a3a54e251a
ntp 4.2.8p7. Security: CVE-2016-1547, CVE-2016-1548, CVE-2016-1549, CVE-2016-1550 Security: CVE-2016-1551, CVE-2016-2516, CVE-2016-2517, CVE-2016-2518 Security: CVE-2016-2519 Security: FreeBSD-SA-16:16.ntp With hat: so
5253 lines
120 KiB
C
5253 lines
120 KiB
C
/*
|
|
* ntp_control.c - respond to mode 6 control messages and send async
|
|
* traps. Provides service to ntpq and others.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <ctype.h>
|
|
#include <signal.h>
|
|
#include <sys/stat.h>
|
|
#ifdef HAVE_NETINET_IN_H
|
|
# include <netinet/in.h>
|
|
#endif
|
|
#include <arpa/inet.h>
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_io.h"
|
|
#include "ntp_refclock.h"
|
|
#include "ntp_control.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_config.h"
|
|
#include "ntp_crypto.h"
|
|
#include "ntp_assert.h"
|
|
#include "ntp_leapsec.h"
|
|
#include "ntp_md5.h" /* provides OpenSSL digest API */
|
|
#include "lib_strbuf.h"
|
|
#include <rc_cmdlength.h>
|
|
#ifdef KERNEL_PLL
|
|
# include "ntp_syscall.h"
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Structure to hold request procedure information
|
|
*/
|
|
|
|
struct ctl_proc {
|
|
short control_code; /* defined request code */
|
|
#define NO_REQUEST (-1)
|
|
u_short flags; /* flags word */
|
|
/* Only one flag. Authentication required or not. */
|
|
#define NOAUTH 0
|
|
#define AUTH 1
|
|
void (*handler) (struct recvbuf *, int); /* handle request */
|
|
};
|
|
|
|
|
|
/*
|
|
* Request processing routines
|
|
*/
|
|
static void ctl_error (u_char);
|
|
#ifdef REFCLOCK
|
|
static u_short ctlclkstatus (struct refclockstat *);
|
|
#endif
|
|
static void ctl_flushpkt (u_char);
|
|
static void ctl_putdata (const char *, unsigned int, int);
|
|
static void ctl_putstr (const char *, const char *, size_t);
|
|
static void ctl_putdblf (const char *, int, int, double);
|
|
#define ctl_putdbl(tag, d) ctl_putdblf(tag, 1, 3, d)
|
|
#define ctl_putdbl6(tag, d) ctl_putdblf(tag, 1, 6, d)
|
|
#define ctl_putsfp(tag, sfp) ctl_putdblf(tag, 0, -1, \
|
|
FPTOD(sfp))
|
|
static void ctl_putuint (const char *, u_long);
|
|
static void ctl_puthex (const char *, u_long);
|
|
static void ctl_putint (const char *, long);
|
|
static void ctl_putts (const char *, l_fp *);
|
|
static void ctl_putadr (const char *, u_int32,
|
|
sockaddr_u *);
|
|
static void ctl_putrefid (const char *, u_int32);
|
|
static void ctl_putarray (const char *, double *, int);
|
|
static void ctl_putsys (int);
|
|
static void ctl_putpeer (int, struct peer *);
|
|
static void ctl_putfs (const char *, tstamp_t);
|
|
static void ctl_printf (const char *, ...) NTP_PRINTF(1, 2);
|
|
#ifdef REFCLOCK
|
|
static void ctl_putclock (int, struct refclockstat *, int);
|
|
#endif /* REFCLOCK */
|
|
static const struct ctl_var *ctl_getitem(const struct ctl_var *,
|
|
char **);
|
|
static u_short count_var (const struct ctl_var *);
|
|
static void control_unspec (struct recvbuf *, int);
|
|
static void read_status (struct recvbuf *, int);
|
|
static void read_sysvars (void);
|
|
static void read_peervars (void);
|
|
static void read_variables (struct recvbuf *, int);
|
|
static void write_variables (struct recvbuf *, int);
|
|
static void read_clockstatus(struct recvbuf *, int);
|
|
static void write_clockstatus(struct recvbuf *, int);
|
|
static void set_trap (struct recvbuf *, int);
|
|
static void save_config (struct recvbuf *, int);
|
|
static void configure (struct recvbuf *, int);
|
|
static void send_mru_entry (mon_entry *, int);
|
|
static void send_random_tag_value(int);
|
|
static void read_mru_list (struct recvbuf *, int);
|
|
static void send_ifstats_entry(endpt *, u_int);
|
|
static void read_ifstats (struct recvbuf *);
|
|
static void sockaddrs_from_restrict_u(sockaddr_u *, sockaddr_u *,
|
|
restrict_u *, int);
|
|
static void send_restrict_entry(restrict_u *, int, u_int);
|
|
static void send_restrict_list(restrict_u *, int, u_int *);
|
|
static void read_addr_restrictions(struct recvbuf *);
|
|
static void read_ordlist (struct recvbuf *, int);
|
|
static u_int32 derive_nonce (sockaddr_u *, u_int32, u_int32);
|
|
static void generate_nonce (struct recvbuf *, char *, size_t);
|
|
static int validate_nonce (const char *, struct recvbuf *);
|
|
static void req_nonce (struct recvbuf *, int);
|
|
static void unset_trap (struct recvbuf *, int);
|
|
static struct ctl_trap *ctlfindtrap(sockaddr_u *,
|
|
struct interface *);
|
|
|
|
int/*BOOL*/ is_safe_filename(const char * name);
|
|
|
|
static const struct ctl_proc control_codes[] = {
|
|
{ CTL_OP_UNSPEC, NOAUTH, control_unspec },
|
|
{ CTL_OP_READSTAT, NOAUTH, read_status },
|
|
{ CTL_OP_READVAR, NOAUTH, read_variables },
|
|
{ CTL_OP_WRITEVAR, AUTH, write_variables },
|
|
{ CTL_OP_READCLOCK, NOAUTH, read_clockstatus },
|
|
{ CTL_OP_WRITECLOCK, NOAUTH, write_clockstatus },
|
|
{ CTL_OP_SETTRAP, NOAUTH, set_trap },
|
|
{ CTL_OP_CONFIGURE, AUTH, configure },
|
|
{ CTL_OP_SAVECONFIG, AUTH, save_config },
|
|
{ CTL_OP_READ_MRU, NOAUTH, read_mru_list },
|
|
{ CTL_OP_READ_ORDLIST_A, AUTH, read_ordlist },
|
|
{ CTL_OP_REQ_NONCE, NOAUTH, req_nonce },
|
|
{ CTL_OP_UNSETTRAP, NOAUTH, unset_trap },
|
|
{ NO_REQUEST, 0, NULL }
|
|
};
|
|
|
|
/*
|
|
* System variables we understand
|
|
*/
|
|
#define CS_LEAP 1
|
|
#define CS_STRATUM 2
|
|
#define CS_PRECISION 3
|
|
#define CS_ROOTDELAY 4
|
|
#define CS_ROOTDISPERSION 5
|
|
#define CS_REFID 6
|
|
#define CS_REFTIME 7
|
|
#define CS_POLL 8
|
|
#define CS_PEERID 9
|
|
#define CS_OFFSET 10
|
|
#define CS_DRIFT 11
|
|
#define CS_JITTER 12
|
|
#define CS_ERROR 13
|
|
#define CS_CLOCK 14
|
|
#define CS_PROCESSOR 15
|
|
#define CS_SYSTEM 16
|
|
#define CS_VERSION 17
|
|
#define CS_STABIL 18
|
|
#define CS_VARLIST 19
|
|
#define CS_TAI 20
|
|
#define CS_LEAPTAB 21
|
|
#define CS_LEAPEND 22
|
|
#define CS_RATE 23
|
|
#define CS_MRU_ENABLED 24
|
|
#define CS_MRU_DEPTH 25
|
|
#define CS_MRU_DEEPEST 26
|
|
#define CS_MRU_MINDEPTH 27
|
|
#define CS_MRU_MAXAGE 28
|
|
#define CS_MRU_MAXDEPTH 29
|
|
#define CS_MRU_MEM 30
|
|
#define CS_MRU_MAXMEM 31
|
|
#define CS_SS_UPTIME 32
|
|
#define CS_SS_RESET 33
|
|
#define CS_SS_RECEIVED 34
|
|
#define CS_SS_THISVER 35
|
|
#define CS_SS_OLDVER 36
|
|
#define CS_SS_BADFORMAT 37
|
|
#define CS_SS_BADAUTH 38
|
|
#define CS_SS_DECLINED 39
|
|
#define CS_SS_RESTRICTED 40
|
|
#define CS_SS_LIMITED 41
|
|
#define CS_SS_KODSENT 42
|
|
#define CS_SS_PROCESSED 43
|
|
#define CS_PEERADR 44
|
|
#define CS_PEERMODE 45
|
|
#define CS_BCASTDELAY 46
|
|
#define CS_AUTHDELAY 47
|
|
#define CS_AUTHKEYS 48
|
|
#define CS_AUTHFREEK 49
|
|
#define CS_AUTHKLOOKUPS 50
|
|
#define CS_AUTHKNOTFOUND 51
|
|
#define CS_AUTHKUNCACHED 52
|
|
#define CS_AUTHKEXPIRED 53
|
|
#define CS_AUTHENCRYPTS 54
|
|
#define CS_AUTHDECRYPTS 55
|
|
#define CS_AUTHRESET 56
|
|
#define CS_K_OFFSET 57
|
|
#define CS_K_FREQ 58
|
|
#define CS_K_MAXERR 59
|
|
#define CS_K_ESTERR 60
|
|
#define CS_K_STFLAGS 61
|
|
#define CS_K_TIMECONST 62
|
|
#define CS_K_PRECISION 63
|
|
#define CS_K_FREQTOL 64
|
|
#define CS_K_PPS_FREQ 65
|
|
#define CS_K_PPS_STABIL 66
|
|
#define CS_K_PPS_JITTER 67
|
|
#define CS_K_PPS_CALIBDUR 68
|
|
#define CS_K_PPS_CALIBS 69
|
|
#define CS_K_PPS_CALIBERRS 70
|
|
#define CS_K_PPS_JITEXC 71
|
|
#define CS_K_PPS_STBEXC 72
|
|
#define CS_KERN_FIRST CS_K_OFFSET
|
|
#define CS_KERN_LAST CS_K_PPS_STBEXC
|
|
#define CS_IOSTATS_RESET 73
|
|
#define CS_TOTAL_RBUF 74
|
|
#define CS_FREE_RBUF 75
|
|
#define CS_USED_RBUF 76
|
|
#define CS_RBUF_LOWATER 77
|
|
#define CS_IO_DROPPED 78
|
|
#define CS_IO_IGNORED 79
|
|
#define CS_IO_RECEIVED 80
|
|
#define CS_IO_SENT 81
|
|
#define CS_IO_SENDFAILED 82
|
|
#define CS_IO_WAKEUPS 83
|
|
#define CS_IO_GOODWAKEUPS 84
|
|
#define CS_TIMERSTATS_RESET 85
|
|
#define CS_TIMER_OVERRUNS 86
|
|
#define CS_TIMER_XMTS 87
|
|
#define CS_FUZZ 88
|
|
#define CS_WANDER_THRESH 89
|
|
#define CS_LEAPSMEARINTV 90
|
|
#define CS_LEAPSMEAROFFS 91
|
|
#define CS_MAX_NOAUTOKEY CS_LEAPSMEAROFFS
|
|
#ifdef AUTOKEY
|
|
#define CS_FLAGS (1 + CS_MAX_NOAUTOKEY)
|
|
#define CS_HOST (2 + CS_MAX_NOAUTOKEY)
|
|
#define CS_PUBLIC (3 + CS_MAX_NOAUTOKEY)
|
|
#define CS_CERTIF (4 + CS_MAX_NOAUTOKEY)
|
|
#define CS_SIGNATURE (5 + CS_MAX_NOAUTOKEY)
|
|
#define CS_REVTIME (6 + CS_MAX_NOAUTOKEY)
|
|
#define CS_IDENT (7 + CS_MAX_NOAUTOKEY)
|
|
#define CS_DIGEST (8 + CS_MAX_NOAUTOKEY)
|
|
#define CS_MAXCODE CS_DIGEST
|
|
#else /* !AUTOKEY follows */
|
|
#define CS_MAXCODE CS_MAX_NOAUTOKEY
|
|
#endif /* !AUTOKEY */
|
|
|
|
/*
|
|
* Peer variables we understand
|
|
*/
|
|
#define CP_CONFIG 1
|
|
#define CP_AUTHENABLE 2
|
|
#define CP_AUTHENTIC 3
|
|
#define CP_SRCADR 4
|
|
#define CP_SRCPORT 5
|
|
#define CP_DSTADR 6
|
|
#define CP_DSTPORT 7
|
|
#define CP_LEAP 8
|
|
#define CP_HMODE 9
|
|
#define CP_STRATUM 10
|
|
#define CP_PPOLL 11
|
|
#define CP_HPOLL 12
|
|
#define CP_PRECISION 13
|
|
#define CP_ROOTDELAY 14
|
|
#define CP_ROOTDISPERSION 15
|
|
#define CP_REFID 16
|
|
#define CP_REFTIME 17
|
|
#define CP_ORG 18
|
|
#define CP_REC 19
|
|
#define CP_XMT 20
|
|
#define CP_REACH 21
|
|
#define CP_UNREACH 22
|
|
#define CP_TIMER 23
|
|
#define CP_DELAY 24
|
|
#define CP_OFFSET 25
|
|
#define CP_JITTER 26
|
|
#define CP_DISPERSION 27
|
|
#define CP_KEYID 28
|
|
#define CP_FILTDELAY 29
|
|
#define CP_FILTOFFSET 30
|
|
#define CP_PMODE 31
|
|
#define CP_RECEIVED 32
|
|
#define CP_SENT 33
|
|
#define CP_FILTERROR 34
|
|
#define CP_FLASH 35
|
|
#define CP_TTL 36
|
|
#define CP_VARLIST 37
|
|
#define CP_IN 38
|
|
#define CP_OUT 39
|
|
#define CP_RATE 40
|
|
#define CP_BIAS 41
|
|
#define CP_SRCHOST 42
|
|
#define CP_TIMEREC 43
|
|
#define CP_TIMEREACH 44
|
|
#define CP_BADAUTH 45
|
|
#define CP_BOGUSORG 46
|
|
#define CP_OLDPKT 47
|
|
#define CP_SELDISP 48
|
|
#define CP_SELBROKEN 49
|
|
#define CP_CANDIDATE 50
|
|
#define CP_MAX_NOAUTOKEY CP_CANDIDATE
|
|
#ifdef AUTOKEY
|
|
#define CP_FLAGS (1 + CP_MAX_NOAUTOKEY)
|
|
#define CP_HOST (2 + CP_MAX_NOAUTOKEY)
|
|
#define CP_VALID (3 + CP_MAX_NOAUTOKEY)
|
|
#define CP_INITSEQ (4 + CP_MAX_NOAUTOKEY)
|
|
#define CP_INITKEY (5 + CP_MAX_NOAUTOKEY)
|
|
#define CP_INITTSP (6 + CP_MAX_NOAUTOKEY)
|
|
#define CP_SIGNATURE (7 + CP_MAX_NOAUTOKEY)
|
|
#define CP_IDENT (8 + CP_MAX_NOAUTOKEY)
|
|
#define CP_MAXCODE CP_IDENT
|
|
#else /* !AUTOKEY follows */
|
|
#define CP_MAXCODE CP_MAX_NOAUTOKEY
|
|
#endif /* !AUTOKEY */
|
|
|
|
/*
|
|
* Clock variables we understand
|
|
*/
|
|
#define CC_TYPE 1
|
|
#define CC_TIMECODE 2
|
|
#define CC_POLL 3
|
|
#define CC_NOREPLY 4
|
|
#define CC_BADFORMAT 5
|
|
#define CC_BADDATA 6
|
|
#define CC_FUDGETIME1 7
|
|
#define CC_FUDGETIME2 8
|
|
#define CC_FUDGEVAL1 9
|
|
#define CC_FUDGEVAL2 10
|
|
#define CC_FLAGS 11
|
|
#define CC_DEVICE 12
|
|
#define CC_VARLIST 13
|
|
#define CC_MAXCODE CC_VARLIST
|
|
|
|
/*
|
|
* System variable values. The array can be indexed by the variable
|
|
* index to find the textual name.
