULL) {
|
|
q = p->p_leader;
|
|
while (q->p_peers != p)
|
|
q = q->p_peers;
|
|
q->p_peers = p->p_peers;
|
|
wakeup(p->p_leader);
|
|
}
|
|
mtx_unlock(&ppeers_lock);
|
|
}
|
|
|
|
vmspace_exit(td);
|
|
|
|
sx_xlock(&proctree_lock);
|
|
if (SESS_LEADER(p)) {
|
|
struct session *sp = p->p_session;
|
|
struct tty *tp;
|
|
|
|
/*
|
|
* s_ttyp is not zero'd; we use this to indicate that
|
|
* the session once had a controlling terminal. (for
|
|
* logging and informational purposes)
|
|
*/
|
|
SESS_LOCK(sp);
|
|
ttyvp = sp->s_ttyvp;
|
|
tp = sp->s_ttyp;
|
|
sp->s_ttyvp = NULL;
|
|
sp->s_ttydp = NULL;
|
|
sp->s_leader = NULL;
|
|
SESS_UNLOCK(sp);
|
|
|
|
/*
|
|
* Signal foreground pgrp and revoke access to
|
|
* controlling terminal if it has not been revoked
|
|
* already.
|
|
*
|
|
* Because the TTY may have been revoked in the mean
|
|
* time and could already have a new session associated
|
|
* with it, make sure we don't send a SIGHUP to a
|
|
* foreground process group that does not belong to this
|
|
* session.
|
|
*/
|
|
|
|
if (tp != NULL) {
|
|
tty_lock(tp);
|
|
if (tp->t_session == sp)
|
|
tty_signal_pgrp(tp, SIGHUP);
|
|
tty_unlock(tp);
|
|
}
|
|
|
|
if (ttyvp != NULL) {
|
|
sx_xunlock(&proctree_lock);
|
|
if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
|
|
VOP_REVOKE(ttyvp, REVOKEALL);
|
|
VOP_UNLOCK(ttyvp, 0);
|
|
}
|
|
sx_xlock(&proctree_lock);
|
|
}
|
|
}
|
|
fixjobc(p, p->p_pgrp, 0);
|
|
sx_xunlock(&proctree_lock);
|
|
(void)acct_process(td);
|
|
|
|
/* Release the TTY now we've unlocked everything. */
|
|
if (ttyvp != NULL)
|
|
vrele(ttyvp);
|
|
#ifdef KTRACE
|
|
ktrprocexit(td);
|
|
#endif
|
|
/*
|
|
* Release reference to text vnode
|
|
*/
|
|
if (p->p_textvp != NULL) {
|
|
vrele(p->p_textvp);
|
|
p->p_textvp = NULL;
|
|
}
|
|
|
|
/*
|
|
* Release our limits structure.
|
|
*/
|
|
lim_free(p->p_limit);
|
|
p->p_limit = NULL;
|
|
|
|
tidhash_remove(td);
|
|
|
|
/*
|
|
* Remove proc from allproc queue and pidhash chain.
|
|
* Place onto zombproc. Unlink from parent's child list.
|
|
*/
|
|
sx_xlock(&allproc_lock);
|
|
LIST_REMOVE(p, p_list);
|
|
LIST_INSERT_HEAD(&zombproc, p, p_list);
|
|
LIST_REMOVE(p, p_hash);
|
|
sx_xunlock(&allproc_lock);
|
|
|
|
/*
|
|
* Call machine-dependent code to release any
|
|
* machine-dependent resources other than the address space.
|
|
* The address space is released by "vmspace_exitfree(p)" in
|
|
* vm_waitproc().
|
|
*/
|
|
cpu_exit(td);
|
|
|
|
WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
|
|
|
|
/*
|
|
* Reparent all children processes:
|
|
* - traced ones to the original parent (or init if we are that parent)
|
|
* - the rest to init
|
|
*/
|
|
sx_xlock(&proctree_lock);
|
|
q = LIST_FIRST(&p->p_children);
|
|
if (q != NULL) /* only need this if any child is S_ZOMB */
|
|
wakeup(q->p_reaper);
|
|
for (; q != NULL; q = nq) {
|
|
nq = LIST_NEXT(q, p_sibling);
|
|
PROC_LOCK(q);
|
|
q->p_sigparent = SIGCHLD;
|
|
|
|
if (!(q->p_flag & P_TRACED)) {
|
|
proc_reparent(q, q->p_reaper);
|
|
} else {
|
|
/*
|
|
* Traced processes are killed since their existence
|
|
* means someone is screwing up.
