freebsd-skq/sys/dev/amd/amd.c
Scott Long 2b83592fdc Remove Giant from CAM. Drivers (SIMs) now register a mutex that CAM will
use to synchornize and protect all data objects that are used for that
SIM.  Drivers that are not yet MPSAFE register Giant and operate as
usual.  RIght now, no drivers are MPSAFE, though a few will be changed
in the coming week as this work settles down.

The driver API has changed, so all CAM drivers will need to be recompiled.
The userland API has not changed, so tools like camcontrol do not need to
be recompiled.
2007-04-15 08:49:19 +00:00

2540 lines
65 KiB
C

/*-
*********************************************************************
* FILE NAME : amd.c
* BY : C.L. Huang (ching@tekram.com.tw)
* Erich Chen (erich@tekram.com.tw)
* Description: Device Driver for the amd53c974 PCI Bus Master
* SCSI Host adapter found on cards such as
* the Tekram DC-390(T).
* (C)Copyright 1995-1999 Tekram Technology Co., Ltd.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*********************************************************************
* $FreeBSD$
*/
/*
*********************************************************************
* HISTORY:
*
* REV# DATE NAME DESCRIPTION
* 1.00 07/02/96 CLH First release for RELEASE-2.1.0
* 1.01 08/20/96 CLH Update for RELEASE-2.1.5
* 1.02 11/06/96 CLH Fixed more than 1 LUN scanning
* 1.03 12/20/96 CLH Modify to support 2.2-ALPHA
* 1.04 12/26/97 CLH Modify to support RELEASE-2.2.5
* 1.05 01/01/99 ERICH CHEN Modify to support RELEASE-3.0.x (CAM)
*********************************************************************
*/
/* #define AMD_DEBUG0 */
/* #define AMD_DEBUG_SCSI_PHASE */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/malloc.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/amd/amd.h>
#define PCI_DEVICE_ID_AMD53C974 0x20201022ul
#define PCI_BASE_ADDR0 0x10
typedef u_int (phase_handler_t)(struct amd_softc *, struct amd_srb *, u_int);
typedef phase_handler_t *phase_handler_func_t;
static void amd_intr(void *vamd);
static int amdstart(struct amd_softc *amd, struct amd_srb * pSRB);
static phase_handler_t amd_NopPhase;
static phase_handler_t amd_DataOutPhase0;
static phase_handler_t amd_DataInPhase0;
#define amd_CommandPhase0 amd_NopPhase
static phase_handler_t amd_StatusPhase0;
static phase_handler_t amd_MsgOutPhase0;
static phase_handler_t amd_MsgInPhase0;
static phase_handler_t amd_DataOutPhase1;
static phase_handler_t amd_DataInPhase1;
static phase_handler_t amd_CommandPhase1;
static phase_handler_t amd_StatusPhase1;
static phase_handler_t amd_MsgOutPhase1;
static phase_handler_t amd_MsgInPhase1;
static void amdsetupcommand(struct amd_softc *amd, struct amd_srb *srb);
static int amdparsemsg(struct amd_softc *amd);
static int amdhandlemsgreject(struct amd_softc *amd);
static void amdconstructsdtr(struct amd_softc *amd,
u_int period, u_int offset);
static u_int amdfindclockrate(struct amd_softc *amd, u_int *period);
static int amdsentmsg(struct amd_softc *amd, u_int msgtype, int full);
static void DataIO_Comm(struct amd_softc *amd, struct amd_srb *pSRB, u_int dir);
static void amd_Disconnect(struct amd_softc *amd);
static void amd_Reselect(struct amd_softc *amd);
static void SRBdone(struct amd_softc *amd, struct amd_srb *pSRB);
static void amd_ScsiRstDetect(struct amd_softc *amd);
static void amd_ResetSCSIBus(struct amd_softc *amd);
static void RequestSense(struct amd_softc *amd, struct amd_srb *pSRB);
static void amd_InvalidCmd(struct amd_softc *amd);
static void amd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
int error);
#if 0
static void amd_timeout(void *arg1);
static void amd_reset(struct amd_softc *amd);
#endif
static u_int8_t * phystovirt(struct amd_srb *pSRB, u_int32_t xferCnt);
void amd_linkSRB(struct amd_softc *amd);
static int amd_init(device_t);
static void amd_load_defaults(struct amd_softc *amd);
static void amd_load_eeprom_or_defaults(struct amd_softc *amd);
static int amd_EEpromInDO(struct amd_softc *amd);
static u_int16_t EEpromGetData1(struct amd_softc *amd);
static void amd_EnDisableCE(struct amd_softc *amd, int mode, int *regval);
static void amd_EEpromOutDI(struct amd_softc *amd, int *regval, int Carry);
static void amd_Prepare(struct amd_softc *amd, int *regval, u_int8_t EEpromCmd);
static void amd_ReadEEprom(struct amd_softc *amd);
static int amd_probe(device_t);
static int amd_attach(device_t);
static void amdcompletematch(struct amd_softc *amd, target_id_t target,
lun_id_t lun, u_int tag, struct srb_queue *queue,
cam_status status);
static void amdsetsync(struct amd_softc *amd, u_int target, u_int clockrate,
u_int period, u_int offset, u_int type);
static void amdsettags(struct amd_softc *amd, u_int target, int tagenb);
static __inline void amd_clear_msg_state(struct amd_softc *amd);
static __inline void
amd_clear_msg_state(struct amd_softc *amd)
{
amd->msgout_len = 0;
amd->msgout_index = 0;
amd->msgin_index = 0;
}
static __inline uint32_t
amd_get_sense_bufaddr(struct amd_softc *amd, struct amd_srb *pSRB)
{
int offset;
offset = pSRB->TagNumber;
return (amd->sense_busaddr + (offset * sizeof(struct scsi_sense_data)));
}
static __inline struct scsi_sense_data *
amd_get_sense_buf(struct amd_softc *amd, struct amd_srb *pSRB)
{
int offset;
offset = pSRB->TagNumber;
return (&amd->sense_buffers[offset]);
}
static __inline uint32_t
amd_get_sense_bufsize(struct amd_softc *amd, struct amd_srb *pSRB)
{
return (sizeof(struct scsi_sense_data));
}
/* CAM SIM entry points */
#define ccb_srb_ptr spriv_ptr0
#define ccb_amd_ptr spriv_ptr1
static void amd_action(struct cam_sim *sim, union ccb *ccb);
static void amd_poll(struct cam_sim *sim);
/*
* State engine function tables indexed by SCSI phase number
*/
phase_handler_func_t amd_SCSI_phase0[] = {
amd_DataOutPhase0,
amd_DataInPhase0,
amd_CommandPhase0,
amd_StatusPhase0,
amd_NopPhase,
amd_NopPhase,
amd_MsgOutPhase0,
amd_MsgInPhase0
};
phase_handler_func_t amd_SCSI_phase1[] = {
amd_DataOutPhase1,
amd_DataInPhase1,
amd_CommandPhase1,
amd_StatusPhase1,
amd_NopPhase,
amd_NopPhase,
amd_MsgOutPhase1,
amd_MsgInPhase1
};
/*
* EEProm/BIOS negotiation periods
*/
u_int8_t eeprom_period[] = {
25, /* 10.0MHz */
32, /* 8.0MHz */
38, /* 6.6MHz */
44, /* 5.7MHz */
50, /* 5.0MHz */
63, /* 4.0MHz */
83, /* 3.0MHz */
125 /* 2.0MHz */
};
/*
* chip clock setting to SCSI specified sync parameter table.
*/
u_int8_t tinfo_sync_period[] = {
25, /* 10.0 */
32, /* 8.0 */
38, /* 6.6 */
44, /* 5.7 */
50, /* 5.0 */
57, /* 4.4 */
63, /* 4.0 */
70, /* 3.6 */
76, /* 3.3 */
83 /* 3.0 */
};
static __inline struct amd_srb *
amdgetsrb(struct amd_softc * amd)
{
int intflag;
struct amd_srb * pSRB;
intflag = splcam();
pSRB = TAILQ_FIRST(&amd->free_srbs);
if (pSRB)
TAILQ_REMOVE(&amd->free_srbs, pSRB, links);
splx(intflag);
return (pSRB);
}
static void
amdsetupcommand(struct amd_softc *amd, struct amd_srb *srb)
{
struct scsi_request_sense sense_cmd;
u_int8_t *cdb;
u_int cdb_len;
if (srb->SRBFlag & AUTO_REQSENSE) {
sense_cmd.opcode = REQUEST_SENSE;
sense_cmd.byte2 = srb->pccb->ccb_h.target_lun << 5;
sense_cmd.unused[0] = 0;
sense_cmd.unused[1] = 0;
sense_cmd.length = sizeof(struct scsi_sense_data);
sense_cmd.control = 0;
cdb = &sense_cmd.opcode;
cdb_len = sizeof(sense_cmd);
} else {
cdb = &srb->CmdBlock[0];
cdb_len = srb->ScsiCmdLen;
}
amd_write8_multi(amd, SCSIFIFOREG, cdb, cdb_len);
}
/*
* Attempt to start a waiting transaction. Interrupts must be disabled
* upon entry to this function.