|
|
*/
|
|
static const struct ctl_var sys_var[] = {
|
|
{ 0, PADDING, "" }, /* 0 */
|
|
{ CS_LEAP, RW, "leap" }, /* 1 */
|
|
{ CS_STRATUM, RO, "stratum" }, /* 2 */
|
|
{ CS_PRECISION, RO, "precision" }, /* 3 */
|
|
{ CS_ROOTDELAY, RO, "rootdelay" }, /* 4 */
|
|
{ CS_ROOTDISPERSION, RO, "rootdisp" }, /* 5 */
|
|
{ CS_REFID, RO, "refid" }, /* 6 */
|
|
{ CS_REFTIME, RO, "reftime" }, /* 7 */
|
|
{ CS_POLL, RO, "tc" }, /* 8 */
|
|
{ CS_PEERID, RO, "peer" }, /* 9 */
|
|
{ CS_OFFSET, RO, "offset" }, /* 10 */
|
|
{ CS_DRIFT, RO, "frequency" }, /* 11 */
|
|
{ CS_JITTER, RO, "sys_jitter" }, /* 12 */
|
|
{ CS_ERROR, RO, "clk_jitter" }, /* 13 */
|
|
{ CS_CLOCK, RO, "clock" }, /* 14 */
|
|
{ CS_PROCESSOR, RO, "processor" }, /* 15 */
|
|
{ CS_SYSTEM, RO, "system" }, /* 16 */
|
|
{ CS_VERSION, RO, "version" }, /* 17 */
|
|
{ CS_STABIL, RO, "clk_wander" }, /* 18 */
|
|
{ CS_VARLIST, RO, "sys_var_list" }, /* 19 */
|
|
{ CS_TAI, RO, "tai" }, /* 20 */
|
|
{ CS_LEAPTAB, RO, "leapsec" }, /* 21 */
|
|
{ CS_LEAPEND, RO, "expire" }, /* 22 */
|
|
{ CS_RATE, RO, "mintc" }, /* 23 */
|
|
{ CS_MRU_ENABLED, RO, "mru_enabled" }, /* 24 */
|
|
{ CS_MRU_DEPTH, RO, "mru_depth" }, /* 25 */
|
|
{ CS_MRU_DEEPEST, RO, "mru_deepest" }, /* 26 */
|
|
{ CS_MRU_MINDEPTH, RO, "mru_mindepth" }, /* 27 */
|
|
{ CS_MRU_MAXAGE, RO, "mru_maxage" }, /* 28 */
|
|
{ CS_MRU_MAXDEPTH, RO, "mru_maxdepth" }, /* 29 */
|
|
{ CS_MRU_MEM, RO, "mru_mem" }, /* 30 */
|
|
{ CS_MRU_MAXMEM, RO, "mru_maxmem" }, /* 31 */
|
|
{ CS_SS_UPTIME, RO, "ss_uptime" }, /* 32 */
|
|
{ CS_SS_RESET, RO, "ss_reset" }, /* 33 */
|
|
{ CS_SS_RECEIVED, RO, "ss_received" }, /* 34 */
|
|
{ CS_SS_THISVER, RO, "ss_thisver" }, /* 35 */
|
|
{ CS_SS_OLDVER, RO, "ss_oldver" }, /* 36 */
|
|
{ CS_SS_BADFORMAT, RO, "ss_badformat" }, /* 37 */
|
|
{ CS_SS_BADAUTH, RO, "ss_badauth" }, /* 38 */
|
|
{ CS_SS_DECLINED, RO, "ss_declined" }, /* 39 */
|
|
{ CS_SS_RESTRICTED, RO, "ss_restricted" }, /* 40 */
|
|
{ CS_SS_LIMITED, RO, "ss_limited" }, /* 41 */
|
|
{ CS_SS_KODSENT, RO, "ss_kodsent" }, /* 42 */
|
|
{ CS_SS_PROCESSED, RO, "ss_processed" }, /* 43 */
|
|
{ CS_PEERADR, RO, "peeradr" }, /* 44 */
|
|
{ CS_PEERMODE, RO, "peermode" }, /* 45 */
|
|
{ CS_BCASTDELAY, RO, "bcastdelay" }, /* 46 */
|
|
{ CS_AUTHDELAY, RO, "authdelay" }, /* 47 */
|
|
{ CS_AUTHKEYS, RO, "authkeys" }, /* 48 */
|
|
{ CS_AUTHFREEK, RO, "authfreek" }, /* 49 */
|
|
{ CS_AUTHKLOOKUPS, RO, "authklookups" }, /* 50 */
|
|
{ CS_AUTHKNOTFOUND, RO, "authknotfound" }, /* 51 */
|
|
{ CS_AUTHKUNCACHED, RO, "authkuncached" }, /* 52 */
|
|
{ CS_AUTHKEXPIRED, RO, "authkexpired" }, /* 53 */
|
|
{ CS_AUTHENCRYPTS, RO, "authencrypts" }, /* 54 */
|
|
{ CS_AUTHDECRYPTS, RO, "authdecrypts" }, /* 55 */
|
|
{ CS_AUTHRESET, RO, "authreset" }, /* 56 */
|
|
{ CS_K_OFFSET, RO, "koffset" }, /* 57 */
|
|
{ CS_K_FREQ, RO, "kfreq" }, /* 58 */
|
|
{ CS_K_MAXERR, RO, "kmaxerr" }, /* 59 */
|
|
{ CS_K_ESTERR, RO, "kesterr" }, /* 60 */
|
|
{ CS_K_STFLAGS, RO, "kstflags" }, /* 61 */
|
|
{ CS_K_TIMECONST, RO, "ktimeconst" }, /* 62 */
|
|
{ CS_K_PRECISION, RO, "kprecis" }, /* 63 */
|
|
{ CS_K_FREQTOL, RO, "kfreqtol" }, /* 64 */
|
|
{ CS_K_PPS_FREQ, RO, "kppsfreq" }, /* 65 */
|
|
{ CS_K_PPS_STABIL, RO, "kppsstab" }, /* 66 */
|
|
{ CS_K_PPS_JITTER, RO, "kppsjitter" }, /* 67 */
|
|
{ CS_K_PPS_CALIBDUR, RO, "kppscalibdur" }, /* 68 */
|
|
{ CS_K_PPS_CALIBS, RO, "kppscalibs" }, /* 69 */
|
|
{ CS_K_PPS_CALIBERRS, RO, "kppscaliberrs" }, /* 70 */
|
|
{ CS_K_PPS_JITEXC, RO, "kppsjitexc" }, /* 71 */
|
|
{ CS_K_PPS_STBEXC, RO, "kppsstbexc" }, /* 72 */
|
|
{ CS_IOSTATS_RESET, RO, "iostats_reset" }, /* 73 */
|
|
{ CS_TOTAL_RBUF, RO, "total_rbuf" }, /* 74 */
|
|
{ CS_FREE_RBUF, RO, "free_rbuf" }, /* 75 */
|
|
{ CS_USED_RBUF, RO, "used_rbuf" }, /* 76 */
|
|
{ CS_RBUF_LOWATER, RO, "rbuf_lowater" }, /* 77 */
|
|
{ CS_IO_DROPPED, RO, "io_dropped" }, /* 78 */
|
|
{ CS_IO_IGNORED, RO, "io_ignored" }, /* 79 */
|
|
{ CS_IO_RECEIVED, RO, "io_received" }, /* 80 */
|
|
{ CS_IO_SENT, RO, "io_sent" }, /* 81 */
|
|
{ CS_IO_SENDFAILED, RO, "io_sendfailed" }, /* 82 */
|
|
{ CS_IO_WAKEUPS, RO, "io_wakeups" }, /* 83 */
|
|
{ CS_IO_GOODWAKEUPS, RO, "io_goodwakeups" }, /* 84 */
|
|
{ CS_TIMERSTATS_RESET, RO, "timerstats_reset" },/* 85 */
|
|
{ CS_TIMER_OVERRUNS, RO, "timer_overruns" }, /* 86 */
|
|
{ CS_TIMER_XMTS, RO, "timer_xmts" }, /* 87 */
|
|
{ CS_FUZZ, RO, "fuzz" }, /* 88 */
|
|
{ CS_WANDER_THRESH, RO, "clk_wander_threshold" }, /* 89 */
|
|
|
|
{ CS_LEAPSMEARINTV, RO, "leapsmearinterval" }, /* 90 */
|
|
{ CS_LEAPSMEAROFFS, RO, "leapsmearoffset" }, /* 91 */
|
|
|
|
#ifdef AUTOKEY
|
|
{ CS_FLAGS, RO, "flags" }, /* 1 + CS_MAX_NOAUTOKEY */
|
|
{ CS_HOST, RO, "host" }, /* 2 + CS_MAX_NOAUTOKEY */
|
|
{ CS_PUBLIC, RO, "update" }, /* 3 + CS_MAX_NOAUTOKEY */
|
|
{ CS_CERTIF, RO, "cert" }, /* 4 + CS_MAX_NOAUTOKEY */
|
|
{ CS_SIGNATURE, RO, "signature" }, /* 5 + CS_MAX_NOAUTOKEY */
|
|
{ CS_REVTIME, RO, "until" }, /* 6 + CS_MAX_NOAUTOKEY */
|
|
{ CS_IDENT, RO, "ident" }, /* 7 + CS_MAX_NOAUTOKEY */
|
|
{ CS_DIGEST, RO, "digest" }, /* 8 + CS_MAX_NOAUTOKEY */
|
|
#endif /* AUTOKEY */
|
|
{ 0, EOV, "" } /* 87/95 */
|
|
};
|
|
|
|
static struct ctl_var *ext_sys_var = NULL;
|
|
|
|
/*
|
|
* System variables we print by default (in fuzzball order,
|
|
* more-or-less)
|
|
*/
|
|
static const u_char def_sys_var[] = {
|
|
CS_VERSION,
|
|
CS_PROCESSOR,
|
|
CS_SYSTEM,
|
|
CS_LEAP,
|
|
CS_STRATUM,
|
|
CS_PRECISION,
|
|
CS_ROOTDELAY,
|
|
CS_ROOTDISPERSION,
|
|
CS_REFID,
|
|
CS_REFTIME,
|
|
CS_CLOCK,
|
|
CS_PEERID,
|
|
CS_POLL,
|
|
CS_RATE,
|
|
CS_OFFSET,
|
|
CS_DRIFT,
|
|
CS_JITTER,
|
|
CS_ERROR,
|
|
CS_STABIL,
|
|
CS_TAI,
|
|
CS_LEAPTAB,
|
|
CS_LEAPEND,
|
|
CS_LEAPSMEARINTV,
|
|
CS_LEAPSMEAROFFS,
|
|
#ifdef AUTOKEY
|
|
CS_HOST,
|
|
CS_IDENT,
|
|
CS_FLAGS,
|
|
CS_DIGEST,
|
|
CS_SIGNATURE,
|
|
CS_PUBLIC,
|
|
CS_CERTIF,
|
|
#endif /* AUTOKEY */
|
|
0
|
|
};
|
|
|
|
|
|
/*
|
|
* Peer variable list
|
|
*/
|
|
static const struct ctl_var peer_var[] = {
|
|
{ 0, PADDING, "" }, /* 0 */
|
|
{ CP_CONFIG, RO, "config" }, /* 1 */
|
|
{ CP_AUTHENABLE, RO, "authenable" }, /* 2 */
|
|
{ CP_AUTHENTIC, RO, "authentic" }, /* 3 */
|
|
{ CP_SRCADR, RO, "srcadr" }, /* 4 */
|
|
{ CP_SRCPORT, RO, "srcport" }, /* 5 */
|
|
{ CP_DSTADR, RO, "dstadr" }, /* 6 */
|
|
{ CP_DSTPORT, RO, "dstport" }, /* 7 */
|
|
{ CP_LEAP, RO, "leap" }, /* 8 */
|
|
{ CP_HMODE, RO, "hmode" }, /* 9 */
|
|
{ CP_STRATUM, RO, "stratum" }, /* 10 */
|
|
{ CP_PPOLL, RO, "ppoll" }, /* 11 */
|
|
{ CP_HPOLL, RO, "hpoll" }, /* 12 */
|
|
{ CP_PRECISION, RO, "precision" }, /* 13 */
|
|
{ CP_ROOTDELAY, RO, "rootdelay" }, /* 14 */
|
|
{ CP_ROOTDISPERSION, RO, "rootdisp" }, /* 15 */
|
|
{ CP_REFID, RO, "refid" }, /* 16 */
|
|
{ CP_REFTIME, RO, "reftime" }, /* 17 */
|
|
{ CP_ORG, RO, "org" }, /* 18 */
|
|
{ CP_REC, RO, "rec" }, /* 19 */
|
|
{ CP_XMT, RO, "xleave" }, /* 20 */
|
|
{ CP_REACH, RO, "reach" }, /* 21 */
|
|
{ CP_UNREACH, RO, "unreach" }, /* 22 */
|
|
{ CP_TIMER, RO, "timer" }, /* 23 */
|
|
{ CP_DELAY, RO, "delay" }, /* 24 */
|
|
{ CP_OFFSET, RO, "offset" }, /* 25 */
|
|
{ CP_JITTER, RO, "jitter" }, /* 26 */
|
|
{ CP_DISPERSION, RO, "dispersion" }, /* 27 */
|
|
{ CP_KEYID, RO, "keyid" }, /* 28 */
|
|
{ CP_FILTDELAY, RO, "filtdelay" }, /* 29 */
|
|
{ CP_FILTOFFSET, RO, "filtoffset" }, /* 30 */
|
|
{ CP_PMODE, RO, "pmode" }, /* 31 */
|
|
{ CP_RECEIVED, RO, "received"}, /* 32 */
|
|
{ CP_SENT, RO, "sent" }, /* 33 */
|
|
{ CP_FILTERROR, RO, "filtdisp" }, /* 34 */
|
|
{ CP_FLASH, RO, "flash" }, /* 35 */
|
|
{ CP_TTL, RO, "ttl" }, /* 36 */
|
|
{ CP_VARLIST, RO, "peer_var_list" }, /* 37 */
|
|
{ CP_IN, RO, "in" }, /* 38 */
|
|
{ CP_OUT, RO, "out" }, /* 39 */
|
|
{ CP_RATE, RO, "headway" }, /* 40 */
|
|
{ CP_BIAS, RO, "bias" }, /* 41 */
|
|
{ CP_SRCHOST, RO, "srchost" }, /* 42 */
|
|
{ CP_TIMEREC, RO, "timerec" }, /* 43 */
|
|
{ CP_TIMEREACH, RO, "timereach" }, /* 44 */
|
|
{ CP_BADAUTH, RO, "badauth" }, /* 45 */
|
|
{ CP_BOGUSORG, RO, "bogusorg" }, /* 46 */
|
|
{ CP_OLDPKT, RO, "oldpkt" }, /* 47 */
|
|
{ CP_SELDISP, RO, "seldisp" }, /* 48 */
|
|
{ CP_SELBROKEN, RO, "selbroken" }, /* 49 */
|
|
{ CP_CANDIDATE, RO, "candidate" }, /* 50 */
|
|
#ifdef AUTOKEY
|
|
{ CP_FLAGS, RO, "flags" }, /* 1 + CP_MAX_NOAUTOKEY */
|
|
{ CP_HOST, RO, "host" }, /* 2 + CP_MAX_NOAUTOKEY */
|
|
{ CP_VALID, RO, "valid" }, /* 3 + CP_MAX_NOAUTOKEY */
|
|
{ CP_INITSEQ, RO, "initsequence" }, /* 4 + CP_MAX_NOAUTOKEY */
|
|
{ CP_INITKEY, RO, "initkey" }, /* 5 + CP_MAX_NOAUTOKEY */
|
|
{ CP_INITTSP, RO, "timestamp" }, /* 6 + CP_MAX_NOAUTOKEY */
|
|
{ CP_SIGNATURE, RO, "signature" }, /* 7 + CP_MAX_NOAUTOKEY */
|
|
{ CP_IDENT, RO, "ident" }, /* 8 + CP_MAX_NOAUTOKEY */
|
|
#endif /* AUTOKEY */
|
|
{ 0, EOV, "" } /* 50/58 */
|
|
};
|
|
|
|
|
|
/*
|
|
* Peer variables we print by default
|
|
*/
|
|
static const u_char def_peer_var[] = {
|
|
CP_SRCADR,
|
|
CP_SRCPORT,
|
|
CP_SRCHOST,
|
|
CP_DSTADR,
|
|
CP_DSTPORT,
|
|
CP_OUT,
|
|
CP_IN,
|
|
CP_LEAP,
|
|
CP_STRATUM,
|
|
CP_PRECISION,
|
|
CP_ROOTDELAY,
|
|
CP_ROOTDISPERSION,
|
|
CP_REFID,
|
|
CP_REFTIME,
|
|
CP_REC,
|
|
CP_REACH,
|
|
CP_UNREACH,
|
|
CP_HMODE,
|
|
CP_PMODE,
|
|
CP_HPOLL,
|
|
CP_PPOLL,
|
|
CP_RATE,
|
|
CP_FLASH,
|
|
CP_KEYID,
|
|
CP_TTL,
|
|
CP_OFFSET,
|
|
CP_DELAY,
|
|
CP_DISPERSION,
|
|
CP_JITTER,
|
|
CP_XMT,
|
|
CP_BIAS,
|
|
CP_FILTDELAY,
|
|
CP_FILTOFFSET,
|
|
CP_FILTERROR,
|
|
#ifdef AUTOKEY
|
|
CP_HOST,
|
|
CP_FLAGS,
|
|
CP_SIGNATURE,
|
|
CP_VALID,
|
|
CP_INITSEQ,
|
|
CP_IDENT,
|
|
#endif /* AUTOKEY */
|
|
0
|
|
};
|
|
|
|
|
|
#ifdef REFCLOCK
|
|
/*
|
|
* Clock variable list
|
|
*/
|
|
static const struct ctl_var clock_var[] = {
|
|
{ 0, PADDING, "" }, /* 0 */
|
|
{ CC_TYPE, RO, "type" }, /* 1 */
|
|
{ CC_TIMECODE, RO, "timecode" }, /* 2 */
|
|
{ CC_POLL, RO, "poll" }, /* 3 */
|
|
{ CC_NOREPLY, RO, "noreply" }, /* 4 */
|
|
{ CC_BADFORMAT, RO, "badformat" }, /* 5 */
|
|
{ CC_BADDATA, RO, "baddata" }, /* 6 */
|
|
{ CC_FUDGETIME1, RO, "fudgetime1" }, /* 7 */
|
|
{ CC_FUDGETIME2, RO, "fudgetime2" }, /* 8 */
|
|
{ CC_FUDGEVAL1, RO, "stratum" }, /* 9 */
|
|
{ CC_FUDGEVAL2, RO, "refid" }, /* 10 */
|
|
{ CC_FLAGS, RO, "flags" }, /* 11 */
|
|
{ CC_DEVICE, RO, "device" }, /* 12 */
|
|
{ CC_VARLIST, RO, "clock_var_list" }, /* 13 */
|
|
{ 0, EOV, "" } /* 14 */
|
|
};
|
|
|
|
|
|
/*
|
|
* Clock variables printed by default
|
|
*/
|
|
static const u_char def_clock_var[] = {
|
|
CC_DEVICE,
|
|
CC_TYPE, /* won't be output if device = known */
|
|
CC_TIMECODE,
|
|
CC_POLL,
|
|
CC_NOREPLY,
|
|
CC_BADFORMAT,
|
|
CC_BADDATA,
|
|
CC_FUDGETIME1,
|
|
CC_FUDGETIME2,
|
|
CC_FUDGEVAL1,
|
|
CC_FUDGEVAL2,
|
|
CC_FLAGS,
|
|
0
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* MRU string constants shared by send_mru_entry() and read_mru_list().
|
|
*/
|
|
static const char addr_fmt[] = "addr.%d";
|
|
static const char last_fmt[] = "last.%d";
|
|
|
|
/*
|
|
* System and processor definitions.
|
|
*/
|
|
#ifndef HAVE_UNAME
|
|
# ifndef STR_SYSTEM
|
|
# define STR_SYSTEM "UNIX"
|
|
# endif
|
|
# ifndef STR_PROCESSOR
|
|
# define STR_PROCESSOR "unknown"
|
|
# endif
|
|
|
|
static const char str_system[] = STR_SYSTEM;
|
|
static const char str_processor[] = STR_PROCESSOR;
|
|
#else
|
|
# include <sys/utsname.h>
|
|
static struct utsname utsnamebuf;
|
|
#endif /* HAVE_UNAME */
|
|
|
|
/*
|
|
* Trap structures. We only allow a few of these, and send a copy of
|
|
* each async message to each live one. Traps time out after an hour, it
|
|
* is up to the trap receipient to keep resetting it to avoid being
|
|
* timed out.
|
|
*/
|
|
/* ntp_request.c */
|
|
struct ctl_trap ctl_traps[CTL_MAXTRAPS];
|
|
int num_ctl_traps;
|
|
|
|
/*
|
|
* Type bits, for ctlsettrap() call.
|
|
*/
|
|
#define TRAP_TYPE_CONFIG 0 /* used by configuration code */
|
|
#define TRAP_TYPE_PRIO 1 /* priority trap */
|
|
#define TRAP_TYPE_NONPRIO 2 /* nonpriority trap */
|
|
|
|
|
|
/*
|
|
* List relating reference clock types to control message time sources.
|
|
* Index by the reference clock type. This list will only be used iff
|
|
* the reference clock driver doesn't set peer->sstclktype to something
|
|
* different than CTL_SST_TS_UNSPEC.
|
|
*/
|
|
#ifdef REFCLOCK
|
|
static const u_char clocktypes[] = {
|
|
CTL_SST_TS_NTP, /* REFCLK_NONE (0) */
|
|
CTL_SST_TS_LOCAL, /* REFCLK_LOCALCLOCK (1) */
|
|
CTL_SST_TS_UHF, /* deprecated REFCLK_GPS_TRAK (2) */
|
|
CTL_SST_TS_HF, /* REFCLK_WWV_PST (3) */
|
|
CTL_SST_TS_LF, /* REFCLK_WWVB_SPECTRACOM (4) */
|
|
CTL_SST_TS_UHF, /* REFCLK_TRUETIME (5) */
|
|
CTL_SST_TS_UHF, /* REFCLK_IRIG_AUDIO (6) */
|
|
CTL_SST_TS_HF, /* REFCLK_CHU (7) */
|
|
CTL_SST_TS_LF, /* REFCLOCK_PARSE (default) (8) */
|
|
CTL_SST_TS_LF, /* REFCLK_GPS_MX4200 (9) */
|
|
CTL_SST_TS_UHF, /* REFCLK_GPS_AS2201 (10) */
|
|
CTL_SST_TS_UHF, /* REFCLK_GPS_ARBITER (11) */
|
|
CTL_SST_TS_UHF, /* REFCLK_IRIG_TPRO (12) */
|
|
CTL_SST_TS_ATOM, /* REFCLK_ATOM_LEITCH (13) */
|
|
CTL_SST_TS_LF, /* deprecated REFCLK_MSF_EES (14) */
|
|
CTL_SST_TS_NTP, /* not used (15) */
|
|
CTL_SST_TS_UHF, /* REFCLK_IRIG_BANCOMM (16) */
|
|
CTL_SST_TS_UHF, /* REFCLK_GPS_DATU (17) */
|
|
CTL_SST_TS_TELEPHONE, /* REFCLK_NIST_ACTS (18) */
|
|
CTL_SST_TS_HF, /* REFCLK_WWV_HEATH (19) */
|
|
CTL_SST_TS_UHF, /* REFCLK_GPS_NMEA (20) */
|
|
CTL_SST_TS_UHF, /* REFCLK_GPS_VME (21) */
|
|
CTL_SST_TS_ATOM, /* REFCLK_ATOM_PPS (22) */
|
|
CTL_SST_TS_NTP, /* not used (23) */
|
|
CTL_SST_TS_NTP, /* not used (24) */
|
|
CTL_SST_TS_NTP, /* not used (25) */
|
|
CTL_SST_TS_UHF, /* REFCLK_GPS_HP (26) */
|
|
CTL_SST_TS_LF, /* REFCLK_ARCRON_MSF (27) */
|
|
CTL_SST_TS_UHF, /* REFCLK_SHM (28) */
|
|
CTL_SST_TS_UHF, /* REFCLK_PALISADE (29) */
|
|
CTL_SST_TS_UHF, /* REFCLK_ONCORE (30) */
|
|
CTL_SST_TS_UHF, /* REFCLK_JUPITER (31) */
|
|
CTL_SST_TS_LF, /* REFCLK_CHRONOLOG (32) */
|
|
CTL_SST_TS_LF, /* REFCLK_DUMBCLOCK (33) */
|
|
CTL_SST_TS_LF, /* REFCLK_ULINK (34) */
|
|
CTL_SST_TS_LF, /* REFCLK_PCF (35) */
|
|
CTL_SST_TS_HF, /* REFCLK_WWV (36) */
|
|
CTL_SST_TS_LF, /* REFCLK_FG (37) */
|
|
CTL_SST_TS_UHF, /* REFCLK_HOPF_SERIAL (38) */
|
|
CTL_SST_TS_UHF, /* REFCLK_HOPF_PCI (39) */
|
|
CTL_SST_TS_LF, /* REFCLK_JJY (40) */
|
|
CTL_SST_TS_UHF, /* REFCLK_TT560 (41) */
|
|
CTL_SST_TS_UHF, /* REFCLK_ZYFER (42) */
|
|
CTL_SST_TS_UHF, /* REFCLK_RIPENCC (43) */
|
|
CTL_SST_TS_UHF, /* REFCLK_NEOCLOCK4X (44) */
|
|
CTL_SST_TS_UHF, /* REFCLK_TSYNCPCI (45) */
|
|
CTL_SST_TS_UHF /* REFCLK_GPSDJSON (46) */
|
|
};
|
|
#endif /* REFCLOCK */
|
|
|
|
|
|
/*
|
|
* Keyid used for authenticating write requests.
|
|
*/
|
|
keyid_t ctl_auth_keyid;
|
|
|
|
/*
|
|
* We keep track of the last error reported by the system internally
|
|
*/
|
|
static u_char ctl_sys_last_event;
|
|
static u_char ctl_sys_num_events;
|
|
|
|
|
|
/*
|
|
* Statistic counters to keep track of requests and responses.
|
|
*/
|
|
u_long ctltimereset; /* time stats reset */
|
|
u_long numctlreq; /* number of requests we've received */
|
|
u_long numctlbadpkts; /* number of bad control packets */
|
|
u_long numctlresponses; /* number of resp packets sent with data */
|
|
u_long numctlfrags; /* number of fragments sent */
|
|
u_long numctlerrors; /* number of error responses sent */
|
|
u_long numctltooshort; /* number of too short input packets */
|
|
u_long numctlinputresp; /* number of responses on input */
|
|
u_long numctlinputfrag; /* number of fragments on input */
|
|
u_long numctlinputerr; /* number of input pkts with err bit set */
|
|
u_long numctlbadoffset; /* number of input pkts with nonzero offset */
|
|
u_long numctlbadversion; /* number of input pkts with unknown version */
|
|
u_long numctldatatooshort; /* data too short for count */
|
|
u_long numctlbadop; /* bad op code found in packet */
|
|
u_long numasyncmsgs; /* number of async messages we've sent */
|
|
|
|
/*
|
|
* Response packet used by these routines. Also some state information
|
|
* so that we can handle packet formatting within a common set of
|
|
* subroutines. Note we try to enter data in place whenever possible,
|
|
* but the need to set the more bit correctly means we occasionally
|
|
* use the extra buffer and copy.
|
|
*/
|
|
static struct ntp_control rpkt;
|
|
static u_char res_version;
|
|
static u_char res_opcode;
|
|
static associd_t res_associd;
|
|
static u_short res_frags; /* datagrams in this response */
|
|
static int res_offset; /* offset of payload in response */
|
|
static u_char * datapt;
|
|
static u_char * dataend;
|
|
static int datalinelen;
|
|
static int datasent; /* flag to avoid initial ", " */
|
|
static int datanotbinflag;
|
|
static sockaddr_u *rmt_addr;
|
|
static struct interface *lcl_inter;
|
|
|
|
static u_char res_authenticate;
|
|
static u_char res_authokay;
|
|
static keyid_t res_keyid;
|
|
|
|
#define MAXDATALINELEN (72)
|
|
|
|
static u_char res_async; /* sending async trap response? */
|
|
|
|
/*
|
|
* Pointers for saving state when decoding request packets
|
|
*/
|
|
static char *reqpt;
|
|
static char *reqend;
|
|
|
|
#ifndef MIN
|
|
#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
|
|
#endif
|
|
|
|
/*
|
|
* init_control - initialize request data
|
|
*/
|
|
void
|
|
init_control(void)
|
|
{
|
|
size_t i;
|
|
|
|
#ifdef HAVE_UNAME
|
|
uname(&utsnamebuf);
|
|
#endif /* HAVE_UNAME */
|
|
|
|
ctl_clr_stats();
|
|
|
|
ctl_auth_keyid = 0;
|
|
ctl_sys_last_event = EVNT_UNSPEC;
|
|
ctl_sys_num_events = 0;
|
|
|
|
num_ctl_traps = 0;
|
|
for (i = 0; i < COUNTOF(ctl_traps); i++)
|
|
ctl_traps[i].tr_flags = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_error - send an error response for the current request
|
|
*/
|
|
static void
|
|
ctl_error(
|
|
u_char errcode
|
|
)
|
|
{
|
|
size_t maclen;
|
|
|
|
numctlerrors++;
|
|
DPRINTF(3, ("sending control error %u\n", errcode));
|
|
|
|
/*
|
|
* Fill in the fields. We assume rpkt.sequence and rpkt.associd
|
|
* have already been filled in.