|
|
*/
|
|
t = proc_realparent(q);
|
|
if (t == p) {
|
|
proc_reparent(q, q->p_reaper);
|
|
} else {
|
|
PROC_LOCK(t);
|
|
proc_reparent(q, t);
|
|
PROC_UNLOCK(t);
|
|
}
|
|
/*
|
|
* Since q was found on our children list, the
|
|
* proc_reparent() call moved q to the orphan
|
|
* list due to present P_TRACED flag. Clear
|
|
* orphan link for q now while q is locked.
|
|
*/
|
|
clear_orphan(q);
|
|
q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);
|
|
FOREACH_THREAD_IN_PROC(q, tdt)
|
|
tdt->td_dbgflags &= ~TDB_SUSPEND;
|
|
kern_psignal(q, SIGKILL);
|
|
}
|
|
PROC_UNLOCK(q);
|
|
}
|
|
|
|
/*
|
|
* Also get rid of our orphans.
|
|
*/
|
|
while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
|
|
PROC_LOCK(q);
|
|
CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid,
|
|
q->p_pid);
|
|
clear_orphan(q);
|
|
PROC_UNLOCK(q);
|
|
}
|
|
|
|
/* Save exit status. */
|
|
PROC_LOCK(p);
|
|
p->p_xthread = td;
|
|
|
|
/* Tell the prison that we are gone. */
|
|
prison_proc_free(p->p_ucred->cr_prison);
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
/*
|
|
* Tell the DTrace fasttrap provider about the exit if it
|
|
* has declared an interest.
|
|
*/
|
|
if (dtrace_fasttrap_exit)
|
|
dtrace_fasttrap_exit(p);
|
|
#endif
|
|
|
|
/*
|
|
* Notify interested parties of our demise.
|
|
*/
|
|
KNOTE_LOCKED(&p->p_klist, NOTE_EXIT);
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
int reason = CLD_EXITED;
|
|
if (WCOREDUMP(rv))
|
|
reason = CLD_DUMPED;
|
|
else if (WIFSIGNALED(rv))
|
|
reason = CLD_KILLED;
|
|
SDT_PROBE(proc, kernel, , exit, reason, 0, 0, 0, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Just delete all entries in the p_klist. At this point we won't
|
|
* report any more events, and there are nasty race conditions that
|
|
* can beat us if we don't.
|
|
*/
|
|
knlist_clear(&p->p_klist, 1);
|
|
|
|
/*
|
|
* If this is a process with a descriptor, we may not need to deliver
|
|
* a signal to the parent. proctree_lock is held over
|
|
* procdesc_exit() to serialize concurrent calls to close() and
|
|
* exit().
|
|
*/
|
|
if (p->p_procdesc == NULL || procdesc_exit(p)) {
|
|
/*
|
|
* Notify parent that we're gone. If parent has the
|
|
* PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
|
|
* notify process 1 instead (and hope it will handle this
|
|
* situation).
|
|
*/
|
|
PROC_LOCK(p->p_pptr);
|
|
mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
|
|
if (p->p_pptr->p_sigacts->ps_flag &
|
|
(PS_NOCLDWAIT | PS_CLDSIGIGN)) {
|
|
struct proc *pp;
|
|
|
|
mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
|
|
pp = p->p_pptr;
|
|
PROC_UNLOCK(pp);
|
|
proc_reparent(p, p->p_reaper);
|
|
p->p_sigparent = SIGCHLD;
|
|
PROC_LOCK(p->p_pptr);
|
|
|
|
/*
|
|
* Notify parent, so in case he was wait(2)ing or
|
|
* executing waitpid(2) with our pid, he will
|
|
* continue.
|
|
*/
|
|
wakeup(pp);
|
|
} else
|
|
mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
|
|
|
|
if (p->p_pptr == p->p_reaper || p->p_pptr == initproc)
|
|
childproc_exited(p);
|
|
else if (p->p_sigparent != 0) {
|
|
if (p->p_sigparent == SIGCHLD)
|
|
childproc_exited(p);
|
|
else /* LINUX thread */
|
|
kern_psignal(p->p_pptr, p->p_sigparent);
|
|
}
|
|
} else
|
|
PROC_LOCK(p->p_pptr);
|
|
sx_xunlock(&proctree_lock);
|
|
|
|
/*
|
|
* The state PRS_ZOMBIE prevents other proesses from sending
|
|
* signal to the process, to avoid memory leak, we free memory
|
|
* for signal queue at the time when the state is set.
