01e4955a84
to be chosen for swap-in while it was being swapped-out. This was BAD. Submitted by: John Dyson
688 lines
17 KiB
C
688 lines
17 KiB
C
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*
|
|
* $Id: vm_glue.c,v 1.8 1994/10/09 01:52:08 phk Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/user.h>
|
|
|
|
#include <sys/kernel.h>
|
|
#include <sys/dkstat.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <machine/stdarg.h>
|
|
#include <machine/cpu.h>
|
|
|
|
extern char kstack[];
|
|
int avefree = 0; /* XXX */
|
|
int readbuffers = 0; /* XXX allow kgdb to read kernel buffer pool */
|
|
/* vm_map_t upages_map; */
|
|
|
|
int
|
|
kernacc(addr, len, rw)
|
|
caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
boolean_t rv;
|
|
vm_offset_t saddr, eaddr;
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
|
|
saddr = trunc_page(addr);
|
|
eaddr = round_page(addr+len);
|
|
rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
|
|
return(rv == TRUE);
|
|
}
|
|
|
|
int
|
|
useracc(addr, len, rw)
|
|
caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
boolean_t rv;
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
|
|
/*
|
|
* XXX - check separately to disallow access to user area and user
|
|
* page tables - they are in the map.
|
|
*
|
|
* XXX - VM_MAXUSER_ADDRESS is an end address, not a max. It was
|
|
* once only used (as an end address) in trap.c. Use it as an end
|
|
* address here too. This bogusness has spread. I just fixed
|
|
* where it was used as a max in vm_mmap.c.
|
|
*/
|
|
if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
|
|
|| (vm_offset_t) addr + len < (vm_offset_t) addr) {
|
|
return (FALSE);
|
|
}
|
|
|
|
rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
|
|
trunc_page(addr), round_page(addr+len), prot);
|
|
return(rv == TRUE);
|
|
}
|
|
|
|
#ifdef KGDB
|
|
/*
|
|
* Change protections on kernel pages from addr to addr+len
|
|
* (presumably so debugger can plant a breakpoint).
|
|
* All addresses are assumed to reside in the Sysmap,
|
|
*/
|
|
chgkprot(addr, len, rw)
|
|
register caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
|
|
vm_map_protect(kernel_map, trunc_page(addr),
|
|
round_page(addr+len), prot, FALSE);
|
|
}
|
|
#endif
|
|
void
|
|
vslock(addr, len)
|
|
caddr_t addr;
|
|
u_int len;
|
|
{
|
|
vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
|
|
round_page(addr+len), FALSE);
|
|
}
|
|
|
|
void
|
|
vsunlock(addr, len, dirtied)
|
|
caddr_t addr;
|
|
u_int len;
|
|
int dirtied;
|
|
{
|
|
#ifdef lint
|
|
dirtied++;
|
|
#endif lint
|
|
vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
|
|
round_page(addr+len), TRUE);
|
|
}
|
|
|
|
/*
|
|
* Implement fork's actions on an address space.
|
|
* Here we arrange for the address space to be copied or referenced,
|
|
* allocate a user struct (pcb and kernel stack), then call the
|
|
* machine-dependent layer to fill those in and make the new process
|
|
* ready to run.
|
|
* NOTE: the kernel stack may be at a different location in the child
|
|
* process, and thus addresses of automatic variables may be invalid
|
|
* after cpu_fork returns in the child process. We do nothing here
|
|
* after cpu_fork returns.