|
|
*/
|
|
rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
|
|
(res_opcode & CTL_OP_MASK);
|
|
rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
|
|
rpkt.count = 0;
|
|
|
|
/*
|
|
* send packet and bump counters
|
|
*/
|
|
if (res_authenticate && sys_authenticate) {
|
|
maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
|
|
CTL_HEADER_LEN);
|
|
sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
|
|
CTL_HEADER_LEN + maclen);
|
|
} else
|
|
sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
|
|
CTL_HEADER_LEN);
|
|
}
|
|
|
|
int/*BOOL*/
|
|
is_safe_filename(const char * name)
|
|
{
|
|
/* We need a strict validation of filenames we should write: The
|
|
* daemon might run with special permissions and is remote
|
|
* controllable, so we better take care what we allow as file
|
|
* name!
|
|
*
|
|
* The first character must be digit or a letter from the ASCII
|
|
* base plane or a '_' ([_A-Za-z0-9]), the following characters
|
|
* must be from [-._+A-Za-z0-9].
|
|
*
|
|
* We do not trust the character classification much here: Since
|
|
* the NTP protocol makes no provisions for UTF-8 or local code
|
|
* pages, we strictly require the 7bit ASCII code page.
|
|
*
|
|
* The following table is a packed bit field of 128 two-bit
|
|
* groups. The LSB in each group tells us if a character is
|
|
* acceptable at the first position, the MSB if the character is
|
|
* accepted at any other position.
|
|
*
|
|
* This does not ensure that the file name is syntactically
|
|
* correct (multiple dots will not work with VMS...) but it will
|
|
* exclude potential globbing bombs and directory traversal. It
|
|
* also rules out drive selection. (For systems that have this
|
|
* notion, like Windows or VMS.)
|
|
*/
|
|
static const uint32_t chclass[8] = {
|
|
0x00000000, 0x00000000,
|
|
0x28800000, 0x000FFFFF,
|
|
0xFFFFFFFC, 0xC03FFFFF,
|
|
0xFFFFFFFC, 0x003FFFFF
|
|
};
|
|
|
|
u_int widx, bidx, mask;
|
|
if ( ! (name && *name))
|
|
return FALSE;
|
|
|
|
mask = 1u;
|
|
while (0 != (widx = (u_char)*name++)) {
|
|
bidx = (widx & 15) << 1;
|
|
widx = widx >> 4;
|
|
if (widx >= sizeof(chclass)/sizeof(chclass[0]))
|
|
return FALSE;
|
|
if (0 == ((chclass[widx] >> bidx) & mask))
|
|
return FALSE;
|
|
mask = 2u;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* save_config - Implements ntpq -c "saveconfig <filename>"
|
|
* Writes current configuration including any runtime
|
|
* changes by ntpq's :config or config-from-file
|
|
*
|
|
* Note: There should be no buffer overflow or truncation in the
|
|
* processing of file names -- both cause security problems. This is bit
|
|
* painful to code but essential here.
|
|
*/
|
|
void
|
|
save_config(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
/* block directory traversal by searching for characters that
|
|
* indicate directory components in a file path.
|
|
*
|
|
* Conceptually we should be searching for DIRSEP in filename,
|
|
* however Windows actually recognizes both forward and
|
|
* backslashes as equivalent directory separators at the API
|
|
* level. On POSIX systems we could allow '\\' but such
|
|
* filenames are tricky to manipulate from a shell, so just
|
|
* reject both types of slashes on all platforms.
|
|
*/
|
|
/* TALOS-CAN-0062: block directory traversal for VMS, too */
|
|
static const char * illegal_in_filename =
|
|
#if defined(VMS)
|
|
":[]" /* do not allow drive and path components here */
|
|
#elif defined(SYS_WINNT)
|
|
":\\/" /* path and drive separators */
|
|
#else
|
|
"\\/" /* separator and critical char for POSIX */
|
|
#endif
|
|
;
|
|
char reply[128];
|
|
#ifdef SAVECONFIG
|
|
static const char savedconfig_eq[] = "savedconfig=";
|
|
|
|
/* Build a safe open mode from the available mode flags. We want
|
|
* to create a new file and write it in text mode (when
|
|
* applicable -- only Windows does this...)
|
|
*/
|
|
static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
|
|
# if defined(O_EXCL) /* posix, vms */
|
|
| O_EXCL
|
|
# elif defined(_O_EXCL) /* windows is alway very special... */
|
|
| _O_EXCL
|
|
# endif
|
|
# if defined(_O_TEXT) /* windows, again */
|
|
| _O_TEXT
|
|
#endif
|
|
;
|
|
|
|
char filespec[128];
|
|
char filename[128];
|
|
char fullpath[512];
|
|
char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
|
|
time_t now;
|
|
int fd;
|
|
FILE *fptr;
|
|
int prc;
|
|
size_t reqlen;
|
|
#endif
|
|
|
|
if (RES_NOMODIFY & restrict_mask) {
|
|
ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
|
|
ctl_flushpkt(0);
|
|
NLOG(NLOG_SYSINFO)
|
|
msyslog(LOG_NOTICE,
|
|
"saveconfig from %s rejected due to nomodify restriction",
|
|
stoa(&rbufp->recv_srcadr));
|
|
sys_restricted++;
|
|
return;
|
|
}
|
|
|
|
#ifdef SAVECONFIG
|
|
if (NULL == saveconfigdir) {
|
|
ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
|
|
ctl_flushpkt(0);
|
|
NLOG(NLOG_SYSINFO)
|
|
msyslog(LOG_NOTICE,
|
|
"saveconfig from %s rejected, no saveconfigdir",
|
|
stoa(&rbufp->recv_srcadr));
|
|
return;
|
|
}
|
|
|
|
/* The length checking stuff gets serious. Do not assume a NUL
|
|
* byte can be found, but if so, use it to calculate the needed
|
|
* buffer size. If the available buffer is too short, bail out;
|
|
* likewise if there is no file spec. (The latter will not
|
|
* happen when using NTPQ, but there are other ways to craft a
|
|
* network packet!)
|
|
*/
|
|
reqlen = (size_t)(reqend - reqpt);
|
|
if (0 != reqlen) {
|
|
char * nulpos = (char*)memchr(reqpt, 0, reqlen);
|
|
if (NULL != nulpos)
|
|
reqlen = (size_t)(nulpos - reqpt);
|
|
}
|
|
if (0 == reqlen)
|
|
return;
|
|
if (reqlen >= sizeof(filespec)) {
|
|
ctl_printf("saveconfig exceeded maximum raw name length (%u)",
|
|
(u_int)sizeof(filespec));
|
|
ctl_flushpkt(0);
|
|
msyslog(LOG_NOTICE,
|
|
"saveconfig exceeded maximum raw name length from %s",
|
|
stoa(&rbufp->recv_srcadr));
|
|
return;
|
|
}
|
|
|
|
/* copy data directly as we exactly know the size */
|
|
memcpy(filespec, reqpt, reqlen);
|
|
filespec[reqlen] = '\0';
|
|
|
|
/*
|
|
* allow timestamping of the saved config filename with
|
|
* strftime() format such as:
|
|
* ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
|
|
* XXX: Nice feature, but not too safe.
|
|
* YYY: The check for permitted characters in file names should
|
|
* weed out the worst. Let's hope 'strftime()' does not
|
|
* develop pathological problems.
|
|
*/
|
|
time(&now);
|
|
if (0 == strftime(filename, sizeof(filename), filespec,
|
|
localtime(&now)))
|
|
{
|
|
/*
|
|
* If we arrive here, 'strftime()' balked; most likely
|
|
* the buffer was too short. (Or it encounterd an empty
|
|
* format, or just a format that expands to an empty
|
|
* string.) We try to use the original name, though this
|
|
* is very likely to fail later if there are format
|
|
* specs in the string. Note that truncation cannot
|
|
* happen here as long as both buffers have the same
|
|
* size!
|
|
*/
|
|
strlcpy(filename, filespec, sizeof(filename));
|
|
}
|
|
|
|
/*
|
|
* Check the file name for sanity. This might/will rule out file
|
|
* names that would be legal but problematic, and it blocks
|
|
* directory traversal.
|
|
*/
|
|
if (!is_safe_filename(filename)) {
|
|
ctl_printf("saveconfig rejects unsafe file name '%s'",
|
|
filename);
|
|
ctl_flushpkt(0);
|
|
msyslog(LOG_NOTICE,
|
|
"saveconfig rejects unsafe file name from %s",
|
|
stoa(&rbufp->recv_srcadr));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* XXX: This next test may not be needed with is_safe_filename()
|
|
*/
|
|
|
|
/* block directory/drive traversal */
|
|
/* TALOS-CAN-0062: block directory traversal for VMS, too */
|
|
if (NULL != strpbrk(filename, illegal_in_filename)) {
|
|
snprintf(reply, sizeof(reply),
|
|
"saveconfig does not allow directory in filename");
|
|
ctl_putdata(reply, strlen(reply), 0);
|
|
ctl_flushpkt(0);
|
|
msyslog(LOG_NOTICE,
|
|
"saveconfig rejects unsafe file name from %s",
|
|
stoa(&rbufp->recv_srcadr));
|
|
return;
|
|
}
|
|
|
|
/* concatenation of directory and path can cause another
|
|
* truncation...
|
|
*/
|
|
prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
|
|
saveconfigdir, filename);
|
|
if (prc < 0 || prc >= sizeof(fullpath)) {
|
|
ctl_printf("saveconfig exceeded maximum path length (%u)",
|
|
(u_int)sizeof(fullpath));
|
|
ctl_flushpkt(0);
|
|
msyslog(LOG_NOTICE,
|
|
"saveconfig exceeded maximum path length from %s",
|
|
stoa(&rbufp->recv_srcadr));
|
|
return;
|
|
}
|
|
|
|
fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
|
|
if (-1 == fd)
|
|
fptr = NULL;
|
|
else
|
|
fptr = fdopen(fd, "w");
|
|
|
|
if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
|
|
ctl_printf("Unable to save configuration to file '%s': %m",
|
|
filename);
|
|
msyslog(LOG_ERR,
|
|
"saveconfig %s from %s failed", filename,
|
|
stoa(&rbufp->recv_srcadr));
|
|
} else {
|
|
ctl_printf("Configuration saved to '%s'", filename);
|
|
msyslog(LOG_NOTICE,
|
|
"Configuration saved to '%s' (requested by %s)",
|
|
fullpath, stoa(&rbufp->recv_srcadr));
|
|
/*
|
|
* save the output filename in system variable
|
|
* savedconfig, retrieved with:
|
|
* ntpq -c "rv 0 savedconfig"
|
|
* Note: the way 'savedconfig' is defined makes overflow
|
|
* checks unnecessary here.
|
|
*/
|
|
snprintf(savedconfig, sizeof(savedconfig), "%s%s",
|
|
savedconfig_eq, filename);
|
|
set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
|
|
}
|
|
|
|
if (NULL != fptr)
|
|
fclose(fptr);
|
|
#else /* !SAVECONFIG follows */
|
|
ctl_printf("%s",
|
|
"saveconfig unavailable, configured with --disable-saveconfig");
|
|
#endif
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* process_control - process an incoming control message
|
|
*/
|
|
void
|
|
process_control(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
struct ntp_control *pkt;
|
|
int req_count;
|
|
int req_data;
|
|
const struct ctl_proc *cc;
|
|
keyid_t *pkid;
|
|
int properlen;
|
|
size_t maclen;
|
|
|
|
DPRINTF(3, ("in process_control()\n"));
|
|
|
|
/*
|
|
* Save the addresses for error responses
|
|
*/
|
|
numctlreq++;
|
|
rmt_addr = &rbufp->recv_srcadr;
|
|
lcl_inter = rbufp->dstadr;
|
|
pkt = (struct ntp_control *)&rbufp->recv_pkt;
|
|
|
|
/*
|
|
* If the length is less than required for the header, or
|
|
* it is a response or a fragment, ignore this.
|
|
*/
|
|
if (rbufp->recv_length < (int)CTL_HEADER_LEN
|
|
|| (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
|
|
|| pkt->offset != 0) {
|
|
DPRINTF(1, ("invalid format in control packet\n"));
|
|
if (rbufp->recv_length < (int)CTL_HEADER_LEN)
|
|
numctltooshort++;
|
|
if (CTL_RESPONSE & pkt->r_m_e_op)
|
|
numctlinputresp++;
|
|
if (CTL_MORE & pkt->r_m_e_op)
|
|
numctlinputfrag++;
|
|
if (CTL_ERROR & pkt->r_m_e_op)
|
|
numctlinputerr++;
|
|
if (pkt->offset != 0)
|
|
numctlbadoffset++;
|
|
return;
|
|
}
|
|
res_version = PKT_VERSION(pkt->li_vn_mode);
|
|
if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
|
|
DPRINTF(1, ("unknown version %d in control packet\n",
|
|
res_version));
|
|
numctlbadversion++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Pull enough data from the packet to make intelligent
|
|
* responses
|
|
*/
|
|
rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
|
|
MODE_CONTROL);
|
|
res_opcode = pkt->r_m_e_op;
|
|
rpkt.sequence = pkt->sequence;
|
|
rpkt.associd = pkt->associd;
|
|
rpkt.status = 0;
|
|
res_frags = 1;
|
|
res_offset = 0;
|
|
res_associd = htons(pkt->associd);
|
|
res_async = FALSE;
|
|
res_authenticate = FALSE;
|
|
res_keyid = 0;
|
|
res_authokay = FALSE;
|
|
req_count = (int)ntohs(pkt->count);
|
|
datanotbinflag = FALSE;
|
|
datalinelen = 0;
|
|
datasent = 0;
|
|
datapt = rpkt.u.data;
|
|
dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
|
|
|
|
if ((rbufp->recv_length & 0x3) != 0)
|
|
DPRINTF(3, ("Control packet length %d unrounded\n",
|
|
rbufp->recv_length));
|
|
|
|
/*
|
|
* We're set up now. Make sure we've got at least enough
|
|
* incoming data space to match the count.
|
|
*/
|
|
req_data = rbufp->recv_length - CTL_HEADER_LEN;
|
|
if (req_data < req_count || rbufp->recv_length & 0x3) {
|
|
ctl_error(CERR_BADFMT);
|
|
numctldatatooshort++;
|
|
return;
|
|
}
|
|
|
|
properlen = req_count + CTL_HEADER_LEN;
|
|
/* round up proper len to a 8 octet boundary */
|
|
|
|
properlen = (properlen + 7) & ~7;
|
|
maclen = rbufp->recv_length - properlen;
|
|
if ((rbufp->recv_length & 3) == 0 &&
|
|
maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
|
|
sys_authenticate) {
|
|
res_authenticate = TRUE;
|
|
pkid = (void *)((char *)pkt + properlen);
|
|
res_keyid = ntohl(*pkid);
|
|
DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
|
|
rbufp->recv_length, properlen, res_keyid,
|
|
maclen));
|
|
|
|
if (!authistrusted(res_keyid))
|
|
DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
|
|
else if (authdecrypt(res_keyid, (u_int32 *)pkt,
|
|
rbufp->recv_length - maclen,
|
|
maclen)) {
|
|
res_authokay = TRUE;
|
|
DPRINTF(3, ("authenticated okay\n"));
|
|
} else {
|
|
res_keyid = 0;
|
|
DPRINTF(3, ("authentication failed\n"));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up translate pointers
|
|
*/
|
|
reqpt = (char *)pkt->u.data;
|
|
reqend = reqpt + req_count;
|
|
|
|
/*
|
|
* Look for the opcode processor
|
|
*/
|
|
for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
|
|
if (cc->control_code == res_opcode) {
|
|
DPRINTF(3, ("opcode %d, found command handler\n",
|
|
res_opcode));
|
|
if (cc->flags == AUTH
|
|
&& (!res_authokay
|
|
|| res_keyid != ctl_auth_keyid)) {
|
|
ctl_error(CERR_PERMISSION);
|
|
return;
|
|
}
|
|
(cc->handler)(rbufp, restrict_mask);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Can't find this one, return an error.
|
|
*/
|
|
numctlbadop++;
|
|
ctl_error(CERR_BADOP);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* ctlpeerstatus - return a status word for this peer
|
|
*/
|
|
u_short
|
|
ctlpeerstatus(
|
|
register struct peer *p
|
|
)
|
|
{
|
|
u_short status;
|
|
|
|
status = p->status;
|
|
if (FLAG_CONFIG & p->flags)
|
|
status |= CTL_PST_CONFIG;
|
|
if (p->keyid)
|
|
status |= CTL_PST_AUTHENABLE;
|
|
if (FLAG_AUTHENTIC & p->flags)
|
|
status |= CTL_PST_AUTHENTIC;
|
|
if (p->reach)
|
|
status |= CTL_PST_REACH;
|
|
if (MDF_TXONLY_MASK & p->cast_flags)
|
|
status |= CTL_PST_BCAST;
|
|
|
|
return CTL_PEER_STATUS(status, p->num_events, p->last_event);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctlclkstatus - return a status word for this clock
|
|
*/
|
|
#ifdef REFCLOCK
|
|
static u_short
|
|
ctlclkstatus(
|
|
struct refclockstat *pcs
|
|
)
|
|
{
|
|
return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* ctlsysstatus - return the system status word
|
|
*/
|
|
u_short
|
|
ctlsysstatus(void)
|
|
{
|
|
register u_char this_clock;
|
|
|
|
this_clock = CTL_SST_TS_UNSPEC;
|
|
#ifdef REFCLOCK
|
|
if (sys_peer != NULL) {
|
|
if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
|
|
this_clock = sys_peer->sstclktype;
|
|
else if (sys_peer->refclktype < COUNTOF(clocktypes))
|
|
this_clock = clocktypes[sys_peer->refclktype];
|
|
}
|
|
#else /* REFCLOCK */
|
|
if (sys_peer != 0)
|
|
this_clock = CTL_SST_TS_NTP;
|
|
#endif /* REFCLOCK */
|
|
return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
|
|
ctl_sys_last_event);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_flushpkt - write out the current packet and prepare
|
|
* another if necessary.
|
|
*/
|
|
static void
|
|
ctl_flushpkt(
|
|
u_char more
|
|
)
|
|
{
|
|
size_t i;
|
|
size_t dlen;
|
|
size_t sendlen;
|
|
size_t maclen;
|
|
size_t totlen;
|
|
keyid_t keyid;
|
|
|
|
dlen = datapt - rpkt.u.data;
|
|
if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
|
|
/*
|
|
* Big hack, output a trailing \r\n
|
|
*/
|
|
*datapt++ = '\r';
|
|
*datapt++ = '\n';
|
|
dlen += 2;
|
|
}
|
|
sendlen = dlen + CTL_HEADER_LEN;
|
|
|
|
/*
|
|
* Pad to a multiple of 32 bits
|
|
*/
|
|
while (sendlen & 0x3) {
|
|
*datapt++ = '\0';
|
|
sendlen++;
|
|
}
|
|
|
|
/*
|
|
* Fill in the packet with the current info
|
|
*/
|
|
rpkt.r_m_e_op = CTL_RESPONSE | more |
|
|
(res_opcode & CTL_OP_MASK);
|
|
rpkt.count = htons((u_short)dlen);
|
|
rpkt.offset = htons((u_short)res_offset);
|
|
if (res_async) {
|
|
for (i = 0; i < COUNTOF(ctl_traps); i++) {
|
|
if (TRAP_INUSE & ctl_traps[i].tr_flags) {
|
|
rpkt.li_vn_mode =
|
|
PKT_LI_VN_MODE(
|
|
sys_leap,
|
|
ctl_traps[i].tr_version,
|
|
MODE_CONTROL);
|
|
rpkt.sequence =
|
|
htons(ctl_traps[i].tr_sequence);
|
|
sendpkt(&ctl_traps[i].tr_addr,
|
|
ctl_traps[i].tr_localaddr, -4,
|
|
(struct pkt *)&rpkt, sendlen);
|
|
if (!more)
|
|
ctl_traps[i].tr_sequence++;
|
|
numasyncmsgs++;
|
|
}
|
|
}
|
|
} else {
|
|
if (res_authenticate && sys_authenticate) {
|
|
totlen = sendlen;
|
|
/*
|
|
* If we are going to authenticate, then there
|
|
* is an additional requirement that the MAC
|
|
* begin on a 64 bit boundary.
|
|
*/
|
|
while (totlen & 7) {
|
|
*datapt++ = '\0';
|
|
totlen++;
|
|
}
|
|
keyid = htonl(res_keyid);
|
|
memcpy(datapt, &keyid, sizeof(keyid));
|
|
maclen = authencrypt(res_keyid,
|
|
(u_int32 *)&rpkt, totlen);
|
|
sendpkt(rmt_addr, lcl_inter, -5,
|
|
(struct pkt *)&rpkt, totlen + maclen);
|
|
} else {
|
|
sendpkt(rmt_addr, lcl_inter, -6,
|
|
(struct pkt *)&rpkt, sendlen);
|
|
}
|
|
if (more)
|
|
numctlfrags++;
|
|
else
|
|
numctlresponses++;
|
|
}
|
|
|
|
/*
|
|
* Set us up for another go around.
|
|
*/
|
|
res_frags++;
|
|
res_offset += dlen;
|
|
datapt = rpkt.u.data;
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putdata - write data into the packet, fragmenting and starting
|
|
* another if this one is full.
|
|
*/
|
|
static void
|
|
ctl_putdata(
|
|
const char *dp,
|
|
unsigned int dlen,
|
|
int bin /* set to 1 when data is binary */
|
|
)
|
|
{
|
|
int overhead;
|
|
unsigned int currentlen;
|
|
|
|
overhead = 0;
|
|
if (!bin) {
|
|
datanotbinflag = TRUE;
|
|
overhead = 3;
|
|
if (datasent) {
|
|
*datapt++ = ',';
|
|
datalinelen++;
|
|
if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
|
|
*datapt++ = '\r';
|
|
*datapt++ = '\n';
|
|
datalinelen = 0;
|
|
} else {
|
|
*datapt++ = ' ';
|
|
datalinelen++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Save room for trailing junk
|
|
*/
|
|
while (dlen + overhead + datapt > dataend) {
|
|
/*
|
|
* Not enough room in this one, flush it out.