*/
static void
amdrunwaiting(struct amd_softc *amd) {
struct amd_srb *srb;
if (amd->last_phase != SCSI_BUS_FREE)
return;
srb = TAILQ_FIRST(&amd->waiting_srbs);
if (srb == NULL)
return;
if (amdstart(amd, srb) == 0) {
TAILQ_REMOVE(&amd->waiting_srbs, srb, links);
TAILQ_INSERT_HEAD(&amd->running_srbs, srb, links);
}
}
static void
amdexecutesrb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
struct amd_srb *srb;
union ccb *ccb;
struct amd_softc *amd;
int s;
srb = (struct amd_srb *)arg;
ccb = srb->pccb;
amd = (struct amd_softc *)ccb->ccb_h.ccb_amd_ptr;
if (error != 0) {
if (error != EFBIG)
printf("amd%d: Unexepected error 0x%x returned from "
"bus_dmamap_load\n", amd->unit, error);
if (ccb->ccb_h.status == CAM_REQ_INPROG) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN;
}
TAILQ_INSERT_HEAD(&amd->free_srbs, srb, links);
xpt_done(ccb);
return;
}
if (nseg != 0) {
struct amd_sg *sg;
bus_dma_segment_t *end_seg;
bus_dmasync_op_t op;
end_seg = dm_segs + nseg;
/* Copy the segments into our SG list */
srb->pSGlist = &srb->SGsegment[0];
sg = srb->pSGlist;
while (dm_segs < end_seg) {
sg->SGXLen = dm_segs->ds_len;
sg->SGXPtr = dm_segs->ds_addr;
sg++;
dm_segs++;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(amd->buffer_dmat, srb->dmamap, op);
}
srb->SGcount = nseg;
srb->SGIndex = 0;
srb->AdaptStatus = 0;
srb->TargetStatus = 0;
srb->MsgCnt = 0;
srb->SRBStatus = 0;
srb->SRBFlag = 0;
srb->SRBState = 0;
srb->TotalXferredLen = 0;
srb->SGPhysAddr = 0;
srb->SGToBeXferLen = 0;
srb->EndMessage = 0;
s = splcam();
/*
* Last time we need to check if this CCB needs to
* be aborted.
*/
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
if (nseg != 0)
bus_dmamap_unload(amd->buffer_dmat, srb->dmamap);
TAILQ_INSERT_HEAD(&amd->free_srbs, srb, links);
xpt_done(ccb);
splx(s);
return;
}
ccb->ccb_h.status |= CAM_SIM_QUEUED;
#if 0
/* XXX Need a timeout handler */
ccb->ccb_h.timeout_ch =
timeout(amdtimeout, (caddr_t)srb,
(ccb->ccb_h.timeout * hz) / 1000);
#endif
TAILQ_INSERT_TAIL(&amd->waiting_srbs, srb, links);
amdrunwaiting(amd);
splx(s);
}
static void
amd_action(struct cam_sim * psim, union ccb * pccb)
{
struct amd_softc * amd;
u_int target_id;
CAM_DEBUG(pccb->ccb_h.path, CAM_DEBUG_TRACE, ("amd_action\n"));
amd = (struct amd_softc *) cam_sim_softc(psim);
target_id = pccb->ccb_h.target_id;
switch (pccb->ccb_h.func_code) {
case XPT_SCSI_IO:
{
struct amd_srb * pSRB;
struct ccb_scsiio *pcsio;
pcsio = &pccb->csio;
/*
* Assign an SRB and connect it with this ccb.
*/
pSRB = amdgetsrb(amd);
if (!pSRB) {
/* Freeze SIMQ */
pccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(pccb);
return;
}
pSRB->pccb = pccb;
pccb->ccb_h.ccb_srb_ptr = pSRB;
pccb->ccb_h.ccb_amd_ptr = amd;
pSRB->ScsiCmdLen = pcsio->cdb_len;
bcopy(pcsio->cdb_io.cdb_bytes, pSRB->CmdBlock, pcsio->cdb_len);
if ((pccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((pccb->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer
* to a single buffer.
*/
if ((pccb->ccb_h.flags & CAM_DATA_PHYS) == 0) {
int s;
int error;
s = splsoftvm();
error =
bus_dmamap_load(amd->buffer_dmat,
pSRB->dmamap,
pcsio->data_ptr,
pcsio->dxfer_len,
amdexecutesrb,
pSRB, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain
* ordering, freeze the
* controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(amd->psim, 1);
pccb->ccb_h.status |=
CAM_RELEASE_SIMQ;
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
seg.ds_addr =
(bus_addr_t)pcsio->data_ptr;
seg.ds_len = pcsio->dxfer_len;
amdexecutesrb(pSRB, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((pccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0
|| (pccb->ccb_h.flags & CAM_DATA_PHYS) != 0) {
TAILQ_INSERT_HEAD(&amd->free_srbs,
pSRB, links);
pccb->ccb_h.status = CAM_PROVIDE_FAIL;
xpt_done(pccb);
return;
}
/* Just use the segments provided */
segs =
(struct bus_dma_segment *)pcsio->data_ptr;
amdexecutesrb(pSRB, segs, pcsio->sglist_cnt, 0);
}
} else
amdexecutesrb(pSRB, NULL, 0, 0);
break;
}
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &pccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_SDTR_ABLE | PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 7;
cpi->max_lun = amd->max_lun; /* 7 or 0 */
cpi->initiator_id = amd->AdaptSCSIID;
cpi->bus_id = cam_sim_bus(psim);
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "TRM-AMD", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(psim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(psim);
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(pccb);
break;
}
case XPT_ABORT:
pccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(pccb);
break;
case XPT_RESET_BUS:
{
int i;
amd_ResetSCSIBus(amd);
amd->ACBFlag = 0;
for (i = 0; i < 500; i++) {
DELAY(1000); /* Wait until our interrupt
* handler sees it */
}
pccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(pccb);
break;
}
case XPT_RESET_DEV:
pccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(pccb);
break;
case XPT_TERM_IO:
pccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(pccb);
break;
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &pccb->cts;
struct amd_target_info *targ_info = &amd->tinfo[target_id];
struct amd_transinfo *tinfo;
int intflag;
struct ccb_trans_settings_scsi *scsi =
&cts->proto_specific.scsi;
struct ccb_trans_settings_spi *spi =
&cts->xport_specific.spi;
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_SPI;
cts->transport_version = 2;
intflag = splcam();
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
/* current transfer settings */
if (targ_info->disc_tag & AMD_CUR_DISCENB) {
spi->flags = CTS_SPI_FLAGS_DISC_ENB;
} else {
spi->flags = 0;
}
if (targ_info->disc_tag & AMD_CUR_TAGENB) {
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
} else {
scsi->flags = 0;
}
tinfo = &targ_info->current;
} else {
/* default(user) transfer settings */
if (targ_info->disc_tag & AMD_USR_DISCENB) {
spi->flags = CTS_SPI_FLAGS_DISC_ENB;
} else {
spi->flags = 0;
}
if (targ_info->disc_tag & AMD_USR_TAGENB) {
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
} else {
scsi->flags = 0;
}
tinfo = &targ_info->user;
}
spi->sync_period = tinfo->period;
spi->sync_offset = tinfo->offset;
splx(intflag);
spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
spi->valid = CTS_SPI_VALID_SYNC_RATE
| CTS_SPI_VALID_SYNC_OFFSET
| CTS_SPI_VALID_BUS_WIDTH
| CTS_SPI_VALID_DISC;
scsi->valid = CTS_SCSI_VALID_TQ;
pccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(pccb);
break;
}
#define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS)
#define IS_USER_SETTINGS(c) (c->type == CTS_TYPE_USER_SETTINGS)
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &pccb->cts;
struct amd_target_info *targ_info;
u_int update_type = 0;
int intflag;
int last_entry;
struct ccb_trans_settings_scsi *scsi =
&cts->proto_specific.scsi;
struct ccb_trans_settings_spi *spi =
&cts->xport_specific.spi;
if (IS_CURRENT_SETTINGS(cts)) {
update_type |= AMD_TRANS_GOAL;
} else if (IS_USER_SETTINGS(cts)) {
update_type |= AMD_TRANS_USER;
}
if (update_type == 0
|| update_type == (AMD_TRANS_USER|AMD_TRANS_GOAL)) {
cts->ccb_h.status = CAM_REQ_INVALID;
xpt_done(pccb);
}
intflag = splcam();
targ_info = &amd->tinfo[target_id];
if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
if (update_type & AMD_TRANS_GOAL) {
if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB)
!= 0) {
targ_info->disc_tag |= AMD_CUR_DISCENB;
} else {
targ_info->disc_tag &= ~AMD_CUR_DISCENB;
}
}
if (update_type & AMD_TRANS_USER) {
if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB)
!= 0) {
targ_info->disc_tag |= AMD_USR_DISCENB;
} else {
targ_info->disc_tag &= ~AMD_USR_DISCENB;
}
}
}
if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
if (update_type & AMD_TRANS_GOAL) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB)
!= 0) {
targ_info->disc_tag |= AMD_CUR_TAGENB;
} else {
targ_info->disc_tag &= ~AMD_CUR_TAGENB;
}
}
if (update_type & AMD_TRANS_USER) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB)
!= 0) {
targ_info->disc_tag |= AMD_USR_TAGENB;
} else {
targ_info->disc_tag &= ~AMD_USR_TAGENB;
}
}
}
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) {
if (update_type & AMD_TRANS_GOAL)
spi->sync_offset = targ_info->goal.offset;
else
spi->sync_offset = targ_info->user.offset;
}
if (spi->sync_offset > AMD_MAX_SYNC_OFFSET)
spi->sync_offset = AMD_MAX_SYNC_OFFSET;
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
if (update_type & AMD_TRANS_GOAL)
spi->sync_period = targ_info->goal.period;
else
spi->sync_period = targ_info->user.period;
}
last_entry = sizeof(tinfo_sync_period) - 1;
if ((spi->sync_period != 0)
&& (spi->sync_period < tinfo_sync_period[0]))
spi->sync_period = tinfo_sync_period[0];