|
|
*/
|
|
sigqueue_flush(&p->p_sigqueue);
|
|
sigqueue_flush(&td->td_sigqueue);
|
|
|
|
/*
|
|
* We have to wait until after acquiring all locks before
|
|
* changing p_state. We need to avoid all possible context
|
|
* switches (including ones from blocking on a mutex) while
|
|
* marked as a zombie. We also have to set the zombie state
|
|
* before we release the parent process' proc lock to avoid
|
|
* a lost wakeup. So, we first call wakeup, then we grab the
|
|
* sched lock, update the state, and release the parent process'
|
|
* proc lock.
|
|
*/
|
|
wakeup(p->p_pptr);
|
|
cv_broadcast(&p->p_pwait);
|
|
sched_exit(p->p_pptr, td);
|
|
umtx_thread_exit(td);
|
|
PROC_SLOCK(p);
|
|
p->p_state = PRS_ZOMBIE;
|
|
PROC_UNLOCK(p->p_pptr);
|
|
|
|
/*
|
|
* Hopefully no one will try to deliver a signal to the process this
|
|
* late in the game.
|
|
*/
|
|
knlist_destroy(&p->p_klist);
|
|
|
|
/*
|
|
* Save our children's rusage information in our exit rusage.
|
|
*/
|
|
PROC_STATLOCK(p);
|
|
ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
|
|
PROC_STATUNLOCK(p);
|
|
|
|
/*
|
|
* Make sure the scheduler takes this thread out of its tables etc.
|
|
* This will also release this thread's reference to the ucred.
|
|
* Other thread parts to release include pcb bits and such.
|
|
*/
|
|
thread_exit();
|
|
}
|
|
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct abort2_args {
|
|
char *why;
|
|
int nargs;
|
|
void **args;
|
|
};
|
|
#endif
|
|
|
|
int
|
|
sys_abort2(struct thread *td, struct abort2_args *uap)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct sbuf *sb;
|
|
void *uargs[16];
|
|
int error, i, sig;
|
|
|
|
/*
|
|
* Do it right now so we can log either proper call of abort2(), or
|
|
* note, that invalid argument was passed. 512 is big enough to
|
|
* handle 16 arguments' descriptions with additional comments.
|
|
*/
|
|
sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
|
|
sbuf_clear(sb);
|
|
sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
|
|
p->p_comm, p->p_pid, td->td_ucred->cr_uid);
|
|
/*
|
|
* Since we can't return from abort2(), send SIGKILL in cases, where
|
|
* abort2() was called improperly
|
|
*/
|
|
sig = SIGKILL;
|
|
/* Prevent from DoSes from user-space. */
|
|
if (uap->nargs < 0 || uap->nargs > 16)
|
|
goto out;
|
|
if (uap->nargs > 0) {
|
|
if (uap->args == NULL)
|
|
goto out;
|
|
error = copyin(uap->args, uargs, uap->nargs * sizeof(void *));
|
|
if (error != 0)
|
|
goto out;
|
|
}
|
|
/*
|
|
* Limit size of 'reason' string to 128. Will fit even when
|
|
* maximal number of arguments was chosen to be logged.
|
|
*/
|
|
if (uap->why != NULL) {
|
|
error = sbuf_copyin(sb, uap->why, 128);
|
|
if (error < 0)
|
|
goto out;
|
|
} else {
|
|
sbuf_printf(sb, "(null)");
|
|
}
|
|
if (uap->nargs > 0) {
|
|
sbuf_printf(sb, "(");
|
|
for (i = 0;i < uap->nargs; i++)
|
|
sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
|
|
sbuf_printf(sb, ")");
|
|
}
|
|
/*
|
|
* Final stage: arguments were proper, string has been
|
|
* successfully copied from userspace, and copying pointers
|
|
* from user-space succeed.