|
|
*/
|
|
currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
|
|
|
|
memcpy(datapt, dp, currentlen);
|
|
|
|
datapt += currentlen;
|
|
dp += currentlen;
|
|
dlen -= currentlen;
|
|
datalinelen += currentlen;
|
|
|
|
ctl_flushpkt(CTL_MORE);
|
|
}
|
|
|
|
memcpy(datapt, dp, dlen);
|
|
datapt += dlen;
|
|
datalinelen += dlen;
|
|
datasent = TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putstr - write a tagged string into the response packet
|
|
* in the form:
|
|
*
|
|
* tag="data"
|
|
*
|
|
* len is the data length excluding the NUL terminator,
|
|
* as in ctl_putstr("var", "value", strlen("value"));
|
|
*/
|
|
static void
|
|
ctl_putstr(
|
|
const char * tag,
|
|
const char * data,
|
|
size_t len
|
|
)
|
|
{
|
|
char buffer[512];
|
|
char *cp;
|
|
size_t tl;
|
|
|
|
tl = strlen(tag);
|
|
memcpy(buffer, tag, tl);
|
|
cp = buffer + tl;
|
|
if (len > 0) {
|
|
INSIST(tl + 3 + len <= sizeof(buffer));
|
|
*cp++ = '=';
|
|
*cp++ = '"';
|
|
memcpy(cp, data, len);
|
|
cp += len;
|
|
*cp++ = '"';
|
|
}
|
|
ctl_putdata(buffer, (u_int)(cp - buffer), 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putunqstr - write a tagged string into the response packet
|
|
* in the form:
|
|
*
|
|
* tag=data
|
|
*
|
|
* len is the data length excluding the NUL terminator.
|
|
* data must not contain a comma or whitespace.
|
|
*/
|
|
static void
|
|
ctl_putunqstr(
|
|
const char * tag,
|
|
const char * data,
|
|
size_t len
|
|
)
|
|
{
|
|
char buffer[512];
|
|
char *cp;
|
|
size_t tl;
|
|
|
|
tl = strlen(tag);
|
|
memcpy(buffer, tag, tl);
|
|
cp = buffer + tl;
|
|
if (len > 0) {
|
|
INSIST(tl + 1 + len <= sizeof(buffer));
|
|
*cp++ = '=';
|
|
memcpy(cp, data, len);
|
|
cp += len;
|
|
}
|
|
ctl_putdata(buffer, (u_int)(cp - buffer), 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putdblf - write a tagged, signed double into the response packet
|
|
*/
|
|
static void
|
|
ctl_putdblf(
|
|
const char * tag,
|
|
int use_f,
|
|
int precision,
|
|
double d
|
|
)
|
|
{
|
|
char *cp;
|
|
const char *cq;
|
|
char buffer[200];
|
|
|
|
cp = buffer;
|
|
cq = tag;
|
|
while (*cq != '\0')
|
|
*cp++ = *cq++;
|
|
*cp++ = '=';
|
|
INSIST((size_t)(cp - buffer) < sizeof(buffer));
|
|
snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
|
|
precision, d);
|
|
cp += strlen(cp);
|
|
ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
|
|
}
|
|
|
|
/*
|
|
* ctl_putuint - write a tagged unsigned integer into the response
|
|
*/
|
|
static void
|
|
ctl_putuint(
|
|
const char *tag,
|
|
u_long uval
|
|
)
|
|
{
|
|
register char *cp;
|
|
register const char *cq;
|
|
char buffer[200];
|
|
|
|
cp = buffer;
|
|
cq = tag;
|
|
while (*cq != '\0')
|
|
*cp++ = *cq++;
|
|
|
|
*cp++ = '=';
|
|
INSIST((cp - buffer) < (int)sizeof(buffer));
|
|
snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
|
|
cp += strlen(cp);
|
|
ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
|
|
}
|
|
|
|
/*
|
|
* ctl_putcal - write a decoded calendar data into the response
|
|
*/
|
|
static void
|
|
ctl_putcal(
|
|
const char *tag,
|
|
const struct calendar *pcal
|
|
)
|
|
{
|
|
char buffer[100];
|
|
unsigned numch;
|
|
|
|
numch = snprintf(buffer, sizeof(buffer),
|
|
"%s=%04d%02d%02d%02d%02d",
|
|
tag,
|
|
pcal->year,
|
|
pcal->month,
|
|
pcal->monthday,
|
|
pcal->hour,
|
|
pcal->minute
|
|
);
|
|
INSIST(numch < sizeof(buffer));
|
|
ctl_putdata(buffer, numch, 0);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* ctl_putfs - write a decoded filestamp into the response
|
|
*/
|
|
static void
|
|
ctl_putfs(
|
|
const char *tag,
|
|
tstamp_t uval
|
|
)
|
|
{
|
|
register char *cp;
|
|
register const char *cq;
|
|
char buffer[200];
|
|
struct tm *tm = NULL;
|
|
time_t fstamp;
|
|
|
|
cp = buffer;
|
|
cq = tag;
|
|
while (*cq != '\0')
|
|
*cp++ = *cq++;
|
|
|
|
*cp++ = '=';
|
|
fstamp = uval - JAN_1970;
|
|
tm = gmtime(&fstamp);
|
|
if (NULL == tm)
|
|
return;
|
|
INSIST((cp - buffer) < (int)sizeof(buffer));
|
|
snprintf(cp, sizeof(buffer) - (cp - buffer),
|
|
"%04d%02d%02d%02d%02d", tm->tm_year + 1900,
|
|
tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
|
|
cp += strlen(cp);
|
|
ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_puthex - write a tagged unsigned integer, in hex, into the
|
|
* response
|
|
*/
|
|
static void
|
|
ctl_puthex(
|
|
const char *tag,
|
|
u_long uval
|
|
)
|
|
{
|
|
register char *cp;
|
|
register const char *cq;
|
|
char buffer[200];
|
|
|
|
cp = buffer;
|
|
cq = tag;
|
|
while (*cq != '\0')
|
|
*cp++ = *cq++;
|
|
|
|
*cp++ = '=';
|
|
INSIST((cp - buffer) < (int)sizeof(buffer));
|
|
snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
|
|
cp += strlen(cp);
|
|
ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putint - write a tagged signed integer into the response
|
|
*/
|
|
static void
|
|
ctl_putint(
|
|
const char *tag,
|
|
long ival
|
|
)
|
|
{
|
|
register char *cp;
|
|
register const char *cq;
|
|
char buffer[200];
|
|
|
|
cp = buffer;
|
|
cq = tag;
|
|
while (*cq != '\0')
|
|
*cp++ = *cq++;
|
|
|
|
*cp++ = '=';
|
|
INSIST((cp - buffer) < (int)sizeof(buffer));
|
|
snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
|
|
cp += strlen(cp);
|
|
ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putts - write a tagged timestamp, in hex, into the response
|
|
*/
|
|
static void
|
|
ctl_putts(
|
|
const char *tag,
|
|
l_fp *ts
|
|
)
|
|
{
|
|
register char *cp;
|
|
register const char *cq;
|
|
char buffer[200];
|
|
|
|
cp = buffer;
|
|
cq = tag;
|
|
while (*cq != '\0')
|
|
*cp++ = *cq++;
|
|
|
|
*cp++ = '=';
|
|
INSIST((size_t)(cp - buffer) < sizeof(buffer));
|
|
snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
|
|
(u_int)ts->l_ui, (u_int)ts->l_uf);
|
|
cp += strlen(cp);
|
|
ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putadr - write an IP address into the response
|
|
*/
|
|
static void
|
|
ctl_putadr(
|
|
const char *tag,
|
|
u_int32 addr32,
|
|
sockaddr_u *addr
|
|
)
|
|
{
|
|
register char *cp;
|
|
register const char *cq;
|
|
char buffer[200];
|
|
|
|
cp = buffer;
|
|
cq = tag;
|
|
while (*cq != '\0')
|
|
*cp++ = *cq++;
|
|
|
|
*cp++ = '=';
|
|
if (NULL == addr)
|
|
cq = numtoa(addr32);
|
|
else
|
|
cq = stoa(addr);
|
|
INSIST((cp - buffer) < (int)sizeof(buffer));
|
|
snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
|
|
cp += strlen(cp);
|
|
ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putrefid - send a u_int32 refid as printable text
|
|
*/
|
|
static void
|
|
ctl_putrefid(
|
|
const char * tag,
|
|
u_int32 refid
|
|
)
|
|
{
|
|
char output[16];
|
|
char * optr;
|
|
char * oplim;
|
|
char * iptr;
|
|
char * iplim;
|
|
char * past_eq;
|
|
|
|
optr = output;
|
|
oplim = output + sizeof(output);
|
|
while (optr < oplim && '\0' != *tag)
|
|
*optr++ = *tag++;
|
|
if (optr < oplim) {
|
|
*optr++ = '=';
|
|
past_eq = optr;
|
|
}
|
|
if (!(optr < oplim))
|
|
return;
|
|
iptr = (char *)&refid;
|
|
iplim = iptr + sizeof(refid);
|
|
for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
|
|
iptr++, optr++)
|
|
if (isprint((int)*iptr))
|
|
*optr = *iptr;
|
|
else
|
|
*optr = '.';
|
|
if (!(optr <= oplim))
|
|
optr = past_eq;
|
|
ctl_putdata(output, (u_int)(optr - output), FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putarray - write a tagged eight element double array into the response
|
|
*/
|
|
static void
|
|
ctl_putarray(
|
|
const char *tag,
|
|
double *arr,
|
|
int start
|
|
)
|
|
{
|
|
register char *cp;
|
|
register const char *cq;
|
|
char buffer[200];
|
|
int i;
|
|
cp = buffer;
|
|
cq = tag;
|
|
while (*cq != '\0')
|
|
*cp++ = *cq++;
|
|
*cp++ = '=';
|
|
i = start;
|
|
do {
|
|
if (i == 0)
|
|
i = NTP_SHIFT;
|
|
i--;
|
|
INSIST((cp - buffer) < (int)sizeof(buffer));
|
|
snprintf(cp, sizeof(buffer) - (cp - buffer),
|
|
" %.2f", arr[i] * 1e3);
|
|
cp += strlen(cp);
|
|
} while (i != start);
|
|
ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
|
|
}
|
|
|
|
/*
|
|
* ctl_printf - put a formatted string into the data buffer
|
|
*/
|
|
static void
|
|
ctl_printf(
|
|
const char * fmt,
|
|
...
|
|
)
|
|
{
|
|
static const char * ellipsis = "[...]";
|
|
va_list va;
|
|
char fmtbuf[128];
|
|
int rc;
|
|
|
|
va_start(va, fmt);
|
|
rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
|
|
va_end(va);
|
|
if (rc < 0 || rc >= sizeof(fmtbuf))
|
|
strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
|
|
ellipsis);
|
|
ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putsys - output a system variable
|
|
*/
|
|
static void
|
|
ctl_putsys(
|
|
int varid
|
|
)
|
|
{
|
|
l_fp tmp;
|
|
char str[256];
|
|
u_int u;
|
|
double kb;
|
|
double dtemp;
|
|
const char *ss;
|
|
#ifdef AUTOKEY
|
|
struct cert_info *cp;
|
|
#endif /* AUTOKEY */
|
|
#ifdef KERNEL_PLL
|
|
static struct timex ntx;
|
|
static u_long ntp_adjtime_time;
|
|
|
|
static const double to_ms =
|
|
# ifdef STA_NANO
|
|
1.0e-6; /* nsec to msec */
|
|
# else
|
|
1.0e-3; /* usec to msec */
|
|
# endif
|
|
|
|
/*
|
|
* CS_K_* variables depend on up-to-date output of ntp_adjtime()
|
|
*/
|
|
if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
|
|
current_time != ntp_adjtime_time) {
|
|
ZERO(ntx);
|
|
if (ntp_adjtime(&ntx) < 0)
|
|
msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
|
|
else
|
|
ntp_adjtime_time = current_time;
|
|
}
|
|
#endif /* KERNEL_PLL */
|
|
|
|
switch (varid) {
|
|
|
|
case CS_LEAP:
|
|
ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
|
|
break;
|
|
|
|
case CS_STRATUM:
|
|
ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
|
|
break;
|
|
|
|
case CS_PRECISION:
|
|
ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
|
|
break;
|
|
|
|
case CS_ROOTDELAY:
|
|
ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
|
|
1e3);
|
|
break;
|
|
|
|
case CS_ROOTDISPERSION:
|
|
ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
|
|
sys_rootdisp * 1e3);
|
|
break;
|
|
|
|
case CS_REFID:
|
|
if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
|
|
ctl_putadr(sys_var[varid].text, sys_refid, NULL);
|
|
else
|
|
ctl_putrefid(sys_var[varid].text, sys_refid);
|
|
break;
|
|
|
|
case CS_REFTIME:
|
|
ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
|
|
break;
|
|
|
|
case CS_POLL:
|
|
ctl_putuint(sys_var[CS_POLL].text, sys_poll);
|
|
break;
|
|
|
|
case CS_PEERID:
|
|
if (sys_peer == NULL)
|
|
ctl_putuint(sys_var[CS_PEERID].text, 0);
|
|
else
|
|
ctl_putuint(sys_var[CS_PEERID].text,
|
|
sys_peer->associd);
|
|
break;
|
|
|
|
case CS_PEERADR:
|
|
if (sys_peer != NULL && sys_peer->dstadr != NULL)
|
|
ss = sptoa(&sys_peer->srcadr);
|
|
else
|
|
ss = "0.0.0.0:0";
|
|
ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
|
|
break;
|
|
|
|
case CS_PEERMODE:
|
|
u = (sys_peer != NULL)
|
|
? sys_peer->hmode
|
|
: MODE_UNSPEC;
|
|
ctl_putuint(sys_var[CS_PEERMODE].text, u);
|
|
break;
|
|
|
|
case CS_OFFSET:
|
|
ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
|
|
break;
|
|
|
|
case CS_DRIFT:
|
|
ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
|
|
break;
|
|
|
|
case CS_JITTER:
|
|
ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
|
|
break;
|
|
|
|
case CS_ERROR:
|
|
ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
|
|
break;
|
|
|
|
case CS_CLOCK:
|
|
get_systime(&tmp);
|
|
ctl_putts(sys_var[CS_CLOCK].text, &tmp);
|
|
break;
|
|
|
|
case CS_PROCESSOR:
|
|
#ifndef HAVE_UNAME
|
|
ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
|
|
sizeof(str_processor) - 1);
|
|
#else
|
|
ctl_putstr(sys_var[CS_PROCESSOR].text,
|
|
utsnamebuf.machine, strlen(utsnamebuf.machine));
|
|
#endif /* HAVE_UNAME */
|
|
break;
|
|
|
|
case CS_SYSTEM:
|
|
#ifndef HAVE_UNAME
|
|
ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
|
|
sizeof(str_system) - 1);
|
|
#else
|
|
snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
|
|
utsnamebuf.release);
|
|
ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
|
|
#endif /* HAVE_UNAME */
|
|
break;
|
|
|
|
case CS_VERSION:
|
|
ctl_putstr(sys_var[CS_VERSION].text, Version,
|
|
strlen(Version));
|
|
break;
|
|
|
|
case CS_STABIL:
|
|
ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
|
|
1e6);
|
|
break;
|
|
|
|
case CS_VARLIST:
|
|
{
|
|
char buf[CTL_MAX_DATA_LEN];
|
|
//buffPointer, firstElementPointer, buffEndPointer
|
|
char *buffp, *buffend;
|
|
int firstVarName;
|
|
const char *ss1;
|
|
int len;
|
|
const struct ctl_var *k;
|
|
|
|
buffp = buf;
|
|
buffend = buf + sizeof(buf);
|
|
if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
|
|
break; /* really long var name */
|
|
|
|
snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
|
|
buffp += strlen(buffp);
|
|
firstVarName = TRUE;
|
|
for (k = sys_var; !(k->flags & EOV); k++) {
|
|
if (k->flags & PADDING)
|
|
continue;
|
|
len = strlen(k->text);
|
|
if (buffp + len + 1 >= buffend)
|
|
break;
|
|
if (!firstVarName)
|
|
*buffp++ = ',';
|
|
else
|
|
firstVarName = FALSE;
|
|
memcpy(buffp, k->text, len);
|
|
buffp += len;
|
|
}
|
|
|
|
for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
|
|
if (k->flags & PADDING)
|
|
continue;
|
|
if (NULL == k->text)
|
|
continue;
|
|
ss1 = strchr(k->text, '=');
|
|
if (NULL == ss1)
|
|
len = strlen(k->text);
|
|
else
|
|
len = ss1 - k->text;
|
|
if (buffp + len + 1 >= buffend)
|
|
break;
|
|
if (firstVarName) {
|
|
*buffp++ = ',';
|
|
firstVarName = FALSE;
|
|
}
|
|
memcpy(buffp, k->text,(unsigned)len);
|
|
buffp += len;
|
|
}
|
|
if (buffp + 2 >= buffend)
|
|
break;
|
|
|
|
*buffp++ = '"';
|
|
*buffp = '\0';
|
|
|
|
ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
|
|
break;
|
|
}
|
|
|
|
case CS_TAI:
|
|
if (sys_tai > 0)
|
|
ctl_putuint(sys_var[CS_TAI].text, sys_tai);
|
|
break;
|
|
|
|
case CS_LEAPTAB:
|
|
{
|
|
leap_signature_t lsig;
|
|
leapsec_getsig(&lsig);
|
|
if (lsig.ttime > 0)
|
|
ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
|
|
break;
|
|
}
|
|
|
|
case CS_LEAPEND:
|
|
{
|
|
leap_signature_t lsig;
|
|
leapsec_getsig(&lsig);
|
|
if (lsig.etime > 0)
|
|
ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
|
|
break;
|
|
}
|
|
|
|
#ifdef LEAP_SMEAR
|
|
case CS_LEAPSMEARINTV:
|
|
if (leap_smear_intv > 0)
|
|
ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
|
|
break;
|
|
|
|
case CS_LEAPSMEAROFFS:
|
|
if (leap_smear_intv > 0)
|
|
ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
|
|
leap_smear.doffset * 1e3);
|
|
break;
|
|
#endif /* LEAP_SMEAR */
|
|
|
|
case CS_RATE:
|
|
ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
|
|
break;
|
|
|
|
case CS_MRU_ENABLED:
|
|
ctl_puthex(sys_var[varid].text, mon_enabled);
|
|
break;
|
|
|
|
case CS_MRU_DEPTH:
|
|
ctl_putuint(sys_var[varid].text, mru_entries);
|
|
break;
|
|
|
|
case CS_MRU_MEM:
|
|
kb = mru_entries * (sizeof(mon_entry) / 1024.);
|
|
u = (u_int)kb;
|
|
if (kb - u >= 0.5)
|
|
u++;
|
|
ctl_putuint(sys_var[varid].text, u);
|
|
break;
|
|
|
|
case CS_MRU_DEEPEST:
|
|
ctl_putuint(sys_var[varid].text, mru_peakentries);
|
|
break;
|
|
|
|
case CS_MRU_MINDEPTH:
|
|
ctl_putuint(sys_var[varid].text, mru_mindepth);
|
|
break;
|
|
|
|
case CS_MRU_MAXAGE:
|
|
ctl_putint(sys_var[varid].text, mru_maxage);
|
|
break;
|
|
|
|
case CS_MRU_MAXDEPTH:
|
|
ctl_putuint(sys_var[varid].text, mru_maxdepth);
|
|
break;
|
|
|
|
case CS_MRU_MAXMEM:
|
|
kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
|
|
u = (u_int)kb;
|
|
if (kb - u >= 0.5)
|
|
u++;
|
|
ctl_putuint(sys_var[varid].text, u);
|
|
break;
|
|
|
|
case CS_SS_UPTIME:
|
|
ctl_putuint(sys_var[varid].text, current_time);
|
|
break;
|
|
|
|
case CS_SS_RESET:
|
|
ctl_putuint(sys_var[varid].text,
|
|
current_time - sys_stattime);
|
|
break;
|
|
|
|
case CS_SS_RECEIVED:
|
|
ctl_putuint(sys_var[varid].text, sys_received);
|
|
break;
|
|
|
|
case CS_SS_THISVER:
|
|
ctl_putuint(sys_var[varid].text, sys_newversion);
|
|
break;
|
|
|
|
case CS_SS_OLDVER:
|
|
ctl_putuint(sys_var[varid].text, sys_oldversion);
|
|
break;
|
|
|
|
case CS_SS_BADFORMAT:
|
|
ctl_putuint(sys_var[varid].text, sys_badlength);
|
|
break;
|
|
|
|
case CS_SS_BADAUTH:
|
|
ctl_putuint(sys_var[varid].text, sys_badauth);
|
|
break;
|
|
|
|
case CS_SS_DECLINED:
|
|
ctl_putuint(sys_var[varid].text, sys_declined);
|
|
break;
|
|
|
|
case CS_SS_RESTRICTED:
|
|
ctl_putuint(sys_var[varid].text, sys_restricted);
|
|
break;
|
|
|
|
case CS_SS_LIMITED:
|
|
ctl_putuint(sys_var[varid].text, sys_limitrejected);
|
|
break;
|
|
|
|
case CS_SS_KODSENT:
|
|
ctl_putuint(sys_var[varid].text, sys_kodsent);
|
|
break;
|
|
|
|
case CS_SS_PROCESSED:
|
|
ctl_putuint(sys_var[varid].text, sys_processed);
|
|
break;
|
|
|
|
case CS_BCASTDELAY:
|
|
ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
|
|
break;
|
|
|
|
case CS_AUTHDELAY:
|
|
LFPTOD(&sys_authdelay, dtemp);
|
|
ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
|
|
break;
|
|
|
|
case CS_AUTHKEYS:
|
|
ctl_putuint(sys_var[varid].text, authnumkeys);
|
|
break;
|
|
|
|
case CS_AUTHFREEK:
|
|
ctl_putuint(sys_var[varid].text, authnumfreekeys);
|
|
break;
|
|
|
|
case CS_AUTHKLOOKUPS:
|
|
ctl_putuint(sys_var[varid].text, authkeylookups);
|
|
break;
|
|
|
|
case CS_AUTHKNOTFOUND:
|
|
ctl_putuint(sys_var[varid].text, authkeynotfound);
|
|
break;
|
|
|
|
case CS_AUTHKUNCACHED:
|
|
ctl_putuint(sys_var[varid].text, authkeyuncached);
|
|
break;
|
|
|
|
case CS_AUTHKEXPIRED:
|
|
ctl_putuint(sys_var[varid].text, authkeyexpired);
|
|
break;
|
|
|
|
case CS_AUTHENCRYPTS:
|
|
ctl_putuint(sys_var[varid].text, authencryptions);
|
|
break;
|
|
|
|
case CS_AUTHDECRYPTS:
|
|
ctl_putuint(sys_var[varid].text, authdecryptions);
|
|
break;
|
|
|
|
case CS_AUTHRESET:
|
|
ctl_putuint(sys_var[varid].text,
|
|
current_time - auth_timereset);
|
|
break;
|
|
|
|
/*
|
|
* CTL_IF_KERNLOOP() puts a zero if the kernel loop is
|
|
* unavailable, otherwise calls putfunc with args.
|
|
*/
|
|
#ifndef KERNEL_PLL
|
|
# define CTL_IF_KERNLOOP(putfunc, args) \
|
|
ctl_putint(sys_var[varid].text, 0)
|
|
#else
|
|
# define CTL_IF_KERNLOOP(putfunc, args) \
|
|
putfunc args
|
|
#endif
|
|
|
|
/*
|
|
* CTL_IF_KERNPPS() puts a zero if either the kernel
|
|
* loop is unavailable, or kernel hard PPS is not
|
|
* active, otherwise calls putfunc with args.