if (spi->sync_period > tinfo_sync_period[last_entry])
spi->sync_period = 0;
if (spi->sync_offset == 0)
spi->sync_period = 0;
if ((update_type & AMD_TRANS_USER) != 0) {
targ_info->user.period = spi->sync_period;
targ_info->user.offset = spi->sync_offset;
}
if ((update_type & AMD_TRANS_GOAL) != 0) {
targ_info->goal.period = spi->sync_period;
targ_info->goal.offset = spi->sync_offset;
}
splx(intflag);
pccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(pccb);
break;
}
case XPT_CALC_GEOMETRY:
{
int extended;
extended = (amd->eepromBuf[EE_MODE2] & GREATER_1G) != 0;
cam_calc_geometry(&pccb->ccg, extended);
xpt_done(pccb);
break;
}
default:
pccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(pccb);
break;
}
}
static void
amd_poll(struct cam_sim * psim)
{
amd_intr(cam_sim_softc(psim));
}
static u_int8_t *
phystovirt(struct amd_srb * pSRB, u_int32_t xferCnt)
{
intptr_t dataPtr;
struct ccb_scsiio *pcsio;
u_int8_t i;
struct amd_sg * pseg;
dataPtr = 0;
pcsio = &pSRB->pccb->csio;
dataPtr = (intptr_t) pcsio->data_ptr;
pseg = pSRB->SGsegment;
for (i = 0; i < pSRB->SGIndex; i++) {
dataPtr += (int) pseg->SGXLen;
pseg++;
}
dataPtr += (int) xferCnt;
return ((u_int8_t *) dataPtr);
}
static void
amd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *baddr;
baddr = (bus_addr_t *)arg;
*baddr = segs->ds_addr;
}
static void
ResetDevParam(struct amd_softc * amd)
{
u_int target;
for (target = 0; target <= amd->max_id; target++) {
if (amd->AdaptSCSIID != target) {
amdsetsync(amd, target, /*clockrate*/0,
/*period*/0, /*offset*/0, AMD_TRANS_CUR);
}
}
}
static void
amdcompletematch(struct amd_softc *amd, target_id_t target, lun_id_t lun,
u_int tag, struct srb_queue *queue, cam_status status)
{
struct amd_srb *srb;
struct amd_srb *next_srb;
for (srb = TAILQ_FIRST(queue); srb != NULL; srb = next_srb) {
union ccb *ccb;
next_srb = TAILQ_NEXT(srb, links);
if (srb->pccb->ccb_h.target_id != target
&& target != CAM_TARGET_WILDCARD)
continue;
if (srb->pccb->ccb_h.target_lun != lun
&& lun != CAM_LUN_WILDCARD)
continue;
if (srb->TagNumber != tag
&& tag != AMD_TAG_WILDCARD)
continue;
ccb = srb->pccb;
TAILQ_REMOVE(queue, srb, links);
TAILQ_INSERT_HEAD(&amd->free_srbs, srb, links);
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) == 0
&& (status & CAM_DEV_QFRZN) != 0)
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status = status;
xpt_done(ccb);
}
}
static void
amdsetsync(struct amd_softc *amd, u_int target, u_int clockrate,
u_int period, u_int offset, u_int type)
{
struct amd_target_info *tinfo;
u_int old_period;
u_int old_offset;
tinfo = &amd->tinfo[target];
old_period = tinfo->current.period;
old_offset = tinfo->current.offset;
if ((type & AMD_TRANS_CUR) != 0
&& (old_period != period || old_offset != offset)) {
struct cam_path *path;
tinfo->current.period = period;
tinfo->current.offset = offset;
tinfo->sync_period_reg = clockrate;
tinfo->sync_offset_reg = offset;
tinfo->CtrlR3 &= ~FAST_SCSI;
tinfo->CtrlR4 &= ~EATER_25NS;
if (clockrate > 7)
tinfo->CtrlR4 |= EATER_25NS;
else
tinfo->CtrlR3 |= FAST_SCSI;
if ((type & AMD_TRANS_ACTIVE) == AMD_TRANS_ACTIVE) {
amd_write8(amd, SYNCPERIOREG, tinfo->sync_period_reg);
amd_write8(amd, SYNCOFFREG, tinfo->sync_offset_reg);
amd_write8(amd, CNTLREG3, tinfo->CtrlR3);
amd_write8(amd, CNTLREG4, tinfo->CtrlR4);
}
/* If possible, update the XPT's notion of our transfer rate */
if (xpt_create_path(&path, /*periph*/NULL,
cam_sim_path(amd->psim), target,
CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
struct ccb_trans_settings neg;
struct ccb_trans_settings_spi *spi =
&neg.xport_specific.spi;
xpt_setup_ccb(&neg.ccb_h, path, /*priority*/1);
memset(&neg, 0, sizeof (neg));
spi->sync_period = period;
spi->sync_offset = offset;
spi->valid = CTS_SPI_VALID_SYNC_RATE
| CTS_SPI_VALID_SYNC_OFFSET;
xpt_async(AC_TRANSFER_NEG, path, &neg);
xpt_free_path(path);
}
}
if ((type & AMD_TRANS_GOAL) != 0) {
tinfo->goal.period = period;
tinfo->goal.offset = offset;
}
if ((type & AMD_TRANS_USER) != 0) {
tinfo->user.period = period;
tinfo->user.offset = offset;
}
}
static void
amdsettags(struct amd_softc *amd, u_int target, int tagenb)
{
panic("Implement me!\n");
}
#if 0
/*
**********************************************************************
* Function : amd_reset (struct amd_softc * amd)
* Purpose : perform a hard reset on the SCSI bus( and AMD chip).
* Inputs : cmd - command which caused the SCSI RESET
**********************************************************************
*/
static void
amd_reset(struct amd_softc * amd)
{
int intflag;
u_int8_t bval;
u_int16_t i;
#ifdef AMD_DEBUG0
printf("DC390: RESET");
#endif
intflag = splcam();
bval = amd_read8(amd, CNTLREG1);
bval |= DIS_INT_ON_SCSI_RST;
amd_write8(amd, CNTLREG1, bval); /* disable interrupt */
amd_ResetSCSIBus(amd);
for (i = 0; i < 500; i++) {
DELAY(1000);
}
bval = amd_read8(amd, CNTLREG1);
bval &= ~DIS_INT_ON_SCSI_RST;
amd_write8(amd, CNTLREG1, bval); /* re-enable interrupt */
amd_write8(amd, DMA_Cmd, DMA_IDLE_CMD);
amd_write8(amd, SCSICMDREG, CLEAR_FIFO_CMD);
ResetDevParam(amd);
amdcompletematch(amd, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD,
AMD_TAG_WILDCARD, &amd->running_srbs,
CAM_DEV_QFRZN|CAM_SCSI_BUS_RESET);
amdcompletematch(amd, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD,
AMD_TAG_WILDCARD, &amd->waiting_srbs,
CAM_DEV_QFRZN|CAM_SCSI_BUS_RESET);
amd->active_srb = NULL;
amd->ACBFlag = 0;
splx(intflag);
return;
}
void
amd_timeout(void *arg1)
{
struct amd_srb * pSRB;
pSRB = (struct amd_srb *) arg1;
}
#endif
static int
amdstart(struct amd_softc *amd, struct amd_srb *pSRB)
{
union ccb *pccb;
struct ccb_scsiio *pcsio;
struct amd_target_info *targ_info;
u_int identify_msg;
u_int command;
u_int target;
u_int lun;
pccb = pSRB->pccb;
pcsio = &pccb->csio;
target = pccb->ccb_h.target_id;
lun = pccb->ccb_h.target_lun;
targ_info = &amd->tinfo[target];
amd_clear_msg_state(amd);
amd_write8(amd, SCSIDESTIDREG, target);
amd_write8(amd, SYNCPERIOREG, targ_info->sync_period_reg);
amd_write8(amd, SYNCOFFREG, targ_info->sync_offset_reg);
amd_write8(amd, CNTLREG1, targ_info->CtrlR1);
amd_write8(amd, CNTLREG3, targ_info->CtrlR3);
amd_write8(amd, CNTLREG4, targ_info->CtrlR4);
amd_write8(amd, SCSICMDREG, CLEAR_FIFO_CMD);
identify_msg = MSG_IDENTIFYFLAG | lun;
if ((targ_info->disc_tag & AMD_CUR_DISCENB) != 0
&& (pccb->ccb_h.flags & CAM_DIS_DISCONNECT) == 0
&& (pSRB->CmdBlock[0] != REQUEST_SENSE)
&& (pSRB->SRBFlag & AUTO_REQSENSE) == 0)
identify_msg |= MSG_IDENTIFY_DISCFLAG;
amd_write8(amd, SCSIFIFOREG, identify_msg);
if ((targ_info->disc_tag & AMD_CUR_TAGENB) == 0
|| (identify_msg & MSG_IDENTIFY_DISCFLAG) == 0)
pccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
if (targ_info->current.period != targ_info->goal.period
|| targ_info->current.offset != targ_info->goal.offset) {
command = SEL_W_ATN_STOP;
amdconstructsdtr(amd, targ_info->goal.period,
targ_info->goal.offset);
} else if ((pccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
command = SEL_W_ATN2;
pSRB->SRBState = SRB_START;
amd_write8(amd, SCSIFIFOREG, pcsio->tag_action);
amd_write8(amd, SCSIFIFOREG, pSRB->TagNumber);
} else {
command = SEL_W_ATN;
pSRB->SRBState = SRB_START;
}
if (command != SEL_W_ATN_STOP)
amdsetupcommand(amd, pSRB);
if (amd_read8(amd, SCSISTATREG) & INTERRUPT) {
pSRB->SRBState = SRB_READY;
return (1);
} else {
amd->last_phase = SCSI_ARBITRATING;
amd_write8(amd, SCSICMDREG, command);
amd->active_srb = pSRB;
amd->cur_target = target;
amd->cur_lun = lun;
return (0);
}
}
/*
* Catch an interrupt from the adapter.
* Process pending device interrupts.
*/
static void
amd_intr(void *arg)
{
struct amd_softc *amd;
struct amd_srb *pSRB;
u_int internstat = 0;
u_int scsistat;
u_int intstat;
amd = (struct amd_softc *)arg;
if (amd == NULL) {
#ifdef AMD_DEBUG0
printf("amd_intr: amd NULL return......");
#endif
return;
}
scsistat = amd_read8(amd, SCSISTATREG);
if (!(scsistat & INTERRUPT)) {
#ifdef AMD_DEBUG0
printf("amd_intr: scsistat = NULL ,return......");
#endif
return;
}
#ifdef AMD_DEBUG_SCSI_PHASE
printf("scsistat=%2x,", scsistat);
#endif
internstat = amd_read8(amd, INTERNSTATREG);
intstat = amd_read8(amd, INTSTATREG);
#ifdef AMD_DEBUG_SCSI_PHASE
printf("intstat=%2x,", intstat);
#endif
if (intstat & DISCONNECTED) {
amd_Disconnect(amd);
return;
}
if (intstat & RESELECTED) {
amd_Reselect(amd);
return;
}
if (intstat & INVALID_CMD) {
amd_InvalidCmd(amd);
return;
}
if (intstat & SCSI_RESET_) {
amd_ScsiRstDetect(amd);
return;
}
if (intstat & (SUCCESSFUL_OP + SERVICE_REQUEST)) {
pSRB = amd->active_srb;
/*
* Run our state engine. First perform
* post processing for the last phase we
* were in, followed by any processing
* required to handle the current phase.