|
|
*/
|
|
int
|
|
vm_fork(p1, p2, isvfork)
|
|
register struct proc *p1, *p2;
|
|
int isvfork;
|
|
{
|
|
register struct user *up;
|
|
vm_offset_t addr, ptaddr;
|
|
int i;
|
|
struct vm_map *vp;
|
|
|
|
while( cnt.v_free_count < cnt.v_free_min)
|
|
VM_WAIT;
|
|
|
|
/*
|
|
* avoid copying any of the parent's pagetables or other per-process
|
|
* objects that reside in the map by marking all of them non-inheritable
|
|
*/
|
|
(void)vm_map_inherit(&p1->p_vmspace->vm_map,
|
|
UPT_MIN_ADDRESS - UPAGES * NBPG, VM_MAX_ADDRESS, VM_INHERIT_NONE);
|
|
p2->p_vmspace = vmspace_fork(p1->p_vmspace);
|
|
|
|
#ifdef SYSVSHM
|
|
if (p1->p_vmspace->vm_shm)
|
|
shmfork(p1, p2, isvfork);
|
|
#endif
|
|
|
|
/*
|
|
* Allocate a wired-down (for now) pcb and kernel stack for the process
|
|
*/
|
|
|
|
addr = (vm_offset_t) kstack;
|
|
|
|
vp = &p2->p_vmspace->vm_map;
|
|
|
|
/* ream out old pagetables and kernel stack */
|
|
(void)vm_deallocate(vp, addr, UPT_MAX_ADDRESS - addr);
|
|
|
|
/* get new pagetables and kernel stack */
|
|
(void)vm_allocate(vp, &addr, UPT_MAX_ADDRESS - addr, FALSE);
|
|
|
|
/* force in the page table encompassing the UPAGES */
|
|
ptaddr = trunc_page((u_int)vtopte(addr));
|
|
vm_map_pageable(vp, ptaddr, ptaddr + NBPG, FALSE);
|
|
|
|
/* and force in (demand-zero) the UPAGES */
|
|
vm_map_pageable(vp, addr, addr + UPAGES * NBPG, FALSE);
|
|
|
|
/* get a kernel virtual address for the UPAGES for this proc */
|
|
up = (struct user *)kmem_alloc_pageable(kernel_map, UPAGES * NBPG);
|
|
|
|
/* and force-map the upages into the kernel pmap */
|
|
for (i = 0; i < UPAGES; i++)
|
|
pmap_enter(vm_map_pmap(kernel_map),
|
|
((vm_offset_t) up) + NBPG * i,
|
|
pmap_extract(vp->pmap, addr + NBPG * i),
|
|
VM_PROT_READ|VM_PROT_WRITE, 1);
|
|
|
|
/* and allow the UPAGES page table entry to be paged (at the vm system level) */
|
|
vm_map_pageable(vp, ptaddr, ptaddr + NBPG, TRUE);
|
|
|
|
p2->p_addr = up;
|
|
|
|
/*
|
|
* p_stats and p_sigacts currently point at fields
|
|
* in the user struct but not at &u, instead at p_addr.
|
|
* Copy p_sigacts and parts of p_stats; zero the rest
|
|
* of p_stats (statistics).
|
|
*/
|
|
p2->p_stats = &up->u_stats;
|
|
p2->p_sigacts = &up->u_sigacts;
|
|
up->u_sigacts = *p1->p_sigacts;
|
|
bzero(&up->u_stats.pstat_startzero,
|
|
(unsigned) ((caddr_t)&up->u_stats.pstat_endzero -
|
|
(caddr_t)&up->u_stats.pstat_startzero));
|
|
bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
|
|
((caddr_t)&up->u_stats.pstat_endcopy -
|
|
(caddr_t)&up->u_stats.pstat_startcopy));
|
|
|
|
|
|
/*
|
|
* cpu_fork will copy and update the kernel stack and pcb,
|
|
* and make the child ready to run. It marks the child
|
|
* so that it can return differently than the parent.
|
|
* It returns twice, once in the parent process and
|
|
* once in the child.
|
|
*/
|
|
return (cpu_fork(p1, p2));
|
|
}
|
|
|
|
/*
|
|
* Set default limits for VM system.
|
|
* Called for proc 0, and then inherited by all others.
|
|
*/
|
|
void
|
|
vm_init_limits(p)
|
|
register struct proc *p;
|
|
{
|
|
int rss_limit;
|
|
|
|
/*
|
|
* Set up the initial limits on process VM.
|
|
* Set the maximum resident set size to be half
|
|
* of (reasonably) available memory. Since this
|
|
* is a soft limit, it comes into effect only
|
|
* when the system is out of memory - half of
|
|
* main memory helps to favor smaller processes,
|
|
* and reduces thrashing of the object cache.