|
|
*/
|
|
sig = SIGABRT;
|
|
out:
|
|
if (sig == SIGKILL) {
|
|
sbuf_trim(sb);
|
|
sbuf_printf(sb, " (Reason text inaccessible)");
|
|
}
|
|
sbuf_cat(sb, "\n");
|
|
sbuf_finish(sb);
|
|
log(LOG_INFO, "%s", sbuf_data(sb));
|
|
sbuf_delete(sb);
|
|
exit1(td, W_EXITCODE(0, sig));
|
|
return (0);
|
|
}
|
|
|
|
|
|
#ifdef COMPAT_43
|
|
/*
|
|
* The dirty work is handled by kern_wait().
|
|
*/
|
|
int
|
|
owait(struct thread *td, struct owait_args *uap __unused)
|
|
{
|
|
int error, status;
|
|
|
|
error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
|
|
if (error == 0)
|
|
td->td_retval[1] = status;
|
|
return (error);
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
/*
|
|
* The dirty work is handled by kern_wait().
|
|
*/
|
|
int
|
|
sys_wait4(struct thread *td, struct wait4_args *uap)
|
|
{
|
|
struct rusage ru, *rup;
|
|
int error, status;
|
|
|
|
if (uap->rusage != NULL)
|
|
rup = &ru;
|
|
else
|
|
rup = NULL;
|
|
error = kern_wait(td, uap->pid, &status, uap->options, rup);
|
|
if (uap->status != NULL && error == 0)
|
|
error = copyout(&status, uap->status, sizeof(status));
|
|
if (uap->rusage != NULL && error == 0)
|
|
error = copyout(&ru, uap->rusage, sizeof(struct rusage));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sys_wait6(struct thread *td, struct wait6_args *uap)
|
|
{
|
|
struct __wrusage wru, *wrup;
|
|
siginfo_t si, *sip;
|
|
idtype_t idtype;
|
|
id_t id;
|
|
int error, status;
|
|
|
|
idtype = uap->idtype;
|
|
id = uap->id;
|
|
|
|
if (uap->wrusage != NULL)
|
|
wrup = &wru;
|
|
else
|
|
wrup = NULL;
|
|
|
|
if (uap->info != NULL) {
|
|
sip = &si;
|
|
bzero(sip, sizeof(*sip));
|
|
} else
|
|
sip = NULL;
|
|
|
|
/*
|
|
* We expect all callers of wait6() to know about WEXITED and
|
|
* WTRAPPED.
|
|
*/
|
|
error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip);
|
|
|
|
if (uap->status != NULL && error == 0)
|
|
error = copyout(&status, uap->status, sizeof(status));
|
|
if (uap->wrusage != NULL && error == 0)
|
|
error = copyout(&wru, uap->wrusage, sizeof(wru));
|
|
if (uap->info != NULL && error == 0)
|
|
error = copyout(&si, uap->info, sizeof(si));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Reap the remains of a zombie process and optionally return status and
|
|
* rusage. Asserts and will release both the proctree_lock and the process
|
|
* lock as part of its work.
|
|
*/
|
|
void
|
|
proc_reap(struct thread *td, struct proc *p, int *status, int options)
|
|
{
|
|
struct proc *q, *t;
|
|
|
|
sx_assert(&proctree_lock, SA_XLOCKED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
|
|
|
|
q = td->td_proc;
|
|
|
|
PROC_SUNLOCK(p);
|
|
if (status)
|
|
*status = p->p_xstat; /* convert to int */
|
|
if (options & WNOWAIT) {
|
|
/*
|
|
* Only poll, returning the status. Caller does not wish to
|
|
* release the proc struct just yet.
|
|
*/
|
|
PROC_UNLOCK(p);
|
|
sx_xunlock(&proctree_lock);
|
|
return;
|
|
}
|
|
|
|
PROC_LOCK(q);
|
|
sigqueue_take(p->p_ksi);
|
|
PROC_UNLOCK(q);
|
|
|
|
/*
|
|
* If we got the child via a ptrace 'attach', we need to give it back
|
|
* to the old parent.