*/
scsistat =
amd_SCSI_phase0[amd->last_phase](amd, pSRB, scsistat);
amd->last_phase = scsistat & SCSI_PHASE_MASK;
(void)amd_SCSI_phase1[amd->last_phase](amd, pSRB, scsistat);
}
}
static u_int
amd_DataOutPhase0(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
struct amd_sg *psgl;
u_int32_t ResidCnt, xferCnt;
if (!(pSRB->SRBState & SRB_XFERPAD)) {
if (scsistat & PARITY_ERR) {
pSRB->SRBStatus |= PARITY_ERROR;
}
if (scsistat & COUNT_2_ZERO) {
while ((amd_read8(amd, DMA_Status)&DMA_XFER_DONE) == 0)
;
pSRB->TotalXferredLen += pSRB->SGToBeXferLen;
pSRB->SGIndex++;
if (pSRB->SGIndex < pSRB->SGcount) {
pSRB->pSGlist++;
psgl = pSRB->pSGlist;
pSRB->SGPhysAddr = psgl->SGXPtr;
pSRB->SGToBeXferLen = psgl->SGXLen;
} else {
pSRB->SGToBeXferLen = 0;
}
} else {
ResidCnt = amd_read8(amd, CURRENTFIFOREG) & 0x1f;
ResidCnt += amd_read8(amd, CTCREG_LOW)
| (amd_read8(amd, CTCREG_MID) << 8)
| (amd_read8(amd, CURTXTCNTREG) << 16);
xferCnt = pSRB->SGToBeXferLen - ResidCnt;
pSRB->SGPhysAddr += xferCnt;
pSRB->TotalXferredLen += xferCnt;
pSRB->SGToBeXferLen = ResidCnt;
}
}
amd_write8(amd, DMA_Cmd, WRITE_DIRECTION | DMA_IDLE_CMD);
return (scsistat);
}
static u_int
amd_DataInPhase0(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
u_int8_t bval;
u_int16_t i, residual;
struct amd_sg *psgl;
u_int32_t ResidCnt, xferCnt;
u_int8_t * ptr;
if (!(pSRB->SRBState & SRB_XFERPAD)) {
if (scsistat & PARITY_ERR) {
pSRB->SRBStatus |= PARITY_ERROR;
}
if (scsistat & COUNT_2_ZERO) {
while (1) {
bval = amd_read8(amd, DMA_Status);
if ((bval & DMA_XFER_DONE) != 0)
break;
}
amd_write8(amd, DMA_Cmd, READ_DIRECTION|DMA_IDLE_CMD);
pSRB->TotalXferredLen += pSRB->SGToBeXferLen;
pSRB->SGIndex++;
if (pSRB->SGIndex < pSRB->SGcount) {
pSRB->pSGlist++;
psgl = pSRB->pSGlist;
pSRB->SGPhysAddr = psgl->SGXPtr;
pSRB->SGToBeXferLen = psgl->SGXLen;
} else {
pSRB->SGToBeXferLen = 0;
}
} else { /* phase changed */
residual = 0;
bval = amd_read8(amd, CURRENTFIFOREG);
while (bval & 0x1f) {
if ((bval & 0x1f) == 1) {
for (i = 0; i < 0x100; i++) {
bval = amd_read8(amd, CURRENTFIFOREG);
if (!(bval & 0x1f)) {
goto din_1;
} else if (i == 0x0ff) {
residual = 1;
goto din_1;
}
}
} else {
bval = amd_read8(amd, CURRENTFIFOREG);
}
}
din_1:
amd_write8(amd, DMA_Cmd, READ_DIRECTION|DMA_BLAST_CMD);
for (i = 0; i < 0x8000; i++) {
if ((amd_read8(amd, DMA_Status)&BLAST_COMPLETE))
break;
}
amd_write8(amd, DMA_Cmd, READ_DIRECTION|DMA_IDLE_CMD);
ResidCnt = amd_read8(amd, CTCREG_LOW)
| (amd_read8(amd, CTCREG_MID) << 8)
| (amd_read8(amd, CURTXTCNTREG) << 16);
xferCnt = pSRB->SGToBeXferLen - ResidCnt;
pSRB->SGPhysAddr += xferCnt;
pSRB->TotalXferredLen += xferCnt;
pSRB->SGToBeXferLen = ResidCnt;
if (residual) {
/* get residual byte */
bval = amd_read8(amd, SCSIFIFOREG);
ptr = phystovirt(pSRB, xferCnt);
*ptr = bval;
pSRB->SGPhysAddr++;
pSRB->TotalXferredLen++;
pSRB->SGToBeXferLen--;
}
}
}
return (scsistat);
}
static u_int
amd_StatusPhase0(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
pSRB->TargetStatus = amd_read8(amd, SCSIFIFOREG);
/* get message */
pSRB->EndMessage = amd_read8(amd, SCSIFIFOREG);
pSRB->SRBState = SRB_COMPLETED;
amd_write8(amd, SCSICMDREG, MSG_ACCEPTED_CMD);
return (SCSI_NOP0);
}
static u_int
amd_MsgOutPhase0(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
if (pSRB->SRBState & (SRB_UNEXPECT_RESEL + SRB_ABORT_SENT)) {
scsistat = SCSI_NOP0;
}
return (scsistat);
}
static u_int
amd_MsgInPhase0(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
int done;
amd->msgin_buf[amd->msgin_index] = amd_read8(amd, SCSIFIFOREG);
done = amdparsemsg(amd);
if (done)
amd->msgin_index = 0;
else
amd->msgin_index++;
return (SCSI_NOP0);
}
static int
amdparsemsg(struct amd_softc *amd)
{
int reject;
int done;
int response;
done = FALSE;
response = FALSE;
reject = FALSE;
/*
* Parse as much of the message as is availible,
* rejecting it if we don't support it. When
* the entire message is availible and has been
* handled, return TRUE indicating that we have
* parsed an entire message.
*/
switch (amd->msgin_buf[0]) {
case MSG_DISCONNECT:
amd->active_srb->SRBState = SRB_DISCONNECT;
amd->disc_count[amd->cur_target][amd->cur_lun]++;
done = TRUE;
break;
case MSG_SIMPLE_Q_TAG:
{
struct amd_srb *disc_srb;
if (amd->msgin_index < 1)
break;
disc_srb = &amd->SRB_array[amd->msgin_buf[1]];
if (amd->active_srb != NULL
|| disc_srb->SRBState != SRB_DISCONNECT
|| disc_srb->pccb->ccb_h.target_id != amd->cur_target
|| disc_srb->pccb->ccb_h.target_lun != amd->cur_lun) {
printf("amd%d: Unexpected tagged reselection "
"for target %d, Issuing Abort\n", amd->unit,
amd->cur_target);
amd->msgout_buf[0] = MSG_ABORT;
amd->msgout_len = 1;
response = TRUE;
break;
}
amd->active_srb = disc_srb;
amd->disc_count[amd->cur_target][amd->cur_lun]--;
done = TRUE;
break;
}
case MSG_MESSAGE_REJECT:
response = amdhandlemsgreject(amd);
if (response == FALSE)
amd_write8(amd, SCSICMDREG, RESET_ATN_CMD);
/* FALLTHROUGH */
case MSG_NOOP:
done = TRUE;
break;
case MSG_EXTENDED:
{
u_int clockrate;
u_int period;
u_int offset;
u_int saved_offset;
/* Wait for enough of the message to begin validation */
if (amd->msgin_index < 1)
break;
if (amd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
reject = TRUE;
break;
}
/* Wait for opcode */
if (amd->msgin_index < 2)
break;
if (amd->msgin_buf[2] != MSG_EXT_SDTR) {
reject = TRUE;
break;
}
/*
* Wait until we have both args before validating
* and acting on this message.
*
* Add one to MSG_EXT_SDTR_LEN to account for
* the extended message preamble.
*/
if (amd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
break;
period = amd->msgin_buf[3];
saved_offset = offset = amd->msgin_buf[4];
clockrate = amdfindclockrate(amd, &period);
if (offset > AMD_MAX_SYNC_OFFSET)
offset = AMD_MAX_SYNC_OFFSET;
if (period == 0 || offset == 0) {
offset = 0;
period = 0;
clockrate = 0;
}
amdsetsync(amd, amd->cur_target, clockrate, period, offset,
AMD_TRANS_ACTIVE|AMD_TRANS_GOAL);
/*
* See if we initiated Sync Negotiation
* and didn't have to fall down to async
* transfers.
*/
if (amdsentmsg(amd, MSG_EXT_SDTR, /*full*/TRUE)) {
/* We started it */
if (saved_offset != offset) {
/* Went too low - force async */
reject = TRUE;
}
} else {
/*
* Send our own SDTR in reply
*/
if (bootverbose)
printf("Sending SDTR!\n");
amd->msgout_index = 0;
amd->msgout_len = 0;
amdconstructsdtr(amd, period, offset);
amd->msgout_index = 0;
response = TRUE;
}
done = TRUE;
break;
}
case MSG_SAVEDATAPOINTER:
case MSG_RESTOREPOINTERS:
/* XXX Implement!!! */
done = TRUE;
break;
default:
reject = TRUE;
break;
}
if (reject) {
amd->msgout_index = 0;
amd->msgout_len = 1;
amd->msgout_buf[0] = MSG_MESSAGE_REJECT;
done = TRUE;
response = TRUE;
}
if (response)
amd_write8(amd, SCSICMDREG, SET_ATN_CMD);
if (done && !response)
/* Clear the outgoing message buffer */
amd->msgout_len = 0;
/* Drop Ack */
amd_write8(amd, SCSICMDREG, MSG_ACCEPTED_CMD);
return (done);
}
static u_int
amdfindclockrate(struct amd_softc *amd, u_int *period)
{
u_int i;
u_int clockrate;
for (i = 0; i < sizeof(tinfo_sync_period); i++) {
u_int8_t *table_entry;
table_entry = &tinfo_sync_period[i];
if (*period <= *table_entry) {
/*
* When responding to a target that requests
* sync, the requested rate may fall between
* two rates that we can output, but still be
* a rate that we can receive. Because of this,
* we want to respond to the target with
* the same rate that it sent to us even
* if the period we use to send data to it
* is lower. Only lower the response period
* if we must.