|
|
*/
|
|
#ifndef KERNEL_PLL
|
|
# define CTL_IF_KERNPPS(putfunc, args) \
|
|
ctl_putint(sys_var[varid].text, 0)
|
|
#else
|
|
# define CTL_IF_KERNPPS(putfunc, args) \
|
|
if (0 == ntx.shift) \
|
|
ctl_putint(sys_var[varid].text, 0); \
|
|
else \
|
|
putfunc args /* no trailing ; */
|
|
#endif
|
|
|
|
case CS_K_OFFSET:
|
|
CTL_IF_KERNLOOP(
|
|
ctl_putdblf,
|
|
(sys_var[varid].text, 0, -1, to_ms * ntx.offset)
|
|
);
|
|
break;
|
|
|
|
case CS_K_FREQ:
|
|
CTL_IF_KERNLOOP(
|
|
ctl_putsfp,
|
|
(sys_var[varid].text, ntx.freq)
|
|
);
|
|
break;
|
|
|
|
case CS_K_MAXERR:
|
|
CTL_IF_KERNLOOP(
|
|
ctl_putdblf,
|
|
(sys_var[varid].text, 0, 6,
|
|
to_ms * ntx.maxerror)
|
|
);
|
|
break;
|
|
|
|
case CS_K_ESTERR:
|
|
CTL_IF_KERNLOOP(
|
|
ctl_putdblf,
|
|
(sys_var[varid].text, 0, 6,
|
|
to_ms * ntx.esterror)
|
|
);
|
|
break;
|
|
|
|
case CS_K_STFLAGS:
|
|
#ifndef KERNEL_PLL
|
|
ss = "";
|
|
#else
|
|
ss = k_st_flags(ntx.status);
|
|
#endif
|
|
ctl_putstr(sys_var[varid].text, ss, strlen(ss));
|
|
break;
|
|
|
|
case CS_K_TIMECONST:
|
|
CTL_IF_KERNLOOP(
|
|
ctl_putint,
|
|
(sys_var[varid].text, ntx.constant)
|
|
);
|
|
break;
|
|
|
|
case CS_K_PRECISION:
|
|
CTL_IF_KERNLOOP(
|
|
ctl_putdblf,
|
|
(sys_var[varid].text, 0, 6,
|
|
to_ms * ntx.precision)
|
|
);
|
|
break;
|
|
|
|
case CS_K_FREQTOL:
|
|
CTL_IF_KERNLOOP(
|
|
ctl_putsfp,
|
|
(sys_var[varid].text, ntx.tolerance)
|
|
);
|
|
break;
|
|
|
|
case CS_K_PPS_FREQ:
|
|
CTL_IF_KERNPPS(
|
|
ctl_putsfp,
|
|
(sys_var[varid].text, ntx.ppsfreq)
|
|
);
|
|
break;
|
|
|
|
case CS_K_PPS_STABIL:
|
|
CTL_IF_KERNPPS(
|
|
ctl_putsfp,
|
|
(sys_var[varid].text, ntx.stabil)
|
|
);
|
|
break;
|
|
|
|
case CS_K_PPS_JITTER:
|
|
CTL_IF_KERNPPS(
|
|
ctl_putdbl,
|
|
(sys_var[varid].text, to_ms * ntx.jitter)
|
|
);
|
|
break;
|
|
|
|
case CS_K_PPS_CALIBDUR:
|
|
CTL_IF_KERNPPS(
|
|
ctl_putint,
|
|
(sys_var[varid].text, 1 << ntx.shift)
|
|
);
|
|
break;
|
|
|
|
case CS_K_PPS_CALIBS:
|
|
CTL_IF_KERNPPS(
|
|
ctl_putint,
|
|
(sys_var[varid].text, ntx.calcnt)
|
|
);
|
|
break;
|
|
|
|
case CS_K_PPS_CALIBERRS:
|
|
CTL_IF_KERNPPS(
|
|
ctl_putint,
|
|
(sys_var[varid].text, ntx.errcnt)
|
|
);
|
|
break;
|
|
|
|
case CS_K_PPS_JITEXC:
|
|
CTL_IF_KERNPPS(
|
|
ctl_putint,
|
|
(sys_var[varid].text, ntx.jitcnt)
|
|
);
|
|
break;
|
|
|
|
case CS_K_PPS_STBEXC:
|
|
CTL_IF_KERNPPS(
|
|
ctl_putint,
|
|
(sys_var[varid].text, ntx.stbcnt)
|
|
);
|
|
break;
|
|
|
|
case CS_IOSTATS_RESET:
|
|
ctl_putuint(sys_var[varid].text,
|
|
current_time - io_timereset);
|
|
break;
|
|
|
|
case CS_TOTAL_RBUF:
|
|
ctl_putuint(sys_var[varid].text, total_recvbuffs());
|
|
break;
|
|
|
|
case CS_FREE_RBUF:
|
|
ctl_putuint(sys_var[varid].text, free_recvbuffs());
|
|
break;
|
|
|
|
case CS_USED_RBUF:
|
|
ctl_putuint(sys_var[varid].text, full_recvbuffs());
|
|
break;
|
|
|
|
case CS_RBUF_LOWATER:
|
|
ctl_putuint(sys_var[varid].text, lowater_additions());
|
|
break;
|
|
|
|
case CS_IO_DROPPED:
|
|
ctl_putuint(sys_var[varid].text, packets_dropped);
|
|
break;
|
|
|
|
case CS_IO_IGNORED:
|
|
ctl_putuint(sys_var[varid].text, packets_ignored);
|
|
break;
|
|
|
|
case CS_IO_RECEIVED:
|
|
ctl_putuint(sys_var[varid].text, packets_received);
|
|
break;
|
|
|
|
case CS_IO_SENT:
|
|
ctl_putuint(sys_var[varid].text, packets_sent);
|
|
break;
|
|
|
|
case CS_IO_SENDFAILED:
|
|
ctl_putuint(sys_var[varid].text, packets_notsent);
|
|
break;
|
|
|
|
case CS_IO_WAKEUPS:
|
|
ctl_putuint(sys_var[varid].text, handler_calls);
|
|
break;
|
|
|
|
case CS_IO_GOODWAKEUPS:
|
|
ctl_putuint(sys_var[varid].text, handler_pkts);
|
|
break;
|
|
|
|
case CS_TIMERSTATS_RESET:
|
|
ctl_putuint(sys_var[varid].text,
|
|
current_time - timer_timereset);
|
|
break;
|
|
|
|
case CS_TIMER_OVERRUNS:
|
|
ctl_putuint(sys_var[varid].text, alarm_overflow);
|
|
break;
|
|
|
|
case CS_TIMER_XMTS:
|
|
ctl_putuint(sys_var[varid].text, timer_xmtcalls);
|
|
break;
|
|
|
|
case CS_FUZZ:
|
|
ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
|
|
break;
|
|
case CS_WANDER_THRESH:
|
|
ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
|
|
break;
|
|
#ifdef AUTOKEY
|
|
case CS_FLAGS:
|
|
if (crypto_flags)
|
|
ctl_puthex(sys_var[CS_FLAGS].text,
|
|
crypto_flags);
|
|
break;
|
|
|
|
case CS_DIGEST:
|
|
if (crypto_flags) {
|
|
strlcpy(str, OBJ_nid2ln(crypto_nid),
|
|
COUNTOF(str));
|
|
ctl_putstr(sys_var[CS_DIGEST].text, str,
|
|
strlen(str));
|
|
}
|
|
break;
|
|
|
|
case CS_SIGNATURE:
|
|
if (crypto_flags) {
|
|
const EVP_MD *dp;
|
|
|
|
dp = EVP_get_digestbynid(crypto_flags >> 16);
|
|
strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
|
|
COUNTOF(str));
|
|
ctl_putstr(sys_var[CS_SIGNATURE].text, str,
|
|
strlen(str));
|
|
}
|
|
break;
|
|
|
|
case CS_HOST:
|
|
if (hostval.ptr != NULL)
|
|
ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
|
|
strlen(hostval.ptr));
|
|
break;
|
|
|
|
case CS_IDENT:
|
|
if (sys_ident != NULL)
|
|
ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
|
|
strlen(sys_ident));
|
|
break;
|
|
|
|
case CS_CERTIF:
|
|
for (cp = cinfo; cp != NULL; cp = cp->link) {
|
|
snprintf(str, sizeof(str), "%s %s 0x%x",
|
|
cp->subject, cp->issuer, cp->flags);
|
|
ctl_putstr(sys_var[CS_CERTIF].text, str,
|
|
strlen(str));
|
|
ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
|
|
}
|
|
break;
|
|
|
|
case CS_PUBLIC:
|
|
if (hostval.tstamp != 0)
|
|
ctl_putfs(sys_var[CS_PUBLIC].text,
|
|
ntohl(hostval.tstamp));
|
|
break;
|
|
#endif /* AUTOKEY */
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_putpeer - output a peer variable
|
|
*/
|
|
static void
|
|
ctl_putpeer(
|
|
int id,
|
|
struct peer *p
|
|
)
|
|
{
|
|
char buf[CTL_MAX_DATA_LEN];
|
|
char *s;
|
|
char *t;
|
|
char *be;
|
|
int i;
|
|
const struct ctl_var *k;
|
|
#ifdef AUTOKEY
|
|
struct autokey *ap;
|
|
const EVP_MD *dp;
|
|
const char *str;
|
|
#endif /* AUTOKEY */
|
|
|
|
switch (id) {
|
|
|
|
case CP_CONFIG:
|
|
ctl_putuint(peer_var[id].text,
|
|
!(FLAG_PREEMPT & p->flags));
|
|
break;
|
|
|
|
case CP_AUTHENABLE:
|
|
ctl_putuint(peer_var[id].text, !(p->keyid));
|
|
break;
|
|
|
|
case CP_AUTHENTIC:
|
|
ctl_putuint(peer_var[id].text,
|
|
!!(FLAG_AUTHENTIC & p->flags));
|
|
break;
|
|
|
|
case CP_SRCADR:
|
|
ctl_putadr(peer_var[id].text, 0, &p->srcadr);
|
|
break;
|
|
|
|
case CP_SRCPORT:
|
|
ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
|
|
break;
|
|
|
|
case CP_SRCHOST:
|
|
if (p->hostname != NULL)
|
|
ctl_putstr(peer_var[id].text, p->hostname,
|
|
strlen(p->hostname));
|
|
break;
|
|
|
|
case CP_DSTADR:
|
|
ctl_putadr(peer_var[id].text, 0,
|
|
(p->dstadr != NULL)
|
|
? &p->dstadr->sin
|
|
: NULL);
|
|
break;
|
|
|
|
case CP_DSTPORT:
|
|
ctl_putuint(peer_var[id].text,
|
|
(p->dstadr != NULL)
|
|
? SRCPORT(&p->dstadr->sin)
|
|
: 0);
|
|
break;
|
|
|
|
case CP_IN:
|
|
if (p->r21 > 0.)
|
|
ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
|
|
break;
|
|
|
|
case CP_OUT:
|
|
if (p->r34 > 0.)
|
|
ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
|
|
break;
|
|
|
|
case CP_RATE:
|
|
ctl_putuint(peer_var[id].text, p->throttle);
|
|
break;
|
|
|
|
case CP_LEAP:
|
|
ctl_putuint(peer_var[id].text, p->leap);
|
|
break;
|
|
|
|
case CP_HMODE:
|
|
ctl_putuint(peer_var[id].text, p->hmode);
|
|
break;
|
|
|
|
case CP_STRATUM:
|
|
ctl_putuint(peer_var[id].text, p->stratum);
|
|
break;
|
|
|
|
case CP_PPOLL:
|
|
ctl_putuint(peer_var[id].text, p->ppoll);
|
|
break;
|
|
|
|
case CP_HPOLL:
|
|
ctl_putuint(peer_var[id].text, p->hpoll);
|
|
break;
|
|
|
|
case CP_PRECISION:
|
|
ctl_putint(peer_var[id].text, p->precision);
|
|
break;
|
|
|
|
case CP_ROOTDELAY:
|
|
ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
|
|
break;
|
|
|
|
case CP_ROOTDISPERSION:
|
|
ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
|
|
break;
|
|
|
|
case CP_REFID:
|
|
#ifdef REFCLOCK
|
|
if (p->flags & FLAG_REFCLOCK) {
|
|
ctl_putrefid(peer_var[id].text, p->refid);
|
|
break;
|
|
}
|
|
#endif
|
|
if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
|
|
ctl_putadr(peer_var[id].text, p->refid,
|
|
NULL);
|
|
else
|
|
ctl_putrefid(peer_var[id].text, p->refid);
|
|
break;
|
|
|
|
case CP_REFTIME:
|
|
ctl_putts(peer_var[id].text, &p->reftime);
|
|
break;
|
|
|
|
case CP_ORG:
|
|
ctl_putts(peer_var[id].text, &p->aorg);
|
|
break;
|
|
|
|
case CP_REC:
|
|
ctl_putts(peer_var[id].text, &p->dst);
|
|
break;
|
|
|
|
case CP_XMT:
|
|
if (p->xleave)
|
|
ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
|
|
break;
|
|
|
|
case CP_BIAS:
|
|
if (p->bias != 0.)
|
|
ctl_putdbl(peer_var[id].text, p->bias * 1e3);
|
|
break;
|
|
|
|
case CP_REACH:
|
|
ctl_puthex(peer_var[id].text, p->reach);
|
|
break;
|
|
|
|
case CP_FLASH:
|
|
ctl_puthex(peer_var[id].text, p->flash);
|
|
break;
|
|
|
|
case CP_TTL:
|
|
#ifdef REFCLOCK
|
|
if (p->flags & FLAG_REFCLOCK) {
|
|
ctl_putuint(peer_var[id].text, p->ttl);
|
|
break;
|
|
}
|
|
#endif
|
|
if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
|
|
ctl_putint(peer_var[id].text,
|
|
sys_ttl[p->ttl]);
|
|
break;
|
|
|
|
case CP_UNREACH:
|
|
ctl_putuint(peer_var[id].text, p->unreach);
|
|
break;
|
|
|
|
case CP_TIMER:
|
|
ctl_putuint(peer_var[id].text,
|
|
p->nextdate - current_time);
|
|
break;
|
|
|
|
case CP_DELAY:
|
|
ctl_putdbl(peer_var[id].text, p->delay * 1e3);
|
|
break;
|
|
|
|
case CP_OFFSET:
|
|
ctl_putdbl(peer_var[id].text, p->offset * 1e3);
|
|
break;
|
|
|
|
case CP_JITTER:
|
|
ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
|
|
break;
|
|
|
|
case CP_DISPERSION:
|
|
ctl_putdbl(peer_var[id].text, p->disp * 1e3);
|
|
break;
|
|
|
|
case CP_KEYID:
|
|
if (p->keyid > NTP_MAXKEY)
|
|
ctl_puthex(peer_var[id].text, p->keyid);
|
|
else
|
|
ctl_putuint(peer_var[id].text, p->keyid);
|
|
break;
|
|
|
|
case CP_FILTDELAY:
|
|
ctl_putarray(peer_var[id].text, p->filter_delay,
|
|
p->filter_nextpt);
|
|
break;
|
|
|
|
case CP_FILTOFFSET:
|
|
ctl_putarray(peer_var[id].text, p->filter_offset,
|
|
p->filter_nextpt);
|
|
break;
|
|
|
|
case CP_FILTERROR:
|
|
ctl_putarray(peer_var[id].text, p->filter_disp,
|
|
p->filter_nextpt);
|
|
break;
|
|
|
|
case CP_PMODE:
|
|
ctl_putuint(peer_var[id].text, p->pmode);
|
|
break;
|
|
|
|
case CP_RECEIVED:
|
|
ctl_putuint(peer_var[id].text, p->received);
|
|
break;
|
|
|
|
case CP_SENT:
|
|
ctl_putuint(peer_var[id].text, p->sent);
|
|
break;
|
|
|
|
case CP_VARLIST:
|
|
s = buf;
|
|
be = buf + sizeof(buf);
|
|
if (strlen(peer_var[id].text) + 4 > sizeof(buf))
|
|
break; /* really long var name */
|
|
|
|
snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
|
|
s += strlen(s);
|
|
t = s;
|
|
for (k = peer_var; !(EOV & k->flags); k++) {
|
|
if (PADDING & k->flags)
|
|
continue;
|
|
i = strlen(k->text);
|
|
if (s + i + 1 >= be)
|
|
break;
|
|
if (s != t)
|
|
*s++ = ',';
|
|
memcpy(s, k->text, i);
|
|
s += i;
|
|
}
|
|
if (s + 2 < be) {
|
|
*s++ = '"';
|
|
*s = '\0';
|
|
ctl_putdata(buf, (u_int)(s - buf), 0);
|
|
}
|
|
break;
|
|
|
|
case CP_TIMEREC:
|
|
ctl_putuint(peer_var[id].text,
|
|
current_time - p->timereceived);
|
|
break;
|
|
|
|
case CP_TIMEREACH:
|
|
ctl_putuint(peer_var[id].text,
|
|
current_time - p->timereachable);
|
|
break;
|
|
|
|
case CP_BADAUTH:
|
|
ctl_putuint(peer_var[id].text, p->badauth);
|
|
break;
|
|
|
|
case CP_BOGUSORG:
|
|
ctl_putuint(peer_var[id].text, p->bogusorg);
|
|
break;
|
|
|
|
case CP_OLDPKT:
|
|
ctl_putuint(peer_var[id].text, p->oldpkt);
|
|
break;
|
|
|
|
case CP_SELDISP:
|
|
ctl_putuint(peer_var[id].text, p->seldisptoolarge);
|
|
break;
|
|
|
|
case CP_SELBROKEN:
|
|
ctl_putuint(peer_var[id].text, p->selbroken);
|
|
break;
|
|
|
|
case CP_CANDIDATE:
|
|
ctl_putuint(peer_var[id].text, p->status);
|
|
break;
|
|
#ifdef AUTOKEY
|
|
case CP_FLAGS:
|
|
if (p->crypto)
|
|
ctl_puthex(peer_var[id].text, p->crypto);
|
|
break;
|
|
|
|
case CP_SIGNATURE:
|
|
if (p->crypto) {
|
|
dp = EVP_get_digestbynid(p->crypto >> 16);
|
|
str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
|
|
ctl_putstr(peer_var[id].text, str, strlen(str));
|
|
}
|
|
break;
|
|
|
|
case CP_HOST:
|
|
if (p->subject != NULL)
|
|
ctl_putstr(peer_var[id].text, p->subject,
|
|
strlen(p->subject));
|
|
break;
|
|
|
|
case CP_VALID: /* not used */
|
|
break;
|
|
|
|
case CP_INITSEQ:
|
|
if (NULL == (ap = p->recval.ptr))
|
|
break;
|
|
|
|
ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
|
|
ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
|
|
ctl_putfs(peer_var[CP_INITTSP].text,
|
|
ntohl(p->recval.tstamp));
|
|
break;
|
|
|
|
case CP_IDENT:
|
|
if (p->ident != NULL)
|
|
ctl_putstr(peer_var[id].text, p->ident,
|
|
strlen(p->ident));
|
|
break;
|
|
|
|
|
|
#endif /* AUTOKEY */
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef REFCLOCK
|
|
/*
|
|
* ctl_putclock - output clock variables
|
|
*/
|
|
static void
|
|
ctl_putclock(
|
|
int id,
|
|
struct refclockstat *pcs,
|
|
int mustput
|
|
)
|
|
{
|
|
char buf[CTL_MAX_DATA_LEN];
|
|
char *s, *t, *be;
|
|
const char *ss;
|
|
int i;
|
|
const struct ctl_var *k;
|
|
|
|
switch (id) {
|
|
|
|
case CC_TYPE:
|
|
if (mustput || pcs->clockdesc == NULL
|
|
|| *(pcs->clockdesc) == '\0') {
|
|
ctl_putuint(clock_var[id].text, pcs->type);
|
|
}
|
|
break;
|
|
case CC_TIMECODE:
|
|
ctl_putstr(clock_var[id].text,
|
|
pcs->p_lastcode,
|
|
(unsigned)pcs->lencode);
|
|
break;
|
|
|
|
case CC_POLL:
|
|
ctl_putuint(clock_var[id].text, pcs->polls);
|
|
break;
|
|
|
|
case CC_NOREPLY:
|
|
ctl_putuint(clock_var[id].text,
|
|
pcs->noresponse);
|
|
break;
|
|
|
|
case CC_BADFORMAT:
|
|
ctl_putuint(clock_var[id].text,
|
|
pcs->badformat);
|
|
break;
|
|
|
|
case CC_BADDATA:
|
|
ctl_putuint(clock_var[id].text,
|
|
pcs->baddata);
|
|
break;
|
|
|
|
case CC_FUDGETIME1:
|
|
if (mustput || (pcs->haveflags & CLK_HAVETIME1))
|
|
ctl_putdbl(clock_var[id].text,
|
|
pcs->fudgetime1 * 1e3);
|
|
break;
|
|
|
|
case CC_FUDGETIME2:
|
|
if (mustput || (pcs->haveflags & CLK_HAVETIME2))
|
|
ctl_putdbl(clock_var[id].text,
|
|
pcs->fudgetime2 * 1e3);
|
|
break;
|
|
|
|
case CC_FUDGEVAL1:
|
|
if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
|
|
ctl_putint(clock_var[id].text,
|
|
pcs->fudgeval1);
|
|
break;
|
|
|
|
case CC_FUDGEVAL2:
|
|
if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
|
|
if (pcs->fudgeval1 > 1)
|
|
ctl_putadr(clock_var[id].text,
|
|
pcs->fudgeval2, NULL);
|
|
else
|
|
ctl_putrefid(clock_var[id].text,
|
|
pcs->fudgeval2);
|
|
}
|
|
break;
|
|
|
|
case CC_FLAGS:
|
|
ctl_putuint(clock_var[id].text, pcs->flags);
|
|
break;
|
|
|
|
case CC_DEVICE:
|
|
if (pcs->clockdesc == NULL ||
|
|
*(pcs->clockdesc) == '\0') {
|
|
if (mustput)
|
|
ctl_putstr(clock_var[id].text,
|
|
"", 0);
|
|
} else {
|
|
ctl_putstr(clock_var[id].text,
|
|
pcs->clockdesc,
|
|
strlen(pcs->clockdesc));
|
|
}
|
|
break;
|
|
|
|
case CC_VARLIST:
|
|
s = buf;
|
|
be = buf + sizeof(buf);
|
|
if (strlen(clock_var[CC_VARLIST].text) + 4 >
|
|
sizeof(buf))
|
|
break; /* really long var name */
|
|
|
|
snprintf(s, sizeof(buf), "%s=\"",
|
|
clock_var[CC_VARLIST].text);
|
|
s += strlen(s);
|
|
t = s;
|
|
|
|
for (k = clock_var; !(EOV & k->flags); k++) {
|
|
if (PADDING & k->flags)
|
|
continue;
|
|
|
|
i = strlen(k->text);
|
|
if (s + i + 1 >= be)
|
|
break;
|
|
|
|
if (s != t)
|
|
*s++ = ',';
|
|
memcpy(s, k->text, i);
|
|
s += i;
|
|
}
|
|
|
|
for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
|
|
if (PADDING & k->flags)
|
|
continue;
|
|
|
|
ss = k->text;
|
|
if (NULL == ss)
|
|
continue;
|
|
|
|
while (*ss && *ss != '=')
|
|
ss++;
|
|
i = ss - k->text;
|
|
if (s + i + 1 >= be)
|
|
break;
|
|
|
|
if (s != t)
|
|
*s++ = ',';
|
|
memcpy(s, k->text, (unsigned)i);
|
|
s += i;
|
|
*s = '\0';
|
|
}
|
|
if (s + 2 >= be)
|
|
break;
|
|
|
|
*s++ = '"';
|
|
*s = '\0';
|
|
ctl_putdata(buf, (unsigned)(s - buf), 0);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
* ctl_getitem - get the next data item from the incoming packet
|
|
*/
|
|
static const struct ctl_var *
|
|
ctl_getitem(
|
|
const struct ctl_var *var_list,
|
|
char **data
|
|
)
|
|
{
|
|
/* [Bug 3008] First check the packet data sanity, then search
|
|
* the key. This improves the consistency of result values: If
|
|
* the result is NULL once, it will never be EOV again for this
|
|
* packet; If it's EOV, it will never be NULL again until the
|
|
* variable is found and processed in a given 'var_list'. (That
|
|
* is, a result is returned that is neither NULL nor EOV).