|
|
*/
|
|
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
|
|
p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
|
|
/* limit the limit to no less than 128K */
|
|
rss_limit = max(cnt.v_free_count / 2, 32);
|
|
p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
|
|
p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
int enableswap = 1;
|
|
int swapdebug = 0;
|
|
#define SDB_FOLLOW 1
|
|
#define SDB_SWAPIN 2
|
|
#define SDB_SWAPOUT 4
|
|
#endif
|
|
|
|
void
|
|
faultin(p)
|
|
struct proc *p;
|
|
{
|
|
vm_offset_t i;
|
|
vm_offset_t ptaddr;
|
|
int s;
|
|
|
|
if ((p->p_flag & P_INMEM) == 0) {
|
|
vm_map_t map;
|
|
|
|
++p->p_lock;
|
|
|
|
map = &p->p_vmspace->vm_map;
|
|
/* force the page table encompassing the kernel stack (upages) */
|
|
ptaddr = trunc_page((u_int)vtopte(kstack));
|
|
vm_map_pageable(map, ptaddr, ptaddr + NBPG, FALSE);
|
|
|
|
/* wire in the UPAGES */
|
|
vm_map_pageable(map, (vm_offset_t) kstack,
|
|
(vm_offset_t) kstack + UPAGES * NBPG, FALSE);
|
|
|
|
/* and map them nicely into the kernel pmap */
|
|
for (i = 0; i < UPAGES; i++) {
|
|
vm_offset_t off = i * NBPG;
|
|
vm_offset_t pa = (vm_offset_t)
|
|
pmap_extract(&p->p_vmspace->vm_pmap,
|
|
(vm_offset_t) kstack + off);
|
|
pmap_enter(vm_map_pmap(kernel_map),
|
|
((vm_offset_t)p->p_addr) + off,
|
|
pa, VM_PROT_READ|VM_PROT_WRITE, 1);
|
|
}
|
|
|
|
/* and let the page table pages go (at least above pmap level) */
|
|
vm_map_pageable(map, ptaddr, ptaddr + NBPG, TRUE);
|
|
|
|
s = splhigh();
|
|
|
|
if (p->p_stat == SRUN)
|
|
setrunqueue(p);
|
|
|
|
p->p_flag |= P_INMEM;
|
|
|
|
/* undo the effect of setting SLOCK above */
|
|
--p->p_lock;
|
|
splx(s);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int swapinreq;
|
|
int percentactive;
|
|
/*
|
|
* This swapin algorithm attempts to swap-in processes only if there
|
|
* is enough space for them. Of course, if a process waits for a long
|
|
* time, it will be swapped in anyway.
|
|
*/
|
|
void
|
|
scheduler()
|
|
{
|
|
register struct proc *p;
|
|
register int pri;
|
|
struct proc *pp;
|
|
int ppri;
|
|
int lastidle, lastrun;
|
|
int curidle, currun;
|
|
int forceload;
|
|
int percent;
|
|
int ntries;
|
|
|
|
lastidle = 0;
|
|
lastrun = 0;
|
|
|
|
loop:
|
|
ntries = 0;
|
|
|
|
curidle = cp_time[CP_IDLE];
|
|
currun = cp_time[CP_USER] + cp_time[CP_SYS] + cp_time[CP_NICE];
|
|
percent = (100*(currun-lastrun)) / ( 1 + (currun-lastrun) + (curidle-lastidle));
|
|
lastrun = currun;
|
|
lastidle = curidle;
|
|
if( percent > 100)
|
|
percent = 100;
|
|
percentactive = percent;
|
|
|
|
if( percentactive < 25)
|
|
forceload = 1;
|
|
else
|
|
forceload = 0;
|
|
|
|
loop1:
|
|
pp = NULL;
|
|
ppri = INT_MIN;
|
|
for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
|
|
if (p->p_stat == SRUN && (p->p_flag & (P_INMEM|P_SWAPPING)) == 0) {
|
|
int mempri;
|
|
pri = p->p_swtime + p->p_slptime - p->p_nice * 8;
|
|
mempri = pri > 0 ? pri : 0;
|
|
/*
|
|
* if this process is higher priority and there is
|
|
* enough space, then select this process instead
|
|
* of the previous selection.
|
|
*/
|
|
if (pri > ppri &&
|
|
(((cnt.v_free_count + (mempri * (4*PAGE_SIZE) / PAGE_SIZE) >= (p->p_vmspace->vm_swrss)) || (ntries > 0 && forceload)))) {
|
|
pp = p;
|
|
ppri = pri;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((pp == NULL) && (ntries == 0) && forceload) {
|
|
++ntries;
|
|
goto loop1;
|
|
}
|
|
|
|
/*
|
|
* Nothing to do, back to sleep
|
|
*/
|
|
if ((p = pp) == NULL) {
|
|
tsleep((caddr_t)&proc0, PVM, "sched", 0);
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* We would like to bring someone in. (only if there is space).