*/
if (i == 0) {
*period = *table_entry;
}
break;
}
}
if (i == sizeof(tinfo_sync_period)) {
/* Too slow for us. Use asnyc transfers. */
*period = 0;
clockrate = 0;
} else
clockrate = i + 4;
return (clockrate);
}
/*
* See if we sent a particular extended message to the target.
* If "full" is true, the target saw the full message.
* If "full" is false, the target saw at least the first
* byte of the message.
*/
static int
amdsentmsg(struct amd_softc *amd, u_int msgtype, int full)
{
int found;
int index;
found = FALSE;
index = 0;
while (index < amd->msgout_len) {
if ((amd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
|| amd->msgout_buf[index] == MSG_MESSAGE_REJECT)
index++;
else if (amd->msgout_buf[index] >= MSG_SIMPLE_Q_TAG
&& amd->msgout_buf[index] < MSG_IGN_WIDE_RESIDUE) {
/* Skip tag type and tag id */
index += 2;
} else if (amd->msgout_buf[index] == MSG_EXTENDED) {
/* Found a candidate */
if (amd->msgout_buf[index+2] == msgtype) {
u_int end_index;
end_index = index + 1
+ amd->msgout_buf[index + 1];
if (full) {
if (amd->msgout_index > end_index)
found = TRUE;
} else if (amd->msgout_index > index)
found = TRUE;
}
break;
} else {
panic("amdsentmsg: Inconsistent msg buffer");
}
}
return (found);
}
static void
amdconstructsdtr(struct amd_softc *amd, u_int period, u_int offset)
{
amd->msgout_buf[amd->msgout_index++] = MSG_EXTENDED;
amd->msgout_buf[amd->msgout_index++] = MSG_EXT_SDTR_LEN;
amd->msgout_buf[amd->msgout_index++] = MSG_EXT_SDTR;
amd->msgout_buf[amd->msgout_index++] = period;
amd->msgout_buf[amd->msgout_index++] = offset;
amd->msgout_len += 5;
}
static int
amdhandlemsgreject(struct amd_softc *amd)
{
/*
* If we had an outstanding SDTR for this
* target, this is a signal that the target
* is refusing negotiation. Also watch out
* for rejected tag messages.
*/
struct amd_srb *srb;
struct amd_target_info *targ_info;
int response = FALSE;
srb = amd->active_srb;
targ_info = &amd->tinfo[amd->cur_target];
if (amdsentmsg(amd, MSG_EXT_SDTR, /*full*/FALSE)) {
/* note asynch xfers and clear flag */
amdsetsync(amd, amd->cur_target, /*clockrate*/0,
/*period*/0, /*offset*/0,
AMD_TRANS_ACTIVE|AMD_TRANS_GOAL);
printf("amd%d:%d: refuses synchronous negotiation. "
"Using asynchronous transfers\n",
amd->unit, amd->cur_target);
} else if ((srb != NULL)
&& (srb->pccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
struct ccb_trans_settings neg;
struct ccb_trans_settings_scsi *scsi = &neg.proto_specific.scsi;
printf("amd%d:%d: refuses tagged commands. Performing "
"non-tagged I/O\n", amd->unit, amd->cur_target);
amdsettags(amd, amd->cur_target, FALSE);
memset(&neg, 0, sizeof (neg));
scsi->valid = CTS_SCSI_VALID_TQ;
xpt_setup_ccb(&neg.ccb_h, srb->pccb->ccb_h.path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, srb->pccb->ccb_h.path, &neg);
/*
* Resend the identify for this CCB as the target
* may believe that the selection is invalid otherwise.
*/
if (amd->msgout_len != 0)
bcopy(&amd->msgout_buf[0], &amd->msgout_buf[1],
amd->msgout_len);
amd->msgout_buf[0] = MSG_IDENTIFYFLAG
| srb->pccb->ccb_h.target_lun;
amd->msgout_len++;
if ((targ_info->disc_tag & AMD_CUR_DISCENB) != 0
&& (srb->pccb->ccb_h.flags & CAM_DIS_DISCONNECT) == 0)
amd->msgout_buf[0] |= MSG_IDENTIFY_DISCFLAG;
srb->pccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
/*
* Requeue all tagged commands for this target
* currently in our posession so they can be
* converted to untagged commands.
*/
amdcompletematch(amd, amd->cur_target, amd->cur_lun,
AMD_TAG_WILDCARD, &amd->waiting_srbs,
CAM_DEV_QFRZN|CAM_REQUEUE_REQ);
} else {
/*
* Otherwise, we ignore it.
*/
printf("amd%d:%d: Message reject received -- ignored\n",
amd->unit, amd->cur_target);
}
return (response);
}
#if 0
if (!(pSRB->SRBState & SRB_MSGIN_MULTI)) {
if (bval == MSG_DISCONNECT) {
pSRB->SRBState = SRB_DISCONNECT;
} else if (bval == MSG_SAVEDATAPOINTER) {
goto min6;
} else if ((bval == MSG_EXTENDED)
|| ((bval >= MSG_SIMPLE_Q_TAG)
&& (bval <= MSG_ORDERED_Q_TAG))) {
pSRB->SRBState |= SRB_MSGIN_MULTI;
pSRB->MsgInBuf[0] = bval;
pSRB->MsgCnt = 1;
pSRB->pMsgPtr = &pSRB->MsgInBuf[1];
} else if (bval == MSG_MESSAGE_REJECT) {
amd_write8(amd, SCSICMDREG, RESET_ATN_CMD);
if (pSRB->SRBState & DO_SYNC_NEGO) {
goto set_async;
}
} else if (bval == MSG_RESTOREPOINTERS) {
goto min6;
} else {
goto min6;
}
} else { /* minx: */
*pSRB->pMsgPtr = bval;
pSRB->MsgCnt++;
pSRB->pMsgPtr++;
if ((pSRB->MsgInBuf[0] >= MSG_SIMPLE_Q_TAG)
&& (pSRB->MsgInBuf[0] <= MSG_ORDERED_Q_TAG)) {
if (pSRB->MsgCnt == 2) {
pSRB->SRBState = 0;
pSRB = &amd->SRB_array[pSRB->MsgInBuf[1]];
if (pSRB->SRBState & SRB_DISCONNECT) == 0) {
pSRB = amd->pTmpSRB;
pSRB->SRBState = SRB_UNEXPECT_RESEL;
pDCB->pActiveSRB = pSRB;
pSRB->MsgOutBuf[0] = MSG_ABORT_TAG;
EnableMsgOut2(amd, pSRB);
} else {
if (pDCB->DCBFlag & ABORT_DEV_) {
pSRB->SRBState = SRB_ABORT_SENT;
EnableMsgOut1(amd, pSRB);
}
pDCB->pActiveSRB = pSRB;
pSRB->SRBState = SRB_DATA_XFER;
}
}
} else if ((pSRB->MsgInBuf[0] == MSG_EXTENDED)
&& (pSRB->MsgCnt == 5)) {
pSRB->SRBState &= ~(SRB_MSGIN_MULTI + DO_SYNC_NEGO);
if ((pSRB->MsgInBuf[1] != 3)
|| (pSRB->MsgInBuf[2] != 1)) { /* reject_msg: */
pSRB->MsgCnt = 1;
pSRB->MsgInBuf[0] = MSG_MESSAGE_REJECT;
amd_write8(amd, SCSICMDREG, SET_ATN_CMD);
} else if (!(pSRB->MsgInBuf[3])
|| !(pSRB->MsgInBuf[4])) {
set_async: /* set async */
pDCB = pSRB->pSRBDCB;
/* disable sync & sync nego */
pDCB->SyncMode &= ~(SYNC_ENABLE|SYNC_NEGO_DONE);
pDCB->SyncPeriod = 0;
pDCB->SyncOffset = 0;
pDCB->tinfo.goal.period = 0;
pDCB->tinfo.goal.offset = 0;
pDCB->tinfo.current.period = 0;
pDCB->tinfo.current.offset = 0;
pDCB->tinfo.current.width =
MSG_EXT_WDTR_BUS_8_BIT;
pDCB->CtrlR3 = FAST_CLK; /* non_fast */
pDCB->CtrlR4 &= 0x3f;
pDCB->CtrlR4 |= EATER_25NS;
goto re_prog;
} else {/* set sync */
pDCB = pSRB->pSRBDCB;
/* enable sync & sync nego */
pDCB->SyncMode |= SYNC_ENABLE|SYNC_NEGO_DONE;
/* set sync offset */
pDCB->SyncOffset &= 0x0f0;
pDCB->SyncOffset |= pSRB->MsgInBuf[4];
/* set sync period */
pDCB->MaxNegoPeriod = pSRB->MsgInBuf[3];
wval = (u_int16_t) pSRB->MsgInBuf[3];
wval = wval << 2;
wval--;
wval1 = wval / 25;
if ((wval1 * 25) != wval) {
wval1++;
}
bval = FAST_CLK|FAST_SCSI;
pDCB->CtrlR4 &= 0x3f;
if (wval1 >= 8) {
/* Fast SCSI */
wval1--;
bval = FAST_CLK;