|
|
*/
|
|
if (p->p_oppid != 0 && p->p_oppid != p->p_pptr->p_pid) {
|
|
PROC_UNLOCK(p);
|
|
t = proc_realparent(p);
|
|
PROC_LOCK(t);
|
|
PROC_LOCK(p);
|
|
CTR2(KTR_PTRACE,
|
|
"wait: traced child %d moved back to parent %d", p->p_pid,
|
|
t->p_pid);
|
|
proc_reparent(p, t);
|
|
p->p_oppid = 0;
|
|
PROC_UNLOCK(p);
|
|
pksignal(t, SIGCHLD, p->p_ksi);
|
|
wakeup(t);
|
|
cv_broadcast(&p->p_pwait);
|
|
PROC_UNLOCK(t);
|
|
sx_xunlock(&proctree_lock);
|
|
return;
|
|
}
|
|
p->p_oppid = 0;
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* Remove other references to this process to ensure we have an
|
|
* exclusive reference.
|
|
*/
|
|
sx_xlock(&allproc_lock);
|
|
LIST_REMOVE(p, p_list); /* off zombproc */
|
|
sx_xunlock(&allproc_lock);
|
|
LIST_REMOVE(p, p_sibling);
|
|
reaper_abandon_children(p, true);
|
|
LIST_REMOVE(p, p_reapsibling);
|
|
PROC_LOCK(p);
|
|
clear_orphan(p);
|
|
PROC_UNLOCK(p);
|
|
leavepgrp(p);
|
|
if (p->p_procdesc != NULL)
|
|
procdesc_reap(p);
|
|
sx_xunlock(&proctree_lock);
|
|
|
|
/*
|
|
* Removal from allproc list and process group list paired with
|
|
* PROC_LOCK which was executed during that time should guarantee
|
|
* nothing can reach this process anymore. As such further locking
|
|
* is unnecessary.
|
|
*/
|
|
p->p_xstat = 0; /* XXX: why? */
|
|
|
|
PROC_LOCK(q);
|
|
ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
|
|
PROC_UNLOCK(q);
|
|
|
|
/*
|
|
* Decrement the count of procs running with this uid.
|
|
*/
|
|
(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
|
|
|
|
/*
|
|
* Destroy resource accounting information associated with the process.
|
|
*/
|
|
#ifdef RACCT
|
|
if (racct_enable) {
|
|
PROC_LOCK(p);
|
|
racct_sub(p, RACCT_NPROC, 1);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
#endif
|
|
racct_proc_exit(p);
|
|
|
|
/*
|
|
* Free credentials, arguments, and sigacts.
|
|
*/
|
|
crfree(p->p_ucred);
|
|
proc_set_cred(p, NULL);
|
|
pargs_drop(p->p_args);
|
|
p->p_args = NULL;
|
|
sigacts_free(p->p_sigacts);
|
|
p->p_sigacts = NULL;
|
|
|
|
/*
|
|
* Do any thread-system specific cleanups.
|
|
*/
|
|
thread_wait(p);
|
|
|
|
/*
|
|
* Give vm and machine-dependent layer a chance to free anything that
|
|
* cpu_exit couldn't release while still running in process context.
|
|
*/
|
|
vm_waitproc(p);
|
|
#ifdef MAC
|
|
mac_proc_destroy(p);
|
|
#endif
|
|
/*
|
|
* Free any domain policy that's still hiding around.
|
|
*/
|
|
vm_domain_policy_cleanup(&p->p_vm_dom_policy);
|
|
|
|
KASSERT(FIRST_THREAD_IN_PROC(p),
|
|
("proc_reap: no residual thread!"));
|
|
uma_zfree(proc_zone, p);
|
|
sx_xlock(&allproc_lock);
|
|
nprocs--;
|
|
sx_xunlock(&allproc_lock);
|
|
}
|
|
|
|
static int
|
|
proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id,
|
|
int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo,
|
|
int check_only)
|
|
{
|
|
struct rusage *rup;
|
|
|
|
sx_assert(&proctree_lock, SA_XLOCKED);
|
|
|
|
PROC_LOCK(p);
|
|
|
|
switch (idtype) {
|
|
case P_ALL:
|
|
break;
|
|
case P_PID:
|
|
if (p->p_pid != (pid_t)id) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
break;
|
|
case P_PGID:
|
|
if (p->p_pgid != (pid_t)id) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
break;
|
|
case P_SID:
|
|
if (p->p_session->s_sid != (pid_t)id) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
break;
|
|
case P_UID:
|
|
if (p->p_ucred->cr_uid != (uid_t)id) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
break;
|
|
case P_GID:
|
|
if (p->p_ucred->cr_gid != (gid_t)id) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
break;
|
|
case P_JAILID:
|
|
if (p->p_ucred->cr_prison->pr_id != (int)id) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
break;
|
|
/*
|
|
* It seems that the thread structures get zeroed out
|
|
* at process exit. This makes it impossible to
|
|
* support P_SETID, P_CID or P_CPUID.