|
|
*/
|
|
/*
|
|
printf("swapin: %d, free: %d, res: %d, min: %d\n",
|
|
p->p_pid, cnt.v_free_count, cnt.v_free_reserved, cnt.v_free_min);
|
|
*/
|
|
(void) splhigh();
|
|
if ((forceload && (cnt.v_free_count > (cnt.v_free_reserved + UPAGES + 1))) ||
|
|
(cnt.v_free_count >= cnt.v_free_min)) {
|
|
spl0();
|
|
faultin(p);
|
|
p->p_swtime = 0;
|
|
goto loop;
|
|
}
|
|
/*
|
|
* log the memory shortage
|
|
*/
|
|
swapinreq += p->p_vmspace->vm_swrss;
|
|
/*
|
|
* Not enough memory, jab the pageout daemon and wait til the
|
|
* coast is clear.
|
|
*/
|
|
if( cnt.v_free_count < cnt.v_free_min) {
|
|
VM_WAIT;
|
|
} else {
|
|
tsleep((caddr_t)&proc0, PVM, "sched", 0);
|
|
}
|
|
(void) spl0();
|
|
goto loop;
|
|
}
|
|
|
|
#define swappable(p) \
|
|
(((p)->p_lock == 0) && \
|
|
((p)->p_flag & (P_TRACED|P_NOSWAP|P_SYSTEM|P_INMEM|P_WEXIT|P_PHYSIO|P_SWAPPING)) == P_INMEM)
|
|
|
|
extern int vm_pageout_free_min;
|
|
/*
|
|
* Swapout is driven by the pageout daemon. Very simple, we find eligible
|
|
* procs and unwire their u-areas. We try to always "swap" at least one
|
|
* process in case we need the room for a swapin.
|
|
* If any procs have been sleeping/stopped for at least maxslp seconds,
|
|
* they are swapped. Else, we swap the longest-sleeping or stopped process,
|
|
* if any, otherwise the longest-resident process.
|
|
*/
|
|
void
|
|
swapout_threads()
|
|
{
|
|
register struct proc *p;
|
|
struct proc *outp, *outp2;
|
|
int outpri, outpri2;
|
|
int tpri;
|
|
int didswap = 0;
|
|
int swapneeded = swapinreq;
|
|
extern int maxslp;
|
|
int runnablenow;
|
|
|
|
runnablenow = 0;
|
|
outp = outp2 = NULL;
|
|
outpri = outpri2 = INT_MIN;
|
|
for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
|
|
if (!swappable(p))
|
|
continue;
|
|
switch (p->p_stat) {
|
|
case SRUN:
|
|
++runnablenow;
|
|
/*
|
|
* count the process as being in a runnable state
|
|
*/
|
|
if ((tpri = p->p_swtime + p->p_nice * 8) > outpri2) {
|
|
outp2 = p;
|
|
outpri2 = tpri;
|
|
}
|
|
continue;
|
|
|
|
case SSLEEP:
|
|
case SSTOP:
|
|
/*
|
|
* do not swapout a realtime process
|
|
*/
|
|
if (p->p_rtprio.type == RTP_PRIO_REALTIME)
|
|
continue;
|
|
|
|
/*
|
|
* do not swapout a process that is waiting for VM datastructures
|
|
* there is a possible deadlock.
|
|
*/
|
|
if (!lock_try_write( &p->p_vmspace->vm_map.lock)) {
|
|
continue;
|
|
}
|
|
vm_map_unlock( &p->p_vmspace->vm_map);
|
|
/*
|
|
* If the process has been asleep for awhile and had most
|
|
* of its pages taken away already, swap it out.
|
|
*/
|
|
if ((p->p_slptime > maxslp) && (p->p_vmspace->vm_pmap.pm_stats.resident_count <= 6)) {
|
|
swapout(p);
|
|
didswap++;
|
|
} else if ((tpri = p->p_slptime + p->p_nice * 8) > outpri) {
|
|
outp = p;
|
|
outpri = tpri ;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* We swapout only if there are more than two runnable processes or if
|
|
* another process needs some space to swapin.