pDCB->CtrlR4 |= EATER_25NS;
}
pDCB->CtrlR3 = bval;
pDCB->SyncPeriod = (u_int8_t) wval1;
pDCB->tinfo.goal.period =
tinfo_sync_period[pDCB->SyncPeriod - 4];
pDCB->tinfo.goal.offset = pDCB->SyncOffset;
pDCB->tinfo.current.period =
tinfo_sync_period[pDCB->SyncPeriod - 4];;
pDCB->tinfo.current.offset = pDCB->SyncOffset;
/*
* program SCSI control register
*/
re_prog:
amd_write8(amd, SYNCPERIOREG, pDCB->SyncPeriod);
amd_write8(amd, SYNCOFFREG, pDCB->SyncOffset);
amd_write8(amd, CNTLREG3, pDCB->CtrlR3);
amd_write8(amd, CNTLREG4, pDCB->CtrlR4);
}
}
}
min6:
amd_write8(amd, SCSICMDREG, MSG_ACCEPTED_CMD);
return (SCSI_NOP0);
}
#endif
static u_int
amd_DataOutPhase1(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
DataIO_Comm(amd, pSRB, WRITE_DIRECTION);
return (scsistat);
}
static u_int
amd_DataInPhase1(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
DataIO_Comm(amd, pSRB, READ_DIRECTION);
return (scsistat);
}
static void
DataIO_Comm(struct amd_softc *amd, struct amd_srb *pSRB, u_int ioDir)
{
struct amd_sg * psgl;
u_int32_t lval;
if (pSRB->SGIndex < pSRB->SGcount) {
amd_write8(amd, DMA_Cmd, DMA_IDLE_CMD|ioDir);/* |EN_DMA_INT */
if (!pSRB->SGToBeXferLen) {
psgl = pSRB->pSGlist;
pSRB->SGPhysAddr = psgl->SGXPtr;
pSRB->SGToBeXferLen = psgl->SGXLen;
}
lval = pSRB->SGToBeXferLen;
amd_write8(amd, CTCREG_LOW, lval);
amd_write8(amd, CTCREG_MID, lval >> 8);
amd_write8(amd, CURTXTCNTREG, lval >> 16);
amd_write32(amd, DMA_XferCnt, pSRB->SGToBeXferLen);
amd_write32(amd, DMA_XferAddr, pSRB->SGPhysAddr);
pSRB->SRBState = SRB_DATA_XFER;
amd_write8(amd, SCSICMDREG, DMA_COMMAND|INFO_XFER_CMD);
amd_write8(amd, DMA_Cmd, DMA_IDLE_CMD|ioDir); /* |EN_DMA_INT */
amd_write8(amd, DMA_Cmd, DMA_START_CMD|ioDir);/* |EN_DMA_INT */
} else { /* xfer pad */
if (pSRB->SGcount) {
pSRB->AdaptStatus = H_OVER_UNDER_RUN;
pSRB->SRBStatus |= OVER_RUN;
}
amd_write8(amd, CTCREG_LOW, 0);
amd_write8(amd, CTCREG_MID, 0);
amd_write8(amd, CURTXTCNTREG, 0);
pSRB->SRBState |= SRB_XFERPAD;
amd_write8(amd, SCSICMDREG, DMA_COMMAND|XFER_PAD_BYTE);
}
}
static u_int
amd_CommandPhase1(struct amd_softc *amd, struct amd_srb *srb, u_int scsistat)
{
amd_write8(amd, SCSICMDREG, RESET_ATN_CMD);
amd_write8(amd, SCSICMDREG, CLEAR_FIFO_CMD);
amdsetupcommand(amd, srb);
srb->SRBState = SRB_COMMAND;
amd_write8(amd, SCSICMDREG, INFO_XFER_CMD);
return (scsistat);
}
static u_int
amd_StatusPhase1(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
amd_write8(amd, SCSICMDREG, CLEAR_FIFO_CMD);
pSRB->SRBState = SRB_STATUS;
amd_write8(amd, SCSICMDREG, INITIATOR_CMD_CMPLTE);
return (scsistat);
}
static u_int
amd_MsgOutPhase1(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
amd_write8(amd, SCSICMDREG, CLEAR_FIFO_CMD);
if (amd->msgout_len == 0) {
amd->msgout_buf[0] = MSG_NOOP;
amd->msgout_len = 1;
}
amd_write8_multi(amd, SCSIFIFOREG, amd->msgout_buf, amd->msgout_len);
amd_write8(amd, SCSICMDREG, INFO_XFER_CMD);
return (scsistat);
}
static u_int
amd_MsgInPhase1(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
amd_write8(amd, SCSICMDREG, CLEAR_FIFO_CMD);
amd_write8(amd, SCSICMDREG, INFO_XFER_CMD);
return (scsistat);
}
static u_int
amd_NopPhase(struct amd_softc *amd, struct amd_srb *pSRB, u_int scsistat)
{
return (scsistat);
}
static void
amd_Disconnect(struct amd_softc * amd)
{
struct amd_srb *srb;
int target;
int lun;
srb = amd->active_srb;
amd->active_srb = NULL;
amd->last_phase = SCSI_BUS_FREE;
amd_write8(amd, SCSICMDREG, EN_SEL_RESEL);
target = amd->cur_target;
lun = amd->cur_lun;
if (srb == NULL) {
/* Invalid reselection */
amdrunwaiting(amd);
} else if (srb->SRBState & SRB_ABORT_SENT) {
/* Clean up and done this srb */
#if 0
while (( = TAILQ_FIRST(&amd->running_srbs)) != NULL) {
/* XXX What about "done'ing" these srbs??? */
if (pSRB->pSRBDCB == pDCB) {
TAILQ_REMOVE(&amd->running_srbs, pSRB, links);
TAILQ_INSERT_HEAD(&amd->free_srbs, pSRB, links);
}
}
amdrunwaiting(amd);
#endif
} else {
if ((srb->SRBState & (SRB_START | SRB_MSGOUT))
|| !(srb->SRBState & (SRB_DISCONNECT | SRB_COMPLETED))) {
srb->TargetStatus = AMD_SCSI_STAT_SEL_TIMEOUT;
goto disc1;
} else if (srb->SRBState & SRB_DISCONNECT) {
if (!(srb->pccb->ccb_h.flags & CAM_TAG_ACTION_VALID))
amd->untagged_srbs[target][lun] = srb;
amdrunwaiting(amd);
} else if (srb->SRBState & SRB_COMPLETED) {
disc1:
srb->SRBState = SRB_FREE;
SRBdone(amd, srb);
}
}
return;
}
static void
amd_Reselect(struct amd_softc *amd)
{
struct amd_target_info *tinfo;
u_int16_t disc_count;
amd_clear_msg_state(amd);
if (amd->active_srb != NULL) {
/* Requeue the SRB for our attempted Selection */
TAILQ_REMOVE(&amd->running_srbs, amd->active_srb, links);
TAILQ_INSERT_HEAD(&amd->waiting_srbs, amd->active_srb, links);
amd->active_srb = NULL;
}
/* get ID */
amd->cur_target = amd_read8(amd, SCSIFIFOREG);
amd->cur_target ^= amd->HostID_Bit;
amd->cur_target = ffs(amd->cur_target) - 1;
amd->cur_lun = amd_read8(amd, SCSIFIFOREG) & 7;
tinfo = &amd->tinfo[amd->cur_target];
amd->active_srb = amd->untagged_srbs[amd->cur_target][amd->cur_lun];
disc_count = amd->disc_count[amd->cur_target][amd->cur_lun];
if (disc_count == 0) {
printf("amd%d: Unexpected reselection for target %d, "
"Issuing Abort\n", amd->unit, amd->cur_target);
amd->msgout_buf[0] = MSG_ABORT;
amd->msgout_len = 1;
amd_write8(amd, SCSICMDREG, SET_ATN_CMD);
}
if (amd->active_srb != NULL) {
amd->disc_count[amd->cur_target][amd->cur_lun]--;
amd->untagged_srbs[amd->cur_target][amd->cur_lun] = NULL;
}
amd_write8(amd, SCSIDESTIDREG, amd->cur_target);
amd_write8(amd, SYNCPERIOREG, tinfo->sync_period_reg);
amd_write8(amd, SYNCOFFREG, tinfo->sync_offset_reg);
amd_write8(amd, CNTLREG1, tinfo->CtrlR1);
amd_write8(amd, CNTLREG3, tinfo->CtrlR3);
amd_write8(amd, CNTLREG4, tinfo->CtrlR4);
amd_write8(amd, SCSICMDREG, MSG_ACCEPTED_CMD);/* drop /ACK */
amd->last_phase = SCSI_NOP0;
}
static void
SRBdone(struct amd_softc *amd, struct amd_srb *pSRB)
{
u_int8_t bval, i, status;
union ccb *pccb;
struct ccb_scsiio *pcsio;
int intflag;
struct amd_sg *ptr2;
u_int32_t swlval;
pccb = pSRB->pccb;
pcsio = &pccb->csio;
CAM_DEBUG(pccb->ccb_h.path, CAM_DEBUG_TRACE,
("SRBdone - TagNumber %d\n", pSRB->TagNumber));
if ((pccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((pccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(amd->buffer_dmat, pSRB->dmamap, op);