|
|
*/
|
|
static const struct ctl_var eol = { 0, EOV, NULL };
|
|
static char buf[128];
|
|
static u_long quiet_until;
|
|
const struct ctl_var *v;
|
|
char *cp;
|
|
char *tp;
|
|
|
|
/*
|
|
* Part One: Validate the packet state
|
|
*/
|
|
|
|
/* Delete leading commas and white space */
|
|
while (reqpt < reqend && (*reqpt == ',' ||
|
|
isspace((unsigned char)*reqpt)))
|
|
reqpt++;
|
|
if (reqpt >= reqend)
|
|
return NULL;
|
|
|
|
/* Scan the string in the packet until we hit comma or
|
|
* EoB. Register position of first '=' on the fly. */
|
|
for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
|
|
if (*cp == '=' && tp == NULL)
|
|
tp = cp;
|
|
if (*cp == ',')
|
|
break;
|
|
}
|
|
|
|
/* Process payload, if any. */
|
|
*data = NULL;
|
|
if (NULL != tp) {
|
|
/* eventually strip white space from argument. */
|
|
const char *plhead = tp + 1; /* skip the '=' */
|
|
const char *pltail = cp;
|
|
size_t plsize;
|
|
|
|
while (plhead != pltail && isspace((u_char)plhead[0]))
|
|
++plhead;
|
|
while (plhead != pltail && isspace((u_char)pltail[-1]))
|
|
--pltail;
|
|
|
|
/* check payload size, terminate packet on overflow */
|
|
plsize = (size_t)(pltail - plhead);
|
|
if (plsize >= sizeof(buf))
|
|
goto badpacket;
|
|
|
|
/* copy data, NUL terminate, and set result data ptr */
|
|
memcpy(buf, plhead, plsize);
|
|
buf[plsize] = '\0';
|
|
*data = buf;
|
|
} else {
|
|
/* no payload, current end --> current name termination */
|
|
tp = cp;
|
|
}
|
|
|
|
/* Part Two
|
|
*
|
|
* Now we're sure that the packet data itself is sane. Scan the
|
|
* list now. Make sure a NULL list is properly treated by
|
|
* returning a synthetic End-Of-Values record. We must not
|
|
* return NULL pointers after this point, or the behaviour would
|
|
* become inconsistent if called several times with different
|
|
* variable lists after an EoV was returned. (Such a behavior
|
|
* actually caused Bug 3008.)
|
|
*/
|
|
|
|
if (NULL == var_list)
|
|
return &eol;
|
|
|
|
for (v = var_list; !(EOV & v->flags); ++v)
|
|
if (!(PADDING & v->flags)) {
|
|
/* check if the var name matches the buffer */
|
|
const char *sp1 = reqpt;
|
|
const char *sp2 = v->text;
|
|
|
|
while ((sp1 != tp) && *sp2 && (*sp1 == *sp2)) {
|
|
++sp1;
|
|
++sp2;
|
|
}
|
|
if (sp1 == tp && !*sp2)
|
|
break;
|
|
}
|
|
|
|
/* See if we have found a valid entry or not. If found, advance
|
|
* the request pointer for the next round; if not, clear the
|
|
* data pointer so we have no dangling garbage here.
|
|
*/
|
|
if (EOV & v->flags)
|
|
*data = NULL;
|
|
else
|
|
reqpt = cp + (cp != reqend);
|
|
return v;
|
|
|
|
badpacket:
|
|
/*TODO? somehow indicate this packet was bad, apart from syslog? */
|
|
numctlbadpkts++;
|
|
NLOG(NLOG_SYSEVENT)
|
|
if (quiet_until <= current_time) {
|
|
quiet_until = current_time + 300;
|
|
msyslog(LOG_WARNING,
|
|
"Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
|
|
stoa(rmt_addr), SRCPORT(rmt_addr));
|
|
}
|
|
reqpt = reqend; /* never again for this packet! */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* control_unspec - response to an unspecified op-code
|
|
*/
|
|
/*ARGSUSED*/
|
|
static void
|
|
control_unspec(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
struct peer *peer;
|
|
|
|
/*
|
|
* What is an appropriate response to an unspecified op-code?
|
|
* I return no errors and no data, unless a specified assocation
|
|
* doesn't exist.
|
|
*/
|
|
if (res_associd) {
|
|
peer = findpeerbyassoc(res_associd);
|
|
if (NULL == peer) {
|
|
ctl_error(CERR_BADASSOC);
|
|
return;
|
|
}
|
|
rpkt.status = htons(ctlpeerstatus(peer));
|
|
} else
|
|
rpkt.status = htons(ctlsysstatus());
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* read_status - return either a list of associd's, or a particular
|
|
* peer's status.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static void
|
|
read_status(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
struct peer *peer;
|
|
const u_char *cp;
|
|
size_t n;
|
|
/* a_st holds association ID, status pairs alternating */
|
|
u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 2)
|
|
printf("read_status: ID %d\n", res_associd);
|
|
#endif
|
|
/*
|
|
* Two choices here. If the specified association ID is
|
|
* zero we return all known assocation ID's. Otherwise
|
|
* we return a bunch of stuff about the particular peer.
|
|
*/
|
|
if (res_associd) {
|
|
peer = findpeerbyassoc(res_associd);
|
|
if (NULL == peer) {
|
|
ctl_error(CERR_BADASSOC);
|
|
return;
|
|
}
|
|
rpkt.status = htons(ctlpeerstatus(peer));
|
|
if (res_authokay)
|
|
peer->num_events = 0;
|
|
/*
|
|
* For now, output everything we know about the
|
|
* peer. May be more selective later.
|
|
*/
|
|
for (cp = def_peer_var; *cp != 0; cp++)
|
|
ctl_putpeer((int)*cp, peer);
|
|
ctl_flushpkt(0);
|
|
return;
|
|
}
|
|
n = 0;
|
|
rpkt.status = htons(ctlsysstatus());
|
|
for (peer = peer_list; peer != NULL; peer = peer->p_link) {
|
|
a_st[n++] = htons(peer->associd);
|
|
a_st[n++] = htons(ctlpeerstatus(peer));
|
|
/* two entries each loop iteration, so n + 1 */
|
|
if (n + 1 >= COUNTOF(a_st)) {
|
|
ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
|
|
1);
|
|
n = 0;
|
|
}
|
|
}
|
|
if (n)
|
|
ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* read_peervars - half of read_variables() implementation
|
|
*/
|
|
static void
|
|
read_peervars(void)
|
|
{
|
|
const struct ctl_var *v;
|
|
struct peer *peer;
|
|
const u_char *cp;
|
|
size_t i;
|
|
char * valuep;
|
|
u_char wants[CP_MAXCODE + 1];
|
|
u_int gotvar;
|
|
|
|
/*
|
|
* Wants info for a particular peer. See if we know
|
|
* the guy.
|
|
*/
|
|
peer = findpeerbyassoc(res_associd);
|
|
if (NULL == peer) {
|
|
ctl_error(CERR_BADASSOC);
|
|
return;
|
|
}
|
|
rpkt.status = htons(ctlpeerstatus(peer));
|
|
if (res_authokay)
|
|
peer->num_events = 0;
|
|
ZERO(wants);
|
|
gotvar = 0;
|
|
while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
|
|
if (v->flags & EOV) {
|
|
ctl_error(CERR_UNKNOWNVAR);
|
|
return;
|
|
}
|
|
INSIST(v->code < COUNTOF(wants));
|
|
wants[v->code] = 1;
|
|
gotvar = 1;
|
|
}
|
|
if (gotvar) {
|
|
for (i = 1; i < COUNTOF(wants); i++)
|
|
if (wants[i])
|
|
ctl_putpeer(i, peer);
|
|
} else
|
|
for (cp = def_peer_var; *cp != 0; cp++)
|
|
ctl_putpeer((int)*cp, peer);
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* read_sysvars - half of read_variables() implementation
|
|
*/
|
|
static void
|
|
read_sysvars(void)
|
|
{
|
|
const struct ctl_var *v;
|
|
struct ctl_var *kv;
|
|
u_int n;
|
|
u_int gotvar;
|
|
const u_char *cs;
|
|
char * valuep;
|
|
const char * pch;
|
|
u_char *wants;
|
|
size_t wants_count;
|
|
|
|
/*
|
|
* Wants system variables. Figure out which he wants
|
|
* and give them to him.
|
|
*/
|
|
rpkt.status = htons(ctlsysstatus());
|
|
if (res_authokay)
|
|
ctl_sys_num_events = 0;
|
|
wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
|
|
wants = emalloc_zero(wants_count);
|
|
gotvar = 0;
|
|
while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
|
|
if (!(EOV & v->flags)) {
|
|
INSIST(v->code < wants_count);
|
|
wants[v->code] = 1;
|
|
gotvar = 1;
|
|
} else {
|
|
v = ctl_getitem(ext_sys_var, &valuep);
|
|
if (NULL == v) {
|
|
ctl_error(CERR_BADVALUE);
|
|
free(wants);
|
|
return;
|
|
}
|
|
if (EOV & v->flags) {
|
|
ctl_error(CERR_UNKNOWNVAR);
|
|
free(wants);
|
|
return;
|
|
}
|
|
n = v->code + CS_MAXCODE + 1;
|
|
INSIST(n < wants_count);
|
|
wants[n] = 1;
|
|
gotvar = 1;
|
|
}
|
|
}
|
|
if (gotvar) {
|
|
for (n = 1; n <= CS_MAXCODE; n++)
|
|
if (wants[n])
|
|
ctl_putsys(n);
|
|
for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
|
|
if (wants[n + CS_MAXCODE + 1]) {
|
|
pch = ext_sys_var[n].text;
|
|
ctl_putdata(pch, strlen(pch), 0);
|
|
}
|
|
} else {
|
|
for (cs = def_sys_var; *cs != 0; cs++)
|
|
ctl_putsys((int)*cs);
|
|
for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
|
|
if (DEF & kv->flags)
|
|
ctl_putdata(kv->text, strlen(kv->text),
|
|
0);
|
|
}
|
|
free(wants);
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* read_variables - return the variables the caller asks for
|
|
*/
|
|
/*ARGSUSED*/
|
|
static void
|
|
read_variables(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
if (res_associd)
|
|
read_peervars();
|
|
else
|
|
read_sysvars();
|
|
}
|
|
|
|
|
|
/*
|
|
* write_variables - write into variables. We only allow leap bit
|
|
* writing this way.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static void
|
|
write_variables(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
const struct ctl_var *v;
|
|
int ext_var;
|
|
char *valuep;
|
|
long val;
|
|
size_t octets;
|
|
char *vareqv;
|
|
const char *t;
|
|
char *tt;
|
|
|
|
val = 0;
|
|
/*
|
|
* If he's trying to write into a peer tell him no way
|
|
*/
|
|
if (res_associd != 0) {
|
|
ctl_error(CERR_PERMISSION);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set status
|
|
*/
|
|
rpkt.status = htons(ctlsysstatus());
|
|
|
|
/*
|
|
* Look through the variables. Dump out at the first sign of
|
|
* trouble.
|
|
*/
|
|
while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
|
|
ext_var = 0;
|
|
if (v->flags & EOV) {
|
|
if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
|
|
0) {
|
|
if (v->flags & EOV) {
|
|
ctl_error(CERR_UNKNOWNVAR);
|
|
return;
|
|
}
|
|
ext_var = 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if (!(v->flags & CAN_WRITE)) {
|
|
ctl_error(CERR_PERMISSION);
|
|
return;
|
|
}
|
|
if (!ext_var && (*valuep == '\0' || !atoint(valuep,
|
|
&val))) {
|
|
ctl_error(CERR_BADFMT);
|
|
return;
|
|
}
|
|
if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
|
|
ctl_error(CERR_BADVALUE);
|
|
return;
|
|
}
|
|
|
|
if (ext_var) {
|
|
octets = strlen(v->text) + strlen(valuep) + 2;
|
|
vareqv = emalloc(octets);
|
|
tt = vareqv;
|
|
t = v->text;
|
|
while (*t && *t != '=')
|
|
*tt++ = *t++;
|
|
*tt++ = '=';
|
|
memcpy(tt, valuep, 1 + strlen(valuep));
|
|
set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
|
|
free(vareqv);
|
|
} else {
|
|
ctl_error(CERR_UNSPEC); /* really */
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we got anything, do it. xxx nothing to do ***
|
|
*/
|
|
/*
|
|
if (leapind != ~0 || leapwarn != ~0) {
|
|
if (!leap_setleap((int)leapind, (int)leapwarn)) {
|
|
ctl_error(CERR_PERMISSION);
|
|
return;
|
|
}
|
|
}
|
|
*/
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* configure() processes ntpq :config/config-from-file, allowing
|
|
* generic runtime reconfiguration.
|
|
*/
|
|
static void configure(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
size_t data_count;
|
|
int retval;
|
|
|
|
/* I haven't yet implemented changes to an existing association.
|
|
* Hence check if the association id is 0
|
|
*/
|
|
if (res_associd != 0) {
|
|
ctl_error(CERR_BADVALUE);
|
|
return;
|
|
}
|
|
|
|
if (RES_NOMODIFY & restrict_mask) {
|
|
snprintf(remote_config.err_msg,
|
|
sizeof(remote_config.err_msg),
|
|
"runtime configuration prohibited by restrict ... nomodify");
|
|
ctl_putdata(remote_config.err_msg,
|
|
strlen(remote_config.err_msg), 0);
|
|
ctl_flushpkt(0);
|
|
NLOG(NLOG_SYSINFO)
|
|
msyslog(LOG_NOTICE,
|
|
"runtime config from %s rejected due to nomodify restriction",
|
|
stoa(&rbufp->recv_srcadr));
|
|
sys_restricted++;
|
|
return;
|
|
}
|
|
|
|
/* Initialize the remote config buffer */
|
|
data_count = remoteconfig_cmdlength(reqpt, reqend);
|
|
|
|
if (data_count > sizeof(remote_config.buffer) - 2) {
|
|
snprintf(remote_config.err_msg,
|
|
sizeof(remote_config.err_msg),
|
|
"runtime configuration failed: request too long");
|
|
ctl_putdata(remote_config.err_msg,
|
|
strlen(remote_config.err_msg), 0);
|
|
ctl_flushpkt(0);
|
|
msyslog(LOG_NOTICE,
|
|
"runtime config from %s rejected: request too long",
|
|
stoa(&rbufp->recv_srcadr));
|
|
return;
|
|
}
|
|
/* Bug 2853 -- check if all characters were acceptable */
|
|
if (data_count != (size_t)(reqend - reqpt)) {
|
|
snprintf(remote_config.err_msg,
|
|
sizeof(remote_config.err_msg),
|
|
"runtime configuration failed: request contains an unprintable character");
|
|
ctl_putdata(remote_config.err_msg,
|
|
strlen(remote_config.err_msg), 0);
|
|
ctl_flushpkt(0);
|
|
msyslog(LOG_NOTICE,
|
|
"runtime config from %s rejected: request contains an unprintable character: %0x",
|
|
stoa(&rbufp->recv_srcadr),
|
|
reqpt[data_count]);
|
|
return;
|
|
}
|
|
|
|
memcpy(remote_config.buffer, reqpt, data_count);
|
|
/* The buffer has no trailing linefeed or NUL right now. For
|
|
* logging, we do not want a newline, so we do that first after
|
|
* adding the necessary NUL byte.
|
|
*/
|
|
remote_config.buffer[data_count] = '\0';
|
|
DPRINTF(1, ("Got Remote Configuration Command: %s\n",
|
|
remote_config.buffer));
|
|
msyslog(LOG_NOTICE, "%s config: %s",
|
|
stoa(&rbufp->recv_srcadr),
|
|
remote_config.buffer);
|
|
|
|
/* Now we have to make sure there is a NL/NUL sequence at the
|
|
* end of the buffer before we parse it.
|
|
*/
|
|
remote_config.buffer[data_count++] = '\n';
|
|
remote_config.buffer[data_count] = '\0';
|
|
remote_config.pos = 0;
|
|
remote_config.err_pos = 0;
|
|
remote_config.no_errors = 0;
|
|
config_remotely(&rbufp->recv_srcadr);
|
|
|
|
/*
|
|
* Check if errors were reported. If not, output 'Config
|
|
* Succeeded'. Else output the error count. It would be nice
|
|
* to output any parser error messages.
|
|
*/
|
|
if (0 == remote_config.no_errors) {
|
|
retval = snprintf(remote_config.err_msg,
|
|
sizeof(remote_config.err_msg),
|
|
"Config Succeeded");
|
|
if (retval > 0)
|
|
remote_config.err_pos += retval;
|
|
}
|
|
|
|
ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
|
|
ctl_flushpkt(0);
|
|
|
|
DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
|
|
|
|
if (remote_config.no_errors > 0)
|
|
msyslog(LOG_NOTICE, "%d error in %s config",
|
|
remote_config.no_errors,
|
|
stoa(&rbufp->recv_srcadr));
|
|
}
|
|
|
|
|
|
/*
|
|
* derive_nonce - generate client-address-specific nonce value
|
|
* associated with a given timestamp.
|
|
*/
|
|
static u_int32 derive_nonce(
|
|
sockaddr_u * addr,
|
|
u_int32 ts_i,
|
|
u_int32 ts_f
|
|
)
|
|
{
|
|
static u_int32 salt[4];
|
|
static u_long last_salt_update;
|
|
union d_tag {
|
|
u_char digest[EVP_MAX_MD_SIZE];
|
|
u_int32 extract;
|
|
} d;
|
|
EVP_MD_CTX ctx;
|
|
u_int len;
|
|
|
|
while (!salt[0] || current_time - last_salt_update >= 3600) {
|
|
salt[0] = ntp_random();
|
|
salt[1] = ntp_random();
|
|
salt[2] = ntp_random();
|
|
salt[3] = ntp_random();
|
|
last_salt_update = current_time;
|
|
}
|
|
|
|
EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
|
|
EVP_DigestUpdate(&ctx, salt, sizeof(salt));
|
|
EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
|
|
EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
|
|
if (IS_IPV4(addr))
|
|
EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
|
|
sizeof(SOCK_ADDR4(addr)));
|
|
else
|
|
EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
|
|
sizeof(SOCK_ADDR6(addr)));
|
|
EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
|
|
EVP_DigestUpdate(&ctx, salt, sizeof(salt));
|
|
EVP_DigestFinal(&ctx, d.digest, &len);
|
|
|
|
return d.extract;
|
|
}
|
|
|
|
|
|
/*
|
|
* generate_nonce - generate client-address-specific nonce string.
|
|
*/
|
|
static void generate_nonce(
|
|
struct recvbuf * rbufp,
|
|
char * nonce,
|
|
size_t nonce_octets
|
|
)
|
|
{
|
|
u_int32 derived;
|
|
|
|
derived = derive_nonce(&rbufp->recv_srcadr,
|
|
rbufp->recv_time.l_ui,
|
|
rbufp->recv_time.l_uf);
|
|
snprintf(nonce, nonce_octets, "%08x%08x%08x",
|
|
rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
|
|
}
|
|
|
|
|
|
/*
|
|
* validate_nonce - validate client-address-specific nonce string.
|
|
*
|
|
* Returns TRUE if the local calculation of the nonce matches the
|
|
* client-provided value and the timestamp is recent enough.
|
|
*/
|
|
static int validate_nonce(
|
|
const char * pnonce,
|
|
struct recvbuf * rbufp
|
|
)
|
|
{
|
|
u_int ts_i;
|
|
u_int ts_f;
|
|
l_fp ts;
|
|
l_fp now_delta;
|
|
u_int supposed;
|
|
u_int derived;
|
|
|
|
if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
|
|
return FALSE;
|
|
|
|
ts.l_ui = (u_int32)ts_i;
|
|
ts.l_uf = (u_int32)ts_f;
|
|
derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
|
|
get_systime(&now_delta);
|
|
L_SUB(&now_delta, &ts);
|
|
|
|
return (supposed == derived && now_delta.l_ui < 16);
|
|
}
|
|
|
|
|
|
/*
|
|
* send_random_tag_value - send a randomly-generated three character
|
|
* tag prefix, a '.', an index, a '=' and a
|
|
* random integer value.
|
|
*
|
|
* To try to force clients to ignore unrecognized tags in mrulist,
|
|
* reslist, and ifstats responses, the first and last rows are spiced
|
|
* with randomly-generated tag names with correct .# index. Make it
|
|
* three characters knowing that none of the currently-used subscripted
|
|
* tags have that length, avoiding the need to test for
|
|
* tag collision.
|
|
*/
|
|
static void
|
|
send_random_tag_value(
|
|
int indx
|
|
)
|
|
{
|
|
int noise;
|
|
char buf[32];
|
|
|
|
noise = rand() ^ (rand() << 16);
|
|
buf[0] = 'a' + noise % 26;
|
|
noise >>= 5;
|
|
buf[1] = 'a' + noise % 26;
|
|
noise >>= 5;
|
|
buf[2] = 'a' + noise % 26;
|
|
noise >>= 5;
|
|
buf[3] = '.';
|
|
snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
|
|
ctl_putuint(buf, noise);
|
|
}
|
|
|
|
|
|
/*
|
|
* Send a MRU list entry in response to a "ntpq -c mrulist" operation.
|
|
*
|
|
* To keep clients honest about not depending on the order of values,
|
|
* and thereby avoid being locked into ugly workarounds to maintain
|
|
* backward compatibility later as new fields are added to the response,
|
|
* the order is random.