|
|
*/
|
|
if ((swapinreq || ((percentactive > 90) && (runnablenow > 2))) &&
|
|
(((cnt.v_free_count + cnt.v_inactive_count) <= (cnt.v_free_target + cnt.v_inactive_target)) ||
|
|
(cnt.v_free_count < cnt.v_free_min))) {
|
|
if ((p = outp) == 0) {
|
|
p = outp2;
|
|
}
|
|
|
|
/*
|
|
* Only swapout processes that have already had most
|
|
* of their pages taken away.
|
|
*/
|
|
if (p && (p->p_vmspace->vm_pmap.pm_stats.resident_count <= 6)) {
|
|
swapout(p);
|
|
didswap = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if we previously had found a process to swapout, and we need to swapout
|
|
* more then try again.
|
|
*/
|
|
#if 0
|
|
if( p && swapinreq)
|
|
goto swapmore;
|
|
#endif
|
|
|
|
/*
|
|
* If we swapped something out, and another process needed memory,
|
|
* then wakeup the sched process.
|
|
*/
|
|
if (didswap) {
|
|
if (swapneeded)
|
|
wakeup((caddr_t)&proc0);
|
|
swapinreq = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
swapout(p)
|
|
register struct proc *p;
|
|
{
|
|
vm_map_t map = &p->p_vmspace->vm_map;
|
|
|
|
++p->p_stats->p_ru.ru_nswap;
|
|
/*
|
|
* remember the process resident count
|
|
*/
|
|
p->p_vmspace->vm_swrss =
|
|
p->p_vmspace->vm_pmap.pm_stats.resident_count;
|
|
/*
|
|
* and decrement the amount of needed space
|
|
*/
|
|
swapinreq -= min(swapinreq, p->p_vmspace->vm_pmap.pm_stats.resident_count);
|
|
|
|
(void) splhigh();
|
|
p->p_flag &= ~P_INMEM;
|
|
if (p->p_stat == SRUN)
|
|
remrq(p);
|
|
(void) spl0();
|
|
|
|
p->p_flag |= P_SWAPPING;
|
|
/* let the upages be paged */
|
|
pmap_remove(vm_map_pmap(kernel_map),
|
|
(vm_offset_t) p->p_addr, ((vm_offset_t) p->p_addr) + UPAGES * NBPG);
|
|
|
|
vm_map_pageable(map, (vm_offset_t) kstack,
|
|
(vm_offset_t) kstack + UPAGES * NBPG, TRUE);
|
|
|
|
p->p_flag &= ~P_SWAPPING;
|
|
p->p_swtime = 0;
|
|
}
|
|
|
|
/*
|
|
* The rest of these routines fake thread handling
|
|
*/
|
|
|
|
#ifndef assert_wait
|
|
void
|
|
assert_wait(event, ruptible)
|
|
int event;
|
|
boolean_t ruptible;
|
|
{
|
|
#ifdef lint
|
|
ruptible++;
|
|
#endif
|
|
curproc->p_thread = event;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
thread_block(char *msg)
|
|
{
|
|
if (curproc->p_thread)
|
|
tsleep((caddr_t)curproc->p_thread, PVM, msg, 0);
|
|
}
|
|
|
|
|
|
void
|
|
thread_sleep_(event, lock, wmesg)
|
|
int event;
|
|
simple_lock_t lock;
|
|
char *wmesg;
|
|
{
|
|
|
|
curproc->p_thread = event;
|
|
simple_unlock(lock);
|
|
if (curproc->p_thread) {
|
|
tsleep((caddr_t)event, PVM, wmesg, 0);
|
|
}
|
|
}
|
|
|
|
#ifndef thread_wakeup
|
|
void
|
|
thread_wakeup(event)
|
|
int event;
|
|
{
|
|
wakeup((caddr_t)event);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* DEBUG stuff
|
|
*/
|
|
|
|
int indent = 0;
|
|
|
|
#include <machine/stdarg.h> /* see subr_prf.c */
|
|
|
|
/*ARGSUSED2*/
|
|
void
|
|
#if __STDC__
|
|
iprintf(const char *fmt, ...)
|
|
#else
|
|
iprintf(fmt /* , va_alist */)
|
|
char *fmt;
|
|
/* va_dcl */
|
|
#endif
|
|
{
|
|
register int i;
|
|
va_list ap;
|
|
|
|
for (i = indent; i >= 8; i -= 8)
|
|
printf("\t");
|
|
while (--i >= 0)
|
|
printf(" ");
|
|
va_start(ap, fmt);
|
|
printf("%r", fmt, ap);
|
|
va_end(ap);
|
|
}
|