bus_dmamap_unload(amd->buffer_dmat, pSRB->dmamap);
}
status = pSRB->TargetStatus;
pccb->ccb_h.status = CAM_REQ_CMP;
if (pSRB->SRBFlag & AUTO_REQSENSE) {
pSRB->SRBFlag &= ~AUTO_REQSENSE;
pSRB->AdaptStatus = 0;
pSRB->TargetStatus = SCSI_STATUS_CHECK_COND;
if (status == SCSI_STATUS_CHECK_COND) {
pccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
goto ckc_e;
}
*((u_int32_t *)&(pSRB->CmdBlock[0])) = pSRB->Segment0[0];
pcsio->sense_resid = pcsio->sense_len
- pSRB->TotalXferredLen;
pSRB->TotalXferredLen = pSRB->Segment1[1];
if (pSRB->TotalXferredLen) {
/* ???? */
pcsio->resid = pcsio->dxfer_len
- pSRB->TotalXferredLen;
/* The resid field contains valid data */
/* Flush resid bytes on complete */
} else {
pcsio->scsi_status = SCSI_STATUS_CHECK_COND;
}
bzero(&pcsio->sense_data, pcsio->sense_len);
bcopy(amd_get_sense_buf(amd, pSRB), &pcsio->sense_data,
pcsio->sense_len);
pccb->ccb_h.status = CAM_AUTOSNS_VALID;
goto ckc_e;
}
if (status) {
if (status == SCSI_STATUS_CHECK_COND) {
if ((pSRB->SGIndex < pSRB->SGcount)
&& (pSRB->SGcount) && (pSRB->SGToBeXferLen)) {
bval = pSRB->SGcount;
swlval = pSRB->SGToBeXferLen;
ptr2 = pSRB->pSGlist;
ptr2++;
for (i = pSRB->SGIndex + 1; i < bval; i++) {
swlval += ptr2->SGXLen;
ptr2++;
}
/* ??????? */
pcsio->resid = (u_int32_t) swlval;
#ifdef AMD_DEBUG0
printf("XferredLen=%8x,NotYetXferLen=%8x,",
pSRB->TotalXferredLen, swlval);
#endif
}
if ((pcsio->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0) {
#ifdef AMD_DEBUG0
printf("RequestSense..................\n");
#endif
RequestSense(amd, pSRB);
return;
}
pcsio->scsi_status = SCSI_STATUS_CHECK_COND;
pccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
goto ckc_e;
} else if (status == SCSI_STATUS_QUEUE_FULL) {
pSRB->AdaptStatus = 0;
pSRB->TargetStatus = 0;
pcsio->scsi_status = SCSI_STATUS_QUEUE_FULL;
pccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
goto ckc_e;
} else if (status == AMD_SCSI_STAT_SEL_TIMEOUT) {
pSRB->AdaptStatus = H_SEL_TIMEOUT;
pSRB->TargetStatus = 0;
pcsio->scsi_status = AMD_SCSI_STAT_SEL_TIMEOUT;
pccb->ccb_h.status = CAM_SEL_TIMEOUT;
} else if (status == SCSI_STATUS_BUSY) {
#ifdef AMD_DEBUG0
printf("DC390: target busy at %s %d\n",
__FILE__, __LINE__);
#endif
pcsio->scsi_status = SCSI_STATUS_BUSY;
pccb->ccb_h.status = CAM_SCSI_BUSY;
} else if (status == SCSI_STATUS_RESERV_CONFLICT) {
#ifdef AMD_DEBUG0
printf("DC390: target reserved at %s %d\n",
__FILE__, __LINE__);
#endif
pcsio->scsi_status = SCSI_STATUS_RESERV_CONFLICT;
pccb->ccb_h.status = CAM_SCSI_STATUS_ERROR; /* XXX */
} else {
pSRB->AdaptStatus = 0;
#ifdef AMD_DEBUG0
printf("DC390: driver stuffup at %s %d\n",
__FILE__, __LINE__);
#endif
pccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
}
} else {
status = pSRB->AdaptStatus;
if (status & H_OVER_UNDER_RUN) {
pSRB->TargetStatus = 0;
pccb->ccb_h.status = CAM_DATA_RUN_ERR;
} else if (pSRB->SRBStatus & PARITY_ERROR) {
#ifdef AMD_DEBUG0
printf("DC390: driver stuffup %s %d\n",
__FILE__, __LINE__);
#endif
/* Driver failed to perform operation */
pccb->ccb_h.status = CAM_UNCOR_PARITY;
} else { /* No error */
pSRB->AdaptStatus = 0;
pSRB->TargetStatus = 0;
pcsio->resid = 0;
/* there is no error, (sense is invalid) */
}
}
ckc_e:
intflag = splcam();
if ((pccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
/* CAM request not yet complete =>device_Q frozen */
xpt_freeze_devq(pccb->ccb_h.path, 1);
pccb->ccb_h.status |= CAM_DEV_QFRZN;
}
TAILQ_REMOVE(&amd->running_srbs, pSRB, links);
TAILQ_INSERT_HEAD(&amd->free_srbs, pSRB, links);
amdrunwaiting(amd);
splx(intflag);
xpt_done(pccb);
}
static void
amd_ResetSCSIBus(struct amd_softc * amd)
{
int intflag;
intflag = splcam();
amd->ACBFlag |= RESET_DEV;
amd_write8(amd, DMA_Cmd, DMA_IDLE_CMD);
amd_write8(amd, SCSICMDREG, RST_SCSI_BUS_CMD);
splx(intflag);
return;
}
static void
amd_ScsiRstDetect(struct amd_softc * amd)
{
int intflag;
u_int32_t wlval;
#ifdef AMD_DEBUG0
printf("amd_ScsiRstDetect \n");
#endif
wlval = 1000;
while (--wlval) { /* delay 1 sec */
DELAY(1000);
}
intflag = splcam();
amd_write8(amd, DMA_Cmd, DMA_IDLE_CMD);
amd_write8(amd, SCSICMDREG, CLEAR_FIFO_CMD);
if (amd->ACBFlag & RESET_DEV) {
amd->ACBFlag |= RESET_DONE;
} else {
amd->ACBFlag |= RESET_DETECT;
ResetDevParam(amd);
amdcompletematch(amd, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD,
AMD_TAG_WILDCARD, &amd->running_srbs,
CAM_DEV_QFRZN|CAM_SCSI_BUS_RESET);
amdcompletematch(amd, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD,
AMD_TAG_WILDCARD, &amd->waiting_srbs,
CAM_DEV_QFRZN|CAM_SCSI_BUS_RESET);
amd->active_srb = NULL;
amd->ACBFlag = 0;
amdrunwaiting(amd);
}
splx(intflag);
return;
}
static void
RequestSense(struct amd_softc *amd, struct amd_srb *pSRB)
{
union ccb *pccb;
struct ccb_scsiio *pcsio;
pccb = pSRB->pccb;
pcsio = &pccb->csio;
pSRB->SRBFlag |= AUTO_REQSENSE;
pSRB->Segment0[0] = *((u_int32_t *) & (pSRB->CmdBlock[0]));
pSRB->Segment0[1] = *((u_int32_t *) & (pSRB->CmdBlock[4]));
pSRB->Segment1[0] = (pSRB->ScsiCmdLen << 8) + pSRB->SGcount;
pSRB->Segment1[1] = pSRB->TotalXferredLen;
pSRB->AdaptStatus = 0;
pSRB->TargetStatus = 0;
pSRB->Segmentx.SGXPtr = amd_get_sense_bufaddr(amd, pSRB);
pSRB->Segmentx.SGXLen = amd_get_sense_bufsize(amd, pSRB);
pSRB->pSGlist = &pSRB->Segmentx;
pSRB->SGcount = 1;
pSRB->SGIndex = 0;
pSRB->CmdBlock[0] = REQUEST_SENSE;
pSRB->CmdBlock[1] = pSRB->pccb->ccb_h.target_lun << 5;
pSRB->CmdBlock[2] = 0;
pSRB->CmdBlock[3] = 0;
pSRB->CmdBlock[4] = pcsio->sense_len;
pSRB->CmdBlock[5] = 0;
pSRB->ScsiCmdLen = 6;
pSRB->TotalXferredLen = 0;
pSRB->SGToBeXferLen = 0;
if (amdstart(amd, pSRB) != 0) {
TAILQ_REMOVE(&amd->running_srbs, pSRB, links);
TAILQ_INSERT_HEAD(&amd->waiting_srbs, pSRB, links);
}
}
static void
amd_InvalidCmd(struct amd_softc * amd)
{
struct amd_srb *srb;
srb = amd->active_srb;
if (srb->SRBState & (SRB_START|SRB_MSGOUT))
amd_write8(amd, SCSICMDREG, CLEAR_FIFO_CMD);
}
void
amd_linkSRB(struct amd_softc *amd)
{
u_int16_t count, i;
struct amd_srb *psrb;
int error;
count = amd->SRBCount;
for (i = 0; i < count; i++) {
psrb = (struct amd_srb *)&amd->SRB_array[i];
psrb->TagNumber = i;
/*
* Create the dmamap. This is no longer optional!
*
* XXX Since there is no detach method in this driver,
* this does not get freed!