|
|
*/
|
|
default:
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
if (p_canwait(td, p)) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This special case handles a kthread spawned by linux_clone
|
|
* (see linux_misc.c). The linux_wait4 and linux_waitpid
|
|
* functions need to be able to distinguish between waiting
|
|
* on a process and waiting on a thread. It is a thread if
|
|
* p_sigparent is not SIGCHLD, and the WLINUXCLONE option
|
|
* signifies we want to wait for threads and not processes.
|
|
*/
|
|
if ((p->p_sigparent != SIGCHLD) ^
|
|
((options & WLINUXCLONE) != 0)) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
if (siginfo != NULL) {
|
|
bzero(siginfo, sizeof(*siginfo));
|
|
siginfo->si_errno = 0;
|
|
|
|
/*
|
|
* SUSv4 requires that the si_signo value is always
|
|
* SIGCHLD. Obey it despite the rfork(2) interface
|
|
* allows to request other signal for child exit
|
|
* notification.
|
|
*/
|
|
siginfo->si_signo = SIGCHLD;
|
|
|
|
/*
|
|
* This is still a rough estimate. We will fix the
|
|
* cases TRAPPED, STOPPED, and CONTINUED later.
|
|
*/
|
|
if (WCOREDUMP(p->p_xstat)) {
|
|
siginfo->si_code = CLD_DUMPED;
|
|
siginfo->si_status = WTERMSIG(p->p_xstat);
|
|
} else if (WIFSIGNALED(p->p_xstat)) {
|
|
siginfo->si_code = CLD_KILLED;
|
|
siginfo->si_status = WTERMSIG(p->p_xstat);
|
|
} else {
|
|
siginfo->si_code = CLD_EXITED;
|
|
siginfo->si_status = WEXITSTATUS(p->p_xstat);
|
|
}
|
|
|
|
siginfo->si_pid = p->p_pid;
|
|
siginfo->si_uid = p->p_ucred->cr_uid;
|
|
|
|
/*
|
|
* The si_addr field would be useful additional
|
|
* detail, but apparently the PC value may be lost
|
|
* when we reach this point. bzero() above sets
|
|
* siginfo->si_addr to NULL.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* There should be no reason to limit resources usage info to
|
|
* exited processes only. A snapshot about any resources used
|
|
* by a stopped process may be exactly what is needed.
|
|
*/
|
|
if (wrusage != NULL) {
|
|
rup = &wrusage->wru_self;
|
|
*rup = p->p_ru;
|
|
PROC_STATLOCK(p);
|
|
calcru(p, &rup->ru_utime, &rup->ru_stime);
|
|
PROC_STATUNLOCK(p);
|
|
|
|
rup = &wrusage->wru_children;
|
|
*rup = p->p_stats->p_cru;
|
|
calccru(p, &rup->ru_utime, &rup->ru_stime);
|
|
}
|
|
|
|
if (p->p_state == PRS_ZOMBIE && !check_only) {
|
|
PROC_SLOCK(p);
|
|
proc_reap(td, p, status, options);
|
|
return (-1);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
kern_wait(struct thread *td, pid_t pid, int *status, int options,
|
|
struct rusage *rusage)
|
|
{
|
|
struct __wrusage wru, *wrup;
|
|
idtype_t idtype;
|
|
id_t id;
|
|
int ret;
|
|
|
|
/*
|
|
* Translate the special pid values into the (idtype, pid)
|
|
* pair for kern_wait6. The WAIT_MYPGRP case is handled by
|
|
* kern_wait6() on its own.
|
|
*/
|
|
if (pid == WAIT_ANY) {
|
|
idtype = P_ALL;
|
|
id = 0;
|
|
} else if (pid < 0) {
|
|
idtype = P_PGID;
|
|
id = (id_t)-pid;
|
|
} else {
|
|
idtype = P_PID;
|
|
id = (id_t)pid;
|
|
}
|
|
|
|
if (rusage != NULL)
|
|
wrup = &wru;
|
|
else
|
|
wrup = NULL;
|
|
|
|
/*
|
|
* For backward compatibility we implicitly add flags WEXITED
|
|
* and WTRAPPED here.