|
|
*/
|
|
static void
|
|
send_mru_entry(
|
|
mon_entry * mon,
|
|
int count
|
|
)
|
|
{
|
|
const char first_fmt[] = "first.%d";
|
|
const char ct_fmt[] = "ct.%d";
|
|
const char mv_fmt[] = "mv.%d";
|
|
const char rs_fmt[] = "rs.%d";
|
|
char tag[32];
|
|
u_char sent[6]; /* 6 tag=value pairs */
|
|
u_int32 noise;
|
|
u_int which;
|
|
u_int remaining;
|
|
const char * pch;
|
|
|
|
remaining = COUNTOF(sent);
|
|
ZERO(sent);
|
|
noise = (u_int32)(rand() ^ (rand() << 16));
|
|
while (remaining > 0) {
|
|
which = (noise & 7) % COUNTOF(sent);
|
|
noise >>= 3;
|
|
while (sent[which])
|
|
which = (which + 1) % COUNTOF(sent);
|
|
|
|
switch (which) {
|
|
|
|
case 0:
|
|
snprintf(tag, sizeof(tag), addr_fmt, count);
|
|
pch = sptoa(&mon->rmtadr);
|
|
ctl_putunqstr(tag, pch, strlen(pch));
|
|
break;
|
|
|
|
case 1:
|
|
snprintf(tag, sizeof(tag), last_fmt, count);
|
|
ctl_putts(tag, &mon->last);
|
|
break;
|
|
|
|
case 2:
|
|
snprintf(tag, sizeof(tag), first_fmt, count);
|
|
ctl_putts(tag, &mon->first);
|
|
break;
|
|
|
|
case 3:
|
|
snprintf(tag, sizeof(tag), ct_fmt, count);
|
|
ctl_putint(tag, mon->count);
|
|
break;
|
|
|
|
case 4:
|
|
snprintf(tag, sizeof(tag), mv_fmt, count);
|
|
ctl_putuint(tag, mon->vn_mode);
|
|
break;
|
|
|
|
case 5:
|
|
snprintf(tag, sizeof(tag), rs_fmt, count);
|
|
ctl_puthex(tag, mon->flags);
|
|
break;
|
|
}
|
|
sent[which] = TRUE;
|
|
remaining--;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* read_mru_list - supports ntpq's mrulist command.
|
|
*
|
|
* The challenge here is to match ntpdc's monlist functionality without
|
|
* being limited to hundreds of entries returned total, and without
|
|
* requiring state on the server. If state were required, ntpq's
|
|
* mrulist command would require authentication.
|
|
*
|
|
* The approach was suggested by Ry Jones. A finite and variable number
|
|
* of entries are retrieved per request, to avoid having responses with
|
|
* such large numbers of packets that socket buffers are overflowed and
|
|
* packets lost. The entries are retrieved oldest-first, taking into
|
|
* account that the MRU list will be changing between each request. We
|
|
* can expect to see duplicate entries for addresses updated in the MRU
|
|
* list during the fetch operation. In the end, the client can assemble
|
|
* a close approximation of the MRU list at the point in time the last
|
|
* response was sent by ntpd. The only difference is it may be longer,
|
|
* containing some number of oldest entries which have since been
|
|
* reclaimed. If necessary, the protocol could be extended to zap those
|
|
* from the client snapshot at the end, but so far that doesn't seem
|
|
* useful.
|
|
*
|
|
* To accomodate the changing MRU list, the starting point for requests
|
|
* after the first request is supplied as a series of last seen
|
|
* timestamps and associated addresses, the newest ones the client has
|
|
* received. As long as at least one of those entries hasn't been
|
|
* bumped to the head of the MRU list, ntpd can pick up at that point.
|
|
* Otherwise, the request is failed and it is up to ntpq to back up and
|
|
* provide the next newest entry's timestamps and addresses, conceivably
|
|
* backing up all the way to the starting point.
|
|
*
|
|
* input parameters:
|
|
* nonce= Regurgitated nonce retrieved by the client
|
|
* previously using CTL_OP_REQ_NONCE, demonstrating
|
|
* ability to receive traffic sent to its address.
|
|
* frags= Limit on datagrams (fragments) in response. Used
|
|
* by newer ntpq versions instead of limit= when
|
|
* retrieving multiple entries.
|
|
* limit= Limit on MRU entries returned. One of frags= or
|
|
* limit= must be provided.
|
|
* limit=1 is a special case: Instead of fetching
|
|
* beginning with the supplied starting point's
|
|
* newer neighbor, fetch the supplied entry, and
|
|
* in that case the #.last timestamp can be zero.
|
|
* This enables fetching a single entry by IP
|
|
* address. When limit is not one and frags= is
|
|
* provided, the fragment limit controls.
|
|
* mincount= (decimal) Return entries with count >= mincount.
|
|
* laddr= Return entries associated with the server's IP
|
|
* address given. No port specification is needed,
|
|
* and any supplied is ignored.
|
|
* resall= 0x-prefixed hex restrict bits which must all be
|
|
* lit for an MRU entry to be included.
|
|
* Has precedence over any resany=.
|
|
* resany= 0x-prefixed hex restrict bits, at least one of
|
|
* which must be list for an MRU entry to be
|
|
* included.
|
|
* last.0= 0x-prefixed hex l_fp timestamp of newest entry
|
|
* which client previously received.
|
|
* addr.0= text of newest entry's IP address and port,
|
|
* IPv6 addresses in bracketed form: [::]:123
|
|
* last.1= timestamp of 2nd newest entry client has.
|
|
* addr.1= address of 2nd newest entry.
|
|
* [...]
|
|
*
|
|
* ntpq provides as many last/addr pairs as will fit in a single request
|
|
* packet, except for the first request in a MRU fetch operation.
|
|
*
|
|
* The response begins with a new nonce value to be used for any
|
|
* followup request. Following the nonce is the next newer entry than
|
|
* referred to by last.0 and addr.0, if the "0" entry has not been
|
|
* bumped to the front. If it has, the first entry returned will be the
|
|
* next entry newer than referred to by last.1 and addr.1, and so on.
|
|
* If none of the referenced entries remain unchanged, the request fails
|
|
* and ntpq backs up to the next earlier set of entries to resync.
|
|
*
|
|
* Except for the first response, the response begins with confirmation
|
|
* of the entry that precedes the first additional entry provided:
|
|
*
|
|
* last.older= hex l_fp timestamp matching one of the input
|
|
* .last timestamps, which entry now precedes the
|
|
* response 0. entry in the MRU list.
|
|
* addr.older= text of address corresponding to older.last.
|
|
*
|
|
* And in any case, a successful response contains sets of values
|
|
* comprising entries, with the oldest numbered 0 and incrementing from
|
|
* there:
|
|
*
|
|
* addr.# text of IPv4 or IPv6 address and port
|
|
* last.# hex l_fp timestamp of last receipt
|
|
* first.# hex l_fp timestamp of first receipt
|
|
* ct.# count of packets received
|
|
* mv.# mode and version
|
|
* rs.# restriction mask (RES_* bits)
|
|
*
|
|
* Note the code currently assumes there are no valid three letter
|
|
* tags sent with each row, and needs to be adjusted if that changes.
|
|
*
|
|
* The client should accept the values in any order, and ignore .#
|
|
* values which it does not understand, to allow a smooth path to
|
|
* future changes without requiring a new opcode. Clients can rely
|
|
* on all *.0 values preceding any *.1 values, that is all values for
|
|
* a given index number are together in the response.
|
|
*
|
|
* The end of the response list is noted with one or two tag=value
|
|
* pairs. Unconditionally:
|
|
*
|
|
* now= 0x-prefixed l_fp timestamp at the server marking
|
|
* the end of the operation.
|
|
*
|
|
* If any entries were returned, now= is followed by:
|
|
*
|
|
* last.newest= hex l_fp identical to last.# of the prior
|
|
* entry.
|
|
*/
|
|
static void read_mru_list(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
const char nonce_text[] = "nonce";
|
|
const char frags_text[] = "frags";
|
|
const char limit_text[] = "limit";
|
|
const char mincount_text[] = "mincount";
|
|
const char resall_text[] = "resall";
|
|
const char resany_text[] = "resany";
|
|
const char maxlstint_text[] = "maxlstint";
|
|
const char laddr_text[] = "laddr";
|
|
const char resaxx_fmt[] = "0x%hx";
|
|
u_int limit;
|
|
u_short frags;
|
|
u_short resall;
|
|
u_short resany;
|
|
int mincount;
|
|
u_int maxlstint;
|
|
sockaddr_u laddr;
|
|
struct interface * lcladr;
|
|
u_int count;
|
|
u_int ui;
|
|
u_int uf;
|
|
l_fp last[16];
|
|
sockaddr_u addr[COUNTOF(last)];
|
|
char buf[128];
|
|
struct ctl_var * in_parms;
|
|
const struct ctl_var * v;
|
|
char * val;
|
|
const char * pch;
|
|
char * pnonce;
|
|
int nonce_valid;
|
|
size_t i;
|
|
int priors;
|
|
u_short hash;
|
|
mon_entry * mon;
|
|
mon_entry * prior_mon;
|
|
l_fp now;
|
|
|
|
if (RES_NOMRULIST & restrict_mask) {
|
|
ctl_error(CERR_PERMISSION);
|
|
NLOG(NLOG_SYSINFO)
|
|
msyslog(LOG_NOTICE,
|
|
"mrulist from %s rejected due to nomrulist restriction",
|
|
stoa(&rbufp->recv_srcadr));
|
|
sys_restricted++;
|
|
return;
|
|
}
|
|
/*
|
|
* fill in_parms var list with all possible input parameters.
|
|
*/
|
|
in_parms = NULL;
|
|
set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
|
|
set_var(&in_parms, frags_text, sizeof(frags_text), 0);
|
|
set_var(&in_parms, limit_text, sizeof(limit_text), 0);
|
|
set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
|
|
set_var(&in_parms, resall_text, sizeof(resall_text), 0);
|
|
set_var(&in_parms, resany_text, sizeof(resany_text), 0);
|
|
set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
|
|
set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
|
|
for (i = 0; i < COUNTOF(last); i++) {
|
|
snprintf(buf, sizeof(buf), last_fmt, (int)i);
|
|
set_var(&in_parms, buf, strlen(buf) + 1, 0);
|
|
snprintf(buf, sizeof(buf), addr_fmt, (int)i);
|
|
set_var(&in_parms, buf, strlen(buf) + 1, 0);
|
|
}
|
|
|
|
/* decode input parms */
|
|
pnonce = NULL;
|
|
frags = 0;
|
|
limit = 0;
|
|
mincount = 0;
|
|
resall = 0;
|
|
resany = 0;
|
|
maxlstint = 0;
|
|
lcladr = NULL;
|
|
priors = 0;
|
|
ZERO(last);
|
|
ZERO(addr);
|
|
|
|
while (NULL != (v = ctl_getitem(in_parms, &val)) &&
|
|
!(EOV & v->flags)) {
|
|
int si;
|
|
|
|
if (!strcmp(nonce_text, v->text)) {
|
|
if (NULL != pnonce)
|
|
free(pnonce);
|
|
pnonce = estrdup(val);
|
|
} else if (!strcmp(frags_text, v->text)) {
|
|
sscanf(val, "%hu", &frags);
|
|
} else if (!strcmp(limit_text, v->text)) {
|
|
sscanf(val, "%u", &limit);
|
|
} else if (!strcmp(mincount_text, v->text)) {
|
|
if (1 != sscanf(val, "%d", &mincount) ||
|
|
mincount < 0)
|
|
mincount = 0;
|
|
} else if (!strcmp(resall_text, v->text)) {
|
|
sscanf(val, resaxx_fmt, &resall);
|
|
} else if (!strcmp(resany_text, v->text)) {
|
|
sscanf(val, resaxx_fmt, &resany);
|
|
} else if (!strcmp(maxlstint_text, v->text)) {
|
|
sscanf(val, "%u", &maxlstint);
|
|
} else if (!strcmp(laddr_text, v->text)) {
|
|
if (decodenetnum(val, &laddr))
|
|
lcladr = getinterface(&laddr, 0);
|
|
} else if (1 == sscanf(v->text, last_fmt, &si) &&
|
|
(size_t)si < COUNTOF(last)) {
|
|
if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
|
|
last[si].l_ui = ui;
|
|
last[si].l_uf = uf;
|
|
if (!SOCK_UNSPEC(&addr[si]) &&
|
|
si == priors)
|
|
priors++;
|
|
}
|
|
} else if (1 == sscanf(v->text, addr_fmt, &si) &&
|
|
(size_t)si < COUNTOF(addr)) {
|
|
if (decodenetnum(val, &addr[si])
|
|
&& last[si].l_ui && last[si].l_uf &&
|
|
si == priors)
|
|
priors++;
|
|
}
|
|
}
|
|
free_varlist(in_parms);
|
|
in_parms = NULL;
|
|
|
|
/* return no responses until the nonce is validated */
|
|
if (NULL == pnonce)
|
|
return;
|
|
|
|
nonce_valid = validate_nonce(pnonce, rbufp);
|
|
free(pnonce);
|
|
if (!nonce_valid)
|
|
return;
|
|
|
|
if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
|
|
frags > MRU_FRAGS_LIMIT) {
|
|
ctl_error(CERR_BADVALUE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If either frags or limit is not given, use the max.
|
|
*/
|
|
if (0 != frags && 0 == limit)
|
|
limit = UINT_MAX;
|
|
else if (0 != limit && 0 == frags)
|
|
frags = MRU_FRAGS_LIMIT;
|
|
|
|
/*
|
|
* Find the starting point if one was provided.
|
|
*/
|
|
mon = NULL;
|
|
for (i = 0; i < (size_t)priors; i++) {
|
|
hash = MON_HASH(&addr[i]);
|
|
for (mon = mon_hash[hash];
|
|
mon != NULL;
|
|
mon = mon->hash_next)
|
|
if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
|
|
break;
|
|
if (mon != NULL) {
|
|
if (L_ISEQU(&mon->last, &last[i]))
|
|
break;
|
|
mon = NULL;
|
|
}
|
|
}
|
|
|
|
/* If a starting point was provided... */
|
|
if (priors) {
|
|
/* and none could be found unmodified... */
|
|
if (NULL == mon) {
|
|
/* tell ntpq to try again with older entries */
|
|
ctl_error(CERR_UNKNOWNVAR);
|
|
return;
|
|
}
|
|
/* confirm the prior entry used as starting point */
|
|
ctl_putts("last.older", &mon->last);
|
|
pch = sptoa(&mon->rmtadr);
|
|
ctl_putunqstr("addr.older", pch, strlen(pch));
|
|
|
|
/*
|
|
* Move on to the first entry the client doesn't have,
|
|
* except in the special case of a limit of one. In
|
|
* that case return the starting point entry.
|
|
*/
|
|
if (limit > 1)
|
|
mon = PREV_DLIST(mon_mru_list, mon, mru);
|
|
} else { /* start with the oldest */
|
|
mon = TAIL_DLIST(mon_mru_list, mru);
|
|
}
|
|
|
|
/*
|
|
* send up to limit= entries in up to frags= datagrams
|
|
*/
|
|
get_systime(&now);
|
|
generate_nonce(rbufp, buf, sizeof(buf));
|
|
ctl_putunqstr("nonce", buf, strlen(buf));
|
|
prior_mon = NULL;
|
|
for (count = 0;
|
|
mon != NULL && res_frags < frags && count < limit;
|
|
mon = PREV_DLIST(mon_mru_list, mon, mru)) {
|
|
|
|
if (mon->count < mincount)
|
|
continue;
|
|
if (resall && resall != (resall & mon->flags))
|
|
continue;
|
|
if (resany && !(resany & mon->flags))
|
|
continue;
|
|
if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
|
|
maxlstint)
|
|
continue;
|
|
if (lcladr != NULL && mon->lcladr != lcladr)
|
|
continue;
|
|
|
|
send_mru_entry(mon, count);
|
|
if (!count)
|
|
send_random_tag_value(0);
|
|
count++;
|
|
prior_mon = mon;
|
|
}
|
|
|
|
/*
|
|
* If this batch completes the MRU list, say so explicitly with
|
|
* a now= l_fp timestamp.
|
|
*/
|
|
if (NULL == mon) {
|
|
if (count > 1)
|
|
send_random_tag_value(count - 1);
|
|
ctl_putts("now", &now);
|
|
/* if any entries were returned confirm the last */
|
|
if (prior_mon != NULL)
|
|
ctl_putts("last.newest", &prior_mon->last);
|
|
}
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Send a ifstats entry in response to a "ntpq -c ifstats" request.
|
|
*
|
|
* To keep clients honest about not depending on the order of values,
|
|
* and thereby avoid being locked into ugly workarounds to maintain
|
|
* backward compatibility later as new fields are added to the response,
|
|
* the order is random.
|
|
*/
|
|
static void
|
|
send_ifstats_entry(
|
|
endpt * la,
|
|
u_int ifnum
|
|
)
|
|
{
|
|
const char addr_fmtu[] = "addr.%u";
|
|
const char bcast_fmt[] = "bcast.%u";
|
|
const char en_fmt[] = "en.%u"; /* enabled */
|
|
const char name_fmt[] = "name.%u";
|
|
const char flags_fmt[] = "flags.%u";
|
|
const char tl_fmt[] = "tl.%u"; /* ttl */
|
|
const char mc_fmt[] = "mc.%u"; /* mcast count */
|
|
const char rx_fmt[] = "rx.%u";
|
|
const char tx_fmt[] = "tx.%u";
|
|
const char txerr_fmt[] = "txerr.%u";
|
|
const char pc_fmt[] = "pc.%u"; /* peer count */
|
|
const char up_fmt[] = "up.%u"; /* uptime */
|
|
char tag[32];
|
|
u_char sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
|
|
int noisebits;
|
|
u_int32 noise;
|
|
u_int which;
|
|
u_int remaining;
|
|
const char *pch;
|
|
|
|
remaining = COUNTOF(sent);
|
|
ZERO(sent);
|
|
noise = 0;
|
|
noisebits = 0;
|
|
while (remaining > 0) {
|
|
if (noisebits < 4) {
|
|
noise = rand() ^ (rand() << 16);
|
|
noisebits = 31;
|
|
}
|
|
which = (noise & 0xf) % COUNTOF(sent);
|
|
noise >>= 4;
|
|
noisebits -= 4;
|
|
|
|
while (sent[which])
|
|
which = (which + 1) % COUNTOF(sent);
|
|
|
|
switch (which) {
|
|
|
|
case 0:
|
|
snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
|
|
pch = sptoa(&la->sin);
|
|
ctl_putunqstr(tag, pch, strlen(pch));
|
|
break;
|
|
|
|
case 1:
|
|
snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
|
|
if (INT_BCASTOPEN & la->flags)
|
|
pch = sptoa(&la->bcast);
|
|
else
|
|
pch = "";
|
|
ctl_putunqstr(tag, pch, strlen(pch));
|
|
break;
|
|
|
|
case 2:
|
|
snprintf(tag, sizeof(tag), en_fmt, ifnum);
|
|
ctl_putint(tag, !la->ignore_packets);
|
|
break;
|
|
|
|
case 3:
|
|
snprintf(tag, sizeof(tag), name_fmt, ifnum);
|
|
ctl_putstr(tag, la->name, strlen(la->name));
|
|
break;
|
|
|
|
case 4:
|
|
snprintf(tag, sizeof(tag), flags_fmt, ifnum);
|
|
ctl_puthex(tag, (u_int)la->flags);
|
|
break;
|
|
|
|
case 5:
|
|
snprintf(tag, sizeof(tag), tl_fmt, ifnum);
|
|
ctl_putint(tag, la->last_ttl);
|
|
break;
|
|
|
|
case 6:
|
|
snprintf(tag, sizeof(tag), mc_fmt, ifnum);
|
|
ctl_putint(tag, la->num_mcast);
|
|
break;
|
|
|
|
case 7:
|
|
snprintf(tag, sizeof(tag), rx_fmt, ifnum);
|
|
ctl_putint(tag, la->received);
|
|
break;
|
|
|
|
case 8:
|
|
snprintf(tag, sizeof(tag), tx_fmt, ifnum);
|
|
ctl_putint(tag, la->sent);
|
|
break;
|
|
|
|
case 9:
|
|
snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
|
|
ctl_putint(tag, la->notsent);
|
|
break;
|
|
|
|
case 10:
|
|
snprintf(tag, sizeof(tag), pc_fmt, ifnum);
|
|
ctl_putuint(tag, la->peercnt);
|
|
break;
|
|
|
|
case 11:
|
|
snprintf(tag, sizeof(tag), up_fmt, ifnum);
|
|
ctl_putuint(tag, current_time - la->starttime);
|
|
break;
|
|
}
|
|
sent[which] = TRUE;
|
|
remaining--;
|
|
}
|
|
send_random_tag_value((int)ifnum);
|
|
}
|
|
|
|
|
|
/*
|
|
* read_ifstats - send statistics for each local address, exposed by
|
|
* ntpq -c ifstats
|
|
*/
|
|
static void
|
|
read_ifstats(
|
|
struct recvbuf * rbufp
|
|
)
|
|
{
|
|
u_int ifidx;
|
|
endpt * la;
|
|
|
|
/*
|
|
* loop over [0..sys_ifnum] searching ep_list for each
|
|
* ifnum in turn.
|
|
*/
|
|
for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
|
|
for (la = ep_list; la != NULL; la = la->elink)
|
|
if (ifidx == la->ifnum)
|
|
break;
|
|
if (NULL == la)
|
|
continue;
|
|
/* return stats for one local address */
|
|
send_ifstats_entry(la, ifidx);
|
|
}
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
static void
|
|
sockaddrs_from_restrict_u(
|
|
sockaddr_u * psaA,
|
|
sockaddr_u * psaM,
|
|
restrict_u * pres,
|
|
int ipv6
|
|
)
|
|
{
|
|
ZERO(*psaA);
|
|
ZERO(*psaM);
|
|
if (!ipv6) {
|
|
psaA->sa.sa_family = AF_INET;
|
|
psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
|
|
psaM->sa.sa_family = AF_INET;
|
|
psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
|
|
} else {
|
|
psaA->sa.sa_family = AF_INET6;
|
|
memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
|
|
sizeof(psaA->sa6.sin6_addr));
|
|
psaM->sa.sa_family = AF_INET6;
|
|
memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
|
|
sizeof(psaA->sa6.sin6_addr));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Send a restrict entry in response to a "ntpq -c reslist" request.
|
|
*
|
|
* To keep clients honest about not depending on the order of values,
|
|
* and thereby avoid being locked into ugly workarounds to maintain
|
|
* backward compatibility later as new fields are added to the response,
|
|
* the order is random.