*/
if ((error = bus_dmamap_create(amd->buffer_dmat, 0,
&psrb->dmamap)) != 0) {
device_printf(amd->dev, "Error %d creating buffer "
"dmamap!\n", error);
return;
}
TAILQ_INSERT_TAIL(&amd->free_srbs, psrb, links);
}
}
static void
amd_EnDisableCE(struct amd_softc *amd, int mode, int *regval)
{
if (mode == ENABLE_CE) {
*regval = 0xc0;
} else {
*regval = 0x80;
}
pci_write_config(amd->dev, *regval, 0, /*bytes*/1);
if (mode == DISABLE_CE) {
pci_write_config(amd->dev, *regval, 0, /*bytes*/1);
}
DELAY(160);
}
static void
amd_EEpromOutDI(struct amd_softc *amd, int *regval, int Carry)
{
u_int bval;
bval = 0;
if (Carry) {
bval = 0x40;
*regval = 0x80;
pci_write_config(amd->dev, *regval, bval, /*bytes*/1);
}
DELAY(160);
bval |= 0x80;
pci_write_config(amd->dev, *regval, bval, /*bytes*/1);
DELAY(160);
pci_write_config(amd->dev, *regval, 0, /*bytes*/1);
DELAY(160);
}
static int
amd_EEpromInDO(struct amd_softc *amd)
{
pci_write_config(amd->dev, 0x80, 0x80, /*bytes*/1);
DELAY(160);
pci_write_config(amd->dev, 0x80, 0x40, /*bytes*/1);
DELAY(160);
if (pci_read_config(amd->dev, 0, /*bytes*/1) == 0x22)
return (1);
return (0);
}
static u_int16_t
EEpromGetData1(struct amd_softc *amd)
{
u_int i;
u_int carryFlag;
u_int16_t wval;
wval = 0;
for (i = 0; i < 16; i++) {
wval <<= 1;
carryFlag = amd_EEpromInDO(amd);
wval |= carryFlag;
}
return (wval);
}
static void
amd_Prepare(struct amd_softc *amd, int *regval, u_int8_t EEpromCmd)
{
u_int i, j;
int carryFlag;
carryFlag = 1;
j = 0x80;
for (i = 0; i < 9; i++) {
amd_EEpromOutDI(amd, regval, carryFlag);
carryFlag = (EEpromCmd & j) ? 1 : 0;
j >>= 1;
}
}
static void
amd_ReadEEprom(struct amd_softc *amd)
{
int regval;
u_int i;
u_int16_t *ptr;
u_int8_t cmd;
ptr = (u_int16_t *)&amd->eepromBuf[0];
cmd = EEPROM_READ;
for (i = 0; i < 0x40; i++) {
amd_EnDisableCE(amd, ENABLE_CE, &regval);
amd_Prepare(amd, &regval, cmd);
*ptr = EEpromGetData1(amd);
ptr++;
cmd++;
amd_EnDisableCE(amd, DISABLE_CE, &regval);
}
}
static void
amd_load_defaults(struct amd_softc *amd)
{
int target;
bzero(&amd->eepromBuf, sizeof amd->eepromBuf);
for (target = 0; target < MAX_SCSI_ID; target++)
amd->eepromBuf[target << 2] =
(TAG_QUEUING|EN_DISCONNECT|SYNC_NEGO|PARITY_CHK);
amd->eepromBuf[EE_ADAPT_SCSI_ID] = 7;
amd->eepromBuf[EE_MODE2] = ACTIVE_NEGATION|LUN_CHECK|GREATER_1G;
amd->eepromBuf[EE_TAG_CMD_NUM] = 4;
}
static void
amd_load_eeprom_or_defaults(struct amd_softc *amd)
{
u_int16_t wval, *ptr;
u_int8_t i;
amd_ReadEEprom(amd);
wval = 0;
ptr = (u_int16_t *) & amd->eepromBuf[0];
for (i = 0; i < EE_DATA_SIZE; i += 2, ptr++)
wval += *ptr;
if (wval != EE_CHECKSUM) {
if (bootverbose)
printf("amd%d: SEEPROM data unavailable. "
"Using default device parameters.\n",
amd->unit);
amd_load_defaults(amd);
}
}
/*
**********************************************************************
* Function : static int amd_init (struct Scsi_Host *host)
* Purpose : initialize the internal structures for a given SCSI host
* Inputs : host - pointer to this host adapter's structure/
**********************************************************************
*/
static int
amd_init(device_t dev)
{
struct amd_softc *amd = device_get_softc(dev);
struct resource *iores;
int i, rid;
u_int bval;
rid = PCI_BASE_ADDR0;
iores = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE);
if (iores == NULL) {
if (bootverbose)
printf("amd_init: bus_alloc_resource failure!\n");
return ENXIO;
}
amd->tag = rman_get_bustag(iores);
amd->bsh = rman_get_bushandle(iores);
/* DMA tag for mapping buffers into device visible space. */
if (bus_dma_tag_create(/*parent_dmat*/NULL, /*alignment*/1,
/*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/MAXBSIZE, /*nsegments*/AMD_NSEG,
/*maxsegsz*/AMD_MAXTRANSFER_SIZE,
/*flags*/BUS_DMA_ALLOCNOW,
/*lockfunc*/busdma_lock_mutex,
/*lockarg*/&Giant,
&amd->buffer_dmat) != 0) {
if (bootverbose)
printf("amd_init: bus_dma_tag_create failure!\n");
return ENXIO;
}
/* Create, allocate, and map DMA buffers for autosense data */
if (bus_dma_tag_create(/*parent_dmat*/NULL, /*alignment*/1,
/*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
sizeof(struct scsi_sense_data) * MAX_SRB_CNT,
/*nsegments*/1,
/*maxsegsz*/AMD_MAXTRANSFER_SIZE,
/*flags*/0,
/*lockfunc*/busdma_lock_mutex,
/*lockarg*/&Giant, &amd->sense_dmat) != 0) {
if (bootverbose)
device_printf(dev, "cannot create sense buffer dmat\n");
return (ENXIO);
}
if (bus_dmamem_alloc(amd->sense_dmat, (void **)&amd->sense_buffers,
BUS_DMA_NOWAIT, &amd->sense_dmamap) != 0)
return (ENOMEM);
bus_dmamap_load(amd->sense_dmat, amd->sense_dmamap,
amd->sense_buffers,
sizeof(struct scsi_sense_data) * MAX_SRB_CNT,
amd_dmamap_cb, &amd->sense_busaddr, /*flags*/0);
TAILQ_INIT(&amd->free_srbs);
TAILQ_INIT(&amd->running_srbs);
TAILQ_INIT(&amd->waiting_srbs);
amd->last_phase = SCSI_BUS_FREE;
amd->dev = dev;
amd->unit = device_get_unit(dev);
amd->SRBCount = MAX_SRB_CNT;
amd->status = 0;
amd_load_eeprom_or_defaults(amd);
amd->max_id = 7;
if (amd->eepromBuf[EE_MODE2] & LUN_CHECK) {
amd->max_lun = 7;
} else {
amd->max_lun = 0;
}
amd->AdaptSCSIID = amd->eepromBuf[EE_ADAPT_SCSI_ID];
amd->HostID_Bit = (1 << amd->AdaptSCSIID);
amd->AdaptSCSILUN = 0;
/* (eepromBuf[EE_TAG_CMD_NUM]) << 2; */
amd->ACBFlag = 0;
amd->Gmode2 = amd->eepromBuf[EE_MODE2];
amd_linkSRB(amd);
for (i = 0; i <= amd->max_id; i++) {
if (amd->AdaptSCSIID != i) {
struct amd_target_info *tinfo;
PEEprom prom;
tinfo = &amd->tinfo[i];
prom = (PEEprom)&amd->eepromBuf[i << 2];
if ((prom->EE_MODE1 & EN_DISCONNECT) != 0) {
tinfo->disc_tag |= AMD_USR_DISCENB;
if ((prom->EE_MODE1 & TAG_QUEUING) != 0)
tinfo->disc_tag |= AMD_USR_TAGENB;
}
if ((prom->EE_MODE1 & SYNC_NEGO) != 0) {
tinfo->user.period =
eeprom_period[prom->EE_SPEED];
tinfo->user.offset = AMD_MAX_SYNC_OFFSET;
}
tinfo->CtrlR1 = amd->AdaptSCSIID;
if ((prom->EE_MODE1 & PARITY_CHK) != 0)
tinfo->CtrlR1 |= PARITY_ERR_REPO;
tinfo->CtrlR3 = FAST_CLK;
tinfo->CtrlR4 = EATER_25NS;
if ((amd->eepromBuf[EE_MODE2] & ACTIVE_NEGATION) != 0)
tinfo->CtrlR4 |= NEGATE_REQACKDATA;
}
}
amd_write8(amd, SCSITIMEOUTREG, 153); /* 250ms selection timeout */
/* Conversion factor = 0 , 40MHz clock */
amd_write8(amd, CLKFACTREG, CLK_FREQ_40MHZ);
/* NOP cmd - clear command register */
amd_write8(amd, SCSICMDREG, NOP_CMD);
amd_write8(amd, CNTLREG2, EN_FEATURE|EN_SCSI2_CMD);
amd_write8(amd, CNTLREG3, FAST_CLK);
bval = EATER_25NS;
if (amd->eepromBuf[EE_MODE2] & ACTIVE_NEGATION) {
bval |= NEGATE_REQACKDATA;
}
amd_write8(amd, CNTLREG4, bval);
/* Disable SCSI bus reset interrupt */
amd_write8(amd, CNTLREG1, DIS_INT_ON_SCSI_RST);
return 0;
}
/*
* attach and init a host adapter
*/
static int
amd_attach(device_t dev)
{
struct cam_devq *devq; /* Device Queue to use for this SIM */
u_int8_t intstat;
struct amd_softc *amd = device_get_softc(dev);
int unit = device_get_unit(dev);
int rid;
void *ih;
struct resource *irqres;
if (amd_init(dev)) {
if (bootverbose)
printf("amd_attach: amd_init failure!\n");
return ENXIO;
}
/* Reset Pending INT */
intstat = amd_read8(amd, INTSTATREG);
/* After setting up the adapter, map our interrupt */
rid = 0;
irqres = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (irqres == NULL ||
bus_setup_intr(dev, irqres, INTR_TYPE_CAM | INTR_ENTROPY,
NULL, amd_intr, amd, &ih)) {
if (bootverbose)
printf("amd%d: unable to register interrupt handler!\n",
unit);
return ENXIO;
}
/*
* Now let the CAM generic SCSI layer find the SCSI devices on
* the bus * start queue to reset to the idle loop. *
* Create device queue of SIM(s) * (MAX_START_JOB - 1) :
* max_sim_transactions
*/
devq = cam_simq_alloc(MAX_START_JOB);
if (devq == NULL) {
if (bootverbose)
printf("amd_attach: cam_simq_alloc failure!\n");
return ENXIO;
}
amd->psim = cam_sim_alloc(amd_action, amd_poll, "amd",
amd, amd->unit, &Giant,
1, MAX_TAGS_CMD_QUEUE, devq);
if (amd->psim == NULL) {
cam_simq_free(devq);
if (bootverbose)
printf("amd_attach: cam_sim_alloc failure!\n");
return ENXIO;
}
if (xpt_bus_register(amd->psim, 0) != CAM_SUCCESS) {
cam_sim_free(amd->psim, /*free_devq*/TRUE);
if (bootverbose)
printf("amd_attach: xpt_bus_register failure!\n");
return ENXIO;
}
if (xpt_create_path(&amd->ppath, /* periph */ NULL,
cam_sim_path(amd->psim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(amd->psim));
cam_sim_free(amd->psim, /* free_simq */ TRUE);
if (bootverbose)
printf("amd_attach: xpt_create_path failure!\n");
return ENXIO;
}
return 0;
}
static int
amd_probe(device_t dev)
{
if (pci_get_devid(dev) == PCI_DEVICE_ID_AMD53C974) {
device_set_desc(dev,
"Tekram DC390(T)/AMD53c974 SCSI Host Adapter");
return BUS_PROBE_DEFAULT;
}
return ENXIO;
}
static device_method_t amd_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, amd_probe),
DEVMETHOD(device_attach, amd_attach),
{ 0, 0 }
};
static driver_t amd_driver = {
"amd", amd_methods, sizeof(struct amd_softc)
};
static devclass_t amd_devclass;
DRIVER_MODULE(amd, pci, amd_driver, amd_devclass, 0, 0);
MODULE_DEPEND(amd, pci, 1, 1, 1);
MODULE_DEPEND(amd, cam, 1, 1, 1);