|
|
*/
|
|
options |= WEXITED | WTRAPPED;
|
|
ret = kern_wait6(td, idtype, id, status, options, wrup, NULL);
|
|
if (rusage != NULL)
|
|
*rusage = wru.wru_self;
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status,
|
|
int options, struct __wrusage *wrusage, siginfo_t *siginfo)
|
|
{
|
|
struct proc *p, *q;
|
|
pid_t pid;
|
|
int error, nfound, ret;
|
|
|
|
AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */
|
|
AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */
|
|
AUDIT_ARG_VALUE(options);
|
|
|
|
q = td->td_proc;
|
|
|
|
if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) {
|
|
PROC_LOCK(q);
|
|
id = (id_t)q->p_pgid;
|
|
PROC_UNLOCK(q);
|
|
idtype = P_PGID;
|
|
}
|
|
|
|
/* If we don't know the option, just return. */
|
|
if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT |
|
|
WEXITED | WTRAPPED | WLINUXCLONE)) != 0)
|
|
return (EINVAL);
|
|
if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
|
|
/*
|
|
* We will be unable to find any matching processes,
|
|
* because there are no known events to look for.
|
|
* Prefer to return error instead of blocking
|
|
* indefinitely.
|
|
*/
|
|
return (EINVAL);
|
|
}
|
|
|
|
loop:
|
|
if (q->p_flag & P_STATCHILD) {
|
|
PROC_LOCK(q);
|
|
q->p_flag &= ~P_STATCHILD;
|
|
PROC_UNLOCK(q);
|
|
}
|
|
nfound = 0;
|
|
sx_xlock(&proctree_lock);
|
|
LIST_FOREACH(p, &q->p_children, p_sibling) {
|
|
pid = p->p_pid;
|
|
ret = proc_to_reap(td, p, idtype, id, status, options,
|
|
wrusage, siginfo, 0);
|
|
if (ret == 0)
|
|
continue;
|
|
else if (ret == 1)
|
|
nfound++;
|
|
else {
|
|
td->td_retval[0] = pid;
|
|
return (0);
|
|
}
|
|
|
|
PROC_LOCK(p);
|
|
PROC_SLOCK(p);
|
|
|
|
if ((options & WTRAPPED) != 0 &&
|
|
(p->p_flag & P_TRACED) != 0 &&
|
|
(p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) != 0 &&
|
|
(p->p_suspcount == p->p_numthreads) &&
|
|
((p->p_flag & P_WAITED) == 0)) {
|
|
PROC_SUNLOCK(p);
|
|
if ((options & WNOWAIT) == 0)
|
|
p->p_flag |= P_WAITED;
|
|
sx_xunlock(&proctree_lock);
|
|
|
|
if (status != NULL)
|
|
*status = W_STOPCODE(p->p_xstat);
|
|
if (siginfo != NULL) {
|
|
siginfo->si_status = p->p_xstat;
|
|
siginfo->si_code = CLD_TRAPPED;
|
|
}
|
|
if ((options & WNOWAIT) == 0) {
|
|
PROC_LOCK(q);
|
|
sigqueue_take(p->p_ksi);
|
|
PROC_UNLOCK(q);
|
|
}
|
|
|
|
CTR4(KTR_PTRACE,
|
|
"wait: returning trapped pid %d status %#x (xstat %d) xthread %d",
|
|
p->p_pid, W_STOPCODE(p->p_xstat), p->p_xstat,
|
|
p->p_xthread != NULL ? p->p_xthread->td_tid : -1);
|
|
PROC_UNLOCK(p);
|
|
td->td_retval[0] = pid;
|
|
return (0);
|
|
}
|
|
if ((options & WUNTRACED) != 0 &&
|
|
(p->p_flag & P_STOPPED_SIG) != 0 &&
|
|
(p->p_suspcount == p->p_numthreads) &&
|
|
((p->p_flag & P_WAITED) == 0)) {
|
|
PROC_SUNLOCK(p);
|
|
if ((options & WNOWAIT) == 0)
|
|
p->p_flag |= P_WAITED;
|
|
sx_xunlock(&proctree_lock);
|
|
|
|
if (status != NULL)
|
|
*status = W_STOPCODE(p->p_xstat);
|
|
if (siginfo != NULL) {
|
|
siginfo->si_status = p->p_xstat;
|
|
siginfo->si_code = CLD_STOPPED;
|
|
}
|
|
if ((options & WNOWAIT) == 0) {
|
|
PROC_LOCK(q);
|
|
sigqueue_take(p->p_ksi);
|
|
PROC_UNLOCK(q);
|
|
}
|
|
|
|
PROC_UNLOCK(p);
|
|
td->td_retval[0] = pid;
|
|
return (0);
|
|
}
|
|
PROC_SUNLOCK(p);
|
|
if ((options & WCONTINUED) != 0 &&
|
|
(p->p_flag & P_CONTINUED) != 0) {
|
|
sx_xunlock(&proctree_lock);
|
|
if ((options & WNOWAIT) == 0) {
|
|
p->p_flag &= ~P_CONTINUED;
|
|
PROC_LOCK(q);
|
|
sigqueue_take(p->p_ksi);
|
|
PROC_UNLOCK(q);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
|
|
if (status != NULL)
|
|
*status = SIGCONT;
|
|
if (siginfo != NULL) {
|
|
siginfo->si_status = SIGCONT;
|
|
siginfo->si_code = CLD_CONTINUED;
|
|
}
|
|
td->td_retval[0] = pid;
|
|
return (0);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
|
|
/*
|
|
* Look in the orphans list too, to allow the parent to
|
|
* collect it's child exit status even if child is being
|
|
* debugged.
|
|
*
|
|
* Debugger detaches from the parent upon successful
|
|
* switch-over from parent to child. At this point due to
|
|
* re-parenting the parent loses the child to debugger and a
|
|
* wait4(2) call would report that it has no children to wait
|
|
* for. By maintaining a list of orphans we allow the parent
|
|
* to successfully wait until the child becomes a zombie.
|
|
*/
|
|
if (nfound == 0) {
|
|
LIST_FOREACH(p, &q->p_orphans, p_orphan) {
|
|
ret = proc_to_reap(td, p, idtype, id, NULL, options,
|
|
NULL, NULL, 1);
|
|
if (ret != 0) {
|
|
KASSERT(ret != -1, ("reaped an orphan (pid %d)",
|
|
(int)td->td_retval[0]));
|
|
nfound++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (nfound == 0) {
|
|
sx_xunlock(&proctree_lock);
|
|
return (ECHILD);
|
|
}
|
|
if (options & WNOHANG) {
|
|
sx_xunlock(&proctree_lock);
|
|
td->td_retval[0] = 0;
|
|
return (0);
|
|
}
|
|
PROC_LOCK(q);
|
|
sx_xunlock(&proctree_lock);
|
|
if (q->p_flag & P_STATCHILD) {
|
|
q->p_flag &= ~P_STATCHILD;
|
|
error = 0;
|
|
} else
|
|
error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0);
|
|
PROC_UNLOCK(q);
|
|
if (error)
|
|
return (error);
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* Make process 'parent' the new parent of process 'child'.
|
|
* Must be called with an exclusive hold of proctree lock.
|
|
*/
|
|
void
|
|
proc_reparent(struct proc *child, struct proc *parent)
|
|
{
|
|
|
|
sx_assert(&proctree_lock, SX_XLOCKED);
|
|
PROC_LOCK_ASSERT(child, MA_OWNED);
|
|
if (child->p_pptr == parent)
|
|
return;
|
|
|
|
PROC_LOCK(child->p_pptr);
|
|
sigqueue_take(child->p_ksi);
|
|
PROC_UNLOCK(child->p_pptr);
|
|
LIST_REMOVE(child, p_sibling);
|
|
LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
|
|
|
|
clear_orphan(child);
|
|
if (child->p_flag & P_TRACED) {
|
|
if (LIST_EMPTY(&child->p_pptr->p_orphans)) {
|
|
child->p_treeflag |= P_TREE_FIRST_ORPHAN;
|
|
LIST_INSERT_HEAD(&child->p_pptr->p_orphans, child,
|
|
p_orphan);
|
|
} else {
|
|
LIST_INSERT_AFTER(LIST_FIRST(&child->p_pptr->p_orphans),
|
|
child, p_orphan);
|
|
}
|
|
child->p_treeflag |= P_TREE_ORPHANED;
|
|
}
|
|
|
|
child->p_pptr = parent;
|
|
}
|