|
|
*/
|
|
static void
|
|
send_restrict_entry(
|
|
restrict_u * pres,
|
|
int ipv6,
|
|
u_int idx
|
|
)
|
|
{
|
|
const char addr_fmtu[] = "addr.%u";
|
|
const char mask_fmtu[] = "mask.%u";
|
|
const char hits_fmt[] = "hits.%u";
|
|
const char flags_fmt[] = "flags.%u";
|
|
char tag[32];
|
|
u_char sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
|
|
int noisebits;
|
|
u_int32 noise;
|
|
u_int which;
|
|
u_int remaining;
|
|
sockaddr_u addr;
|
|
sockaddr_u mask;
|
|
const char * pch;
|
|
char * buf;
|
|
const char * match_str;
|
|
const char * access_str;
|
|
|
|
sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
|
|
remaining = COUNTOF(sent);
|
|
ZERO(sent);
|
|
noise = 0;
|
|
noisebits = 0;
|
|
while (remaining > 0) {
|
|
if (noisebits < 2) {
|
|
noise = rand() ^ (rand() << 16);
|
|
noisebits = 31;
|
|
}
|
|
which = (noise & 0x3) % COUNTOF(sent);
|
|
noise >>= 2;
|
|
noisebits -= 2;
|
|
|
|
while (sent[which])
|
|
which = (which + 1) % COUNTOF(sent);
|
|
|
|
switch (which) {
|
|
|
|
case 0:
|
|
snprintf(tag, sizeof(tag), addr_fmtu, idx);
|
|
pch = stoa(&addr);
|
|
ctl_putunqstr(tag, pch, strlen(pch));
|
|
break;
|
|
|
|
case 1:
|
|
snprintf(tag, sizeof(tag), mask_fmtu, idx);
|
|
pch = stoa(&mask);
|
|
ctl_putunqstr(tag, pch, strlen(pch));
|
|
break;
|
|
|
|
case 2:
|
|
snprintf(tag, sizeof(tag), hits_fmt, idx);
|
|
ctl_putuint(tag, pres->count);
|
|
break;
|
|
|
|
case 3:
|
|
snprintf(tag, sizeof(tag), flags_fmt, idx);
|
|
match_str = res_match_flags(pres->mflags);
|
|
access_str = res_access_flags(pres->flags);
|
|
if ('\0' == match_str[0]) {
|
|
pch = access_str;
|
|
} else {
|
|
LIB_GETBUF(buf);
|
|
snprintf(buf, LIB_BUFLENGTH, "%s %s",
|
|
match_str, access_str);
|
|
pch = buf;
|
|
}
|
|
ctl_putunqstr(tag, pch, strlen(pch));
|
|
break;
|
|
}
|
|
sent[which] = TRUE;
|
|
remaining--;
|
|
}
|
|
send_random_tag_value((int)idx);
|
|
}
|
|
|
|
|
|
static void
|
|
send_restrict_list(
|
|
restrict_u * pres,
|
|
int ipv6,
|
|
u_int * pidx
|
|
)
|
|
{
|
|
for ( ; pres != NULL; pres = pres->link) {
|
|
send_restrict_entry(pres, ipv6, *pidx);
|
|
(*pidx)++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* read_addr_restrictions - returns IPv4 and IPv6 access control lists
|
|
*/
|
|
static void
|
|
read_addr_restrictions(
|
|
struct recvbuf * rbufp
|
|
)
|
|
{
|
|
u_int idx;
|
|
|
|
idx = 0;
|
|
send_restrict_list(restrictlist4, FALSE, &idx);
|
|
send_restrict_list(restrictlist6, TRUE, &idx);
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
|
|
*/
|
|
static void
|
|
read_ordlist(
|
|
struct recvbuf * rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
const char ifstats_s[] = "ifstats";
|
|
const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
|
|
const char addr_rst_s[] = "addr_restrictions";
|
|
const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
|
|
struct ntp_control * cpkt;
|
|
u_short qdata_octets;
|
|
|
|
/*
|
|
* CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
|
|
* used only for ntpq -c ifstats. With the addition of reslist
|
|
* the same opcode was generalized to retrieve ordered lists
|
|
* which require authentication. The request data is empty or
|
|
* contains "ifstats" (not null terminated) to retrieve local
|
|
* addresses and associated stats. It is "addr_restrictions"
|
|
* to retrieve the IPv4 then IPv6 remote address restrictions,
|
|
* which are access control lists. Other request data return
|
|
* CERR_UNKNOWNVAR.
|
|
*/
|
|
cpkt = (struct ntp_control *)&rbufp->recv_pkt;
|
|
qdata_octets = ntohs(cpkt->count);
|
|
if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
|
|
!memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
|
|
read_ifstats(rbufp);
|
|
return;
|
|
}
|
|
if (a_r_chars == qdata_octets &&
|
|
!memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
|
|
read_addr_restrictions(rbufp);
|
|
return;
|
|
}
|
|
ctl_error(CERR_UNKNOWNVAR);
|
|
}
|
|
|
|
|
|
/*
|
|
* req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
|
|
*/
|
|
static void req_nonce(
|
|
struct recvbuf * rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
char buf[64];
|
|
|
|
generate_nonce(rbufp, buf, sizeof(buf));
|
|
ctl_putunqstr("nonce", buf, strlen(buf));
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* read_clockstatus - return clock radio status
|
|
*/
|
|
/*ARGSUSED*/
|
|
static void
|
|
read_clockstatus(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
#ifndef REFCLOCK
|
|
/*
|
|
* If no refclock support, no data to return
|
|
*/
|
|
ctl_error(CERR_BADASSOC);
|
|
#else
|
|
const struct ctl_var * v;
|
|
int i;
|
|
struct peer * peer;
|
|
char * valuep;
|
|
u_char * wants;
|
|
size_t wants_alloc;
|
|
int gotvar;
|
|
const u_char * cc;
|
|
struct ctl_var * kv;
|
|
struct refclockstat cs;
|
|
|
|
if (res_associd != 0) {
|
|
peer = findpeerbyassoc(res_associd);
|
|
} else {
|
|
/*
|
|
* Find a clock for this jerk. If the system peer
|
|
* is a clock use it, else search peer_list for one.
|
|
*/
|
|
if (sys_peer != NULL && (FLAG_REFCLOCK &
|
|
sys_peer->flags))
|
|
peer = sys_peer;
|
|
else
|
|
for (peer = peer_list;
|
|
peer != NULL;
|
|
peer = peer->p_link)
|
|
if (FLAG_REFCLOCK & peer->flags)
|
|
break;
|
|
}
|
|
if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
|
|
ctl_error(CERR_BADASSOC);
|
|
return;
|
|
}
|
|
/*
|
|
* If we got here we have a peer which is a clock. Get his
|
|
* status.
|
|
*/
|
|
cs.kv_list = NULL;
|
|
refclock_control(&peer->srcadr, NULL, &cs);
|
|
kv = cs.kv_list;
|
|
/*
|
|
* Look for variables in the packet.
|
|
*/
|
|
rpkt.status = htons(ctlclkstatus(&cs));
|
|
wants_alloc = CC_MAXCODE + 1 + count_var(kv);
|
|
wants = emalloc_zero(wants_alloc);
|
|
gotvar = FALSE;
|
|
while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
|
|
if (!(EOV & v->flags)) {
|
|
wants[v->code] = TRUE;
|
|
gotvar = TRUE;
|
|
} else {
|
|
v = ctl_getitem(kv, &valuep);
|
|
if (NULL == v) {
|
|
ctl_error(CERR_BADVALUE);
|
|
free(wants);
|
|
free_varlist(cs.kv_list);
|
|
return;
|
|
}
|
|
if (EOV & v->flags) {
|
|
ctl_error(CERR_UNKNOWNVAR);
|
|
free(wants);
|
|
free_varlist(cs.kv_list);
|
|
return;
|
|
}
|
|
wants[CC_MAXCODE + 1 + v->code] = TRUE;
|
|
gotvar = TRUE;
|
|
}
|
|
}
|
|
|
|
if (gotvar) {
|
|
for (i = 1; i <= CC_MAXCODE; i++)
|
|
if (wants[i])
|
|
ctl_putclock(i, &cs, TRUE);
|
|
if (kv != NULL)
|
|
for (i = 0; !(EOV & kv[i].flags); i++)
|
|
if (wants[i + CC_MAXCODE + 1])
|
|
ctl_putdata(kv[i].text,
|
|
strlen(kv[i].text),
|
|
FALSE);
|
|
} else {
|
|
for (cc = def_clock_var; *cc != 0; cc++)
|
|
ctl_putclock((int)*cc, &cs, FALSE);
|
|
for ( ; kv != NULL && !(EOV & kv->flags); kv++)
|
|
if (DEF & kv->flags)
|
|
ctl_putdata(kv->text, strlen(kv->text),
|
|
FALSE);
|
|
}
|
|
|
|
free(wants);
|
|
free_varlist(cs.kv_list);
|
|
|
|
ctl_flushpkt(0);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* write_clockstatus - we don't do this
|
|
*/
|
|
/*ARGSUSED*/
|
|
static void
|
|
write_clockstatus(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
ctl_error(CERR_PERMISSION);
|
|
}
|
|
|
|
/*
|
|
* Trap support from here on down. We send async trap messages when the
|
|
* upper levels report trouble. Traps can by set either by control
|
|
* messages or by configuration.
|
|
*/
|
|
/*
|
|
* set_trap - set a trap in response to a control message
|
|
*/
|
|
static void
|
|
set_trap(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
int traptype;
|
|
|
|
/*
|
|
* See if this guy is allowed
|
|
*/
|
|
if (restrict_mask & RES_NOTRAP) {
|
|
ctl_error(CERR_PERMISSION);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Determine his allowed trap type.
|
|
*/
|
|
traptype = TRAP_TYPE_PRIO;
|
|
if (restrict_mask & RES_LPTRAP)
|
|
traptype = TRAP_TYPE_NONPRIO;
|
|
|
|
/*
|
|
* Call ctlsettrap() to do the work. Return
|
|
* an error if it can't assign the trap.
|
|
*/
|
|
if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
|
|
(int)res_version))
|
|
ctl_error(CERR_NORESOURCE);
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* unset_trap - unset a trap in response to a control message
|
|
*/
|
|
static void
|
|
unset_trap(
|
|
struct recvbuf *rbufp,
|
|
int restrict_mask
|
|
)
|
|
{
|
|
int traptype;
|
|
|
|
/*
|
|
* We don't prevent anyone from removing his own trap unless the
|
|
* trap is configured. Note we also must be aware of the
|
|
* possibility that restriction flags were changed since this
|
|
* guy last set his trap. Set the trap type based on this.
|
|
*/
|
|
traptype = TRAP_TYPE_PRIO;
|
|
if (restrict_mask & RES_LPTRAP)
|
|
traptype = TRAP_TYPE_NONPRIO;
|
|
|
|
/*
|
|
* Call ctlclrtrap() to clear this out.
|
|
*/
|
|
if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
|
|
ctl_error(CERR_BADASSOC);
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctlsettrap - called to set a trap
|
|
*/
|
|
int
|
|
ctlsettrap(
|
|
sockaddr_u *raddr,
|
|
struct interface *linter,
|
|
int traptype,
|
|
int version
|
|
)
|
|
{
|
|
size_t n;
|
|
struct ctl_trap *tp;
|
|
struct ctl_trap *tptouse;
|
|
|
|
/*
|
|
* See if we can find this trap. If so, we only need update
|
|
* the flags and the time.
|
|
*/
|
|
if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
|
|
switch (traptype) {
|
|
|
|
case TRAP_TYPE_CONFIG:
|
|
tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
|
|
break;
|
|
|
|
case TRAP_TYPE_PRIO:
|
|
if (tp->tr_flags & TRAP_CONFIGURED)
|
|
return (1); /* don't change anything */
|
|
tp->tr_flags = TRAP_INUSE;
|
|
break;
|
|
|
|
case TRAP_TYPE_NONPRIO:
|
|
if (tp->tr_flags & TRAP_CONFIGURED)
|
|
return (1); /* don't change anything */
|
|
tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
|
|
break;
|
|
}
|
|
tp->tr_settime = current_time;
|
|
tp->tr_resets++;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* First we heard of this guy. Try to find a trap structure
|
|
* for him to use, clearing out lesser priority guys if we
|
|
* have to. Clear out anyone who's expired while we're at it.
|
|
*/
|
|
tptouse = NULL;
|
|
for (n = 0; n < COUNTOF(ctl_traps); n++) {
|
|
tp = &ctl_traps[n];
|
|
if ((TRAP_INUSE & tp->tr_flags) &&
|
|
!(TRAP_CONFIGURED & tp->tr_flags) &&
|
|
((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
|
|
tp->tr_flags = 0;
|
|
num_ctl_traps--;
|
|
}
|
|
if (!(TRAP_INUSE & tp->tr_flags)) {
|
|
tptouse = tp;
|
|
} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
|
|
switch (traptype) {
|
|
|
|
case TRAP_TYPE_CONFIG:
|
|
if (tptouse == NULL) {
|
|
tptouse = tp;
|
|
break;
|
|
}
|
|
if ((TRAP_NONPRIO & tptouse->tr_flags) &&
|
|
!(TRAP_NONPRIO & tp->tr_flags))
|
|
break;
|
|
|
|
if (!(TRAP_NONPRIO & tptouse->tr_flags)
|
|
&& (TRAP_NONPRIO & tp->tr_flags)) {
|
|
tptouse = tp;
|
|
break;
|
|
}
|
|
if (tptouse->tr_origtime <
|
|
tp->tr_origtime)
|
|
tptouse = tp;
|
|
break;
|
|
|
|
case TRAP_TYPE_PRIO:
|
|
if ( TRAP_NONPRIO & tp->tr_flags) {
|
|
if (tptouse == NULL ||
|
|
((TRAP_INUSE &
|
|
tptouse->tr_flags) &&
|
|
tptouse->tr_origtime <
|
|
tp->tr_origtime))
|
|
tptouse = tp;
|
|
}
|
|
break;
|
|
|
|
case TRAP_TYPE_NONPRIO:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we don't have room for him return an error.
|
|
*/
|
|
if (tptouse == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* Set up this structure for him.
|
|
*/
|
|
tptouse->tr_settime = tptouse->tr_origtime = current_time;
|
|
tptouse->tr_count = tptouse->tr_resets = 0;
|
|
tptouse->tr_sequence = 1;
|
|
tptouse->tr_addr = *raddr;
|
|
tptouse->tr_localaddr = linter;
|
|
tptouse->tr_version = (u_char) version;
|
|
tptouse->tr_flags = TRAP_INUSE;
|
|
if (traptype == TRAP_TYPE_CONFIG)
|
|
tptouse->tr_flags |= TRAP_CONFIGURED;
|
|
else if (traptype == TRAP_TYPE_NONPRIO)
|
|
tptouse->tr_flags |= TRAP_NONPRIO;
|
|
num_ctl_traps++;
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctlclrtrap - called to clear a trap
|
|
*/
|
|
int
|
|
ctlclrtrap(
|
|
sockaddr_u *raddr,
|
|
struct interface *linter,
|
|
int traptype
|
|
)
|
|
{
|
|
register struct ctl_trap *tp;
|
|
|
|
if ((tp = ctlfindtrap(raddr, linter)) == NULL)
|
|
return (0);
|
|
|
|
if (tp->tr_flags & TRAP_CONFIGURED
|
|
&& traptype != TRAP_TYPE_CONFIG)
|
|
return (0);
|
|
|
|
tp->tr_flags = 0;
|
|
num_ctl_traps--;
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* ctlfindtrap - find a trap given the remote and local addresses
|
|
*/
|
|
static struct ctl_trap *
|
|
ctlfindtrap(
|
|
sockaddr_u *raddr,
|
|
struct interface *linter
|
|
)
|
|
{
|
|
size_t n;
|
|
|
|
for (n = 0; n < COUNTOF(ctl_traps); n++)
|
|
if ((ctl_traps[n].tr_flags & TRAP_INUSE)
|
|
&& ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
|
|
&& (linter == ctl_traps[n].tr_localaddr))
|
|
return &ctl_traps[n];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* report_event - report an event to the trappers
|
|
*/
|
|
void
|
|
report_event(
|
|
int err, /* error code */
|
|
struct peer *peer, /* peer structure pointer */
|
|
const char *str /* protostats string */
|
|
)
|
|
{
|
|
char statstr[NTP_MAXSTRLEN];
|
|
int i;
|
|
size_t len;
|
|
|
|
/*
|
|
* Report the error to the protostats file, system log and
|
|
* trappers.
|
|
*/
|
|
if (peer == NULL) {
|
|
|
|
/*
|
|
* Discard a system report if the number of reports of
|
|
* the same type exceeds the maximum.
|
|
*/
|
|
if (ctl_sys_last_event != (u_char)err)
|
|
ctl_sys_num_events= 0;
|
|
if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
|
|
return;
|
|
|
|
ctl_sys_last_event = (u_char)err;
|
|
ctl_sys_num_events++;
|
|
snprintf(statstr, sizeof(statstr),
|
|
"0.0.0.0 %04x %02x %s",
|
|
ctlsysstatus(), err, eventstr(err));
|
|
if (str != NULL) {
|
|
len = strlen(statstr);
|
|
snprintf(statstr + len, sizeof(statstr) - len,
|
|
" %s", str);
|
|
}
|
|
NLOG(NLOG_SYSEVENT)
|
|
msyslog(LOG_INFO, "%s", statstr);
|
|
} else {
|
|
|
|
/*
|
|
* Discard a peer report if the number of reports of
|
|
* the same type exceeds the maximum for that peer.
|
|
*/
|
|
const char * src;
|
|
u_char errlast;
|
|
|
|
errlast = (u_char)err & ~PEER_EVENT;
|
|
if (peer->last_event == errlast)
|
|
peer->num_events = 0;
|
|
if (peer->num_events >= CTL_PEER_MAXEVENTS)
|
|
return;
|
|
|
|
peer->last_event = errlast;
|
|
peer->num_events++;
|
|
if (ISREFCLOCKADR(&peer->srcadr))
|
|
src = refnumtoa(&peer->srcadr);
|
|
else
|
|
src = stoa(&peer->srcadr);
|
|
|
|
snprintf(statstr, sizeof(statstr),
|
|
"%s %04x %02x %s", src,
|
|
ctlpeerstatus(peer), err, eventstr(err));
|
|
if (str != NULL) {
|
|
len = strlen(statstr);
|
|
snprintf(statstr + len, sizeof(statstr) - len,
|
|
" %s", str);
|
|
}
|
|
NLOG(NLOG_PEEREVENT)
|
|
msyslog(LOG_INFO, "%s", statstr);
|
|
}
|
|
record_proto_stats(statstr);
|
|
#if DEBUG
|
|
if (debug)
|
|
printf("event at %lu %s\n", current_time, statstr);
|
|
#endif
|
|
|
|
/*
|
|
* If no trappers, return.
|
|
*/
|
|
if (num_ctl_traps <= 0)
|
|
return;
|
|
|
|
/*
|
|
* Set up the outgoing packet variables
|
|
*/
|
|
res_opcode = CTL_OP_ASYNCMSG;
|
|
res_offset = 0;
|
|
res_async = TRUE;
|
|
res_authenticate = FALSE;
|
|
datapt = rpkt.u.data;
|
|
dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
|
|
if (!(err & PEER_EVENT)) {
|
|
rpkt.associd = 0;
|
|
rpkt.status = htons(ctlsysstatus());
|
|
|
|
/* Include the core system variables and the list. */
|
|
for (i = 1; i <= CS_VARLIST; i++)
|
|
ctl_putsys(i);
|
|
} else {
|
|
INSIST(peer != NULL);
|
|
rpkt.associd = htons(peer->associd);
|
|
rpkt.status = htons(ctlpeerstatus(peer));
|
|
|
|
/* Dump it all. Later, maybe less. */
|
|
for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
|
|
ctl_putpeer(i, peer);
|
|
#ifdef REFCLOCK
|
|
/*
|
|
* for clock exception events: add clock variables to
|
|
* reflect info on exception
|
|
*/
|
|
if (err == PEVNT_CLOCK) {
|
|
struct refclockstat cs;
|
|
struct ctl_var *kv;
|
|
|
|
cs.kv_list = NULL;
|
|
refclock_control(&peer->srcadr, NULL, &cs);
|
|
|
|
ctl_puthex("refclockstatus",
|
|
ctlclkstatus(&cs));
|
|
|
|
for (i = 1; i <= CC_MAXCODE; i++)
|
|
ctl_putclock(i, &cs, FALSE);
|
|
for (kv = cs.kv_list;
|
|
kv != NULL && !(EOV & kv->flags);
|
|
kv++)
|
|
if (DEF & kv->flags)
|
|
ctl_putdata(kv->text,
|
|
strlen(kv->text),
|
|
FALSE);
|
|
free_varlist(cs.kv_list);
|
|
}
|
|
#endif /* REFCLOCK */
|
|
}
|
|
|
|
/*
|
|
* We're done, return.
|
|
*/
|
|
ctl_flushpkt(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* mprintf_event - printf-style varargs variant of report_event()
|
|
*/
|
|
int
|
|
mprintf_event(
|
|
int evcode, /* event code */
|
|
struct peer * p, /* may be NULL */
|
|
const char * fmt, /* msnprintf format */
|
|
...
|
|
)
|
|
{
|
|
va_list ap;
|
|
int rc;
|
|
char msg[512];
|
|
|
|
va_start(ap, fmt);
|
|
rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
|
|
va_end(ap);
|
|
report_event(evcode, p, msg);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
* ctl_clr_stats - clear stat counters
|
|
*/
|
|
void
|
|
ctl_clr_stats(void)
|
|
{
|
|
ctltimereset = current_time;
|
|
numctlreq = 0;
|
|
numctlbadpkts = 0;
|
|
numctlresponses = 0;
|
|
numctlfrags = 0;
|
|
numctlerrors = 0;
|
|
numctlfrags = 0;
|
|
numctltooshort = 0;
|
|
numctlinputresp = 0;
|
|
numctlinputfrag = 0;
|
|
numctlinputerr = 0;
|
|
numctlbadoffset = 0;
|
|
numctlbadversion = 0;
|
|
numctldatatooshort = 0;
|
|
numctlbadop = 0;
|
|
numasyncmsgs = 0;
|
|
}
|
|
|
|
static u_short
|
|
count_var(
|
|
const struct ctl_var *k
|
|
)
|
|
{
|
|
u_int c;
|
|
|
|
if (NULL == k)
|
|
return 0;
|
|
|
|
c = 0;
|
|
while (!(EOV & (k++)->flags))
|
|
c++;
|
|
|
|
ENSURE(c <= USHRT_MAX);
|
|
return (u_short)c;
|
|
}
|
|
|
|
|
|
char *
|
|
add_var(
|
|
struct ctl_var **kv,
|
|
u_long size,
|
|
u_short def
|
|
)
|
|
{
|
|
u_short c;
|
|
struct ctl_var *k;
|
|
char * buf;
|
|
|
|
c = count_var(*kv);
|
|
*kv = erealloc(*kv, (c + 2) * sizeof(**kv));
|
|
k = *kv;
|
|
buf = emalloc(size);
|
|
k[c].code = c;
|
|
k[c].text = buf;
|
|
k[c].flags = def;
|
|
k[c + 1].code = 0;
|
|
k[c + 1].text = NULL;
|
|
k[c + 1].flags = EOV;
|
|
|
|
return buf;
|
|
}
|
|
|
|
|
|
void
|
|
set_var(
|
|
struct ctl_var **kv,
|
|
const char *data,
|
|
u_long size,
|
|
u_short def
|
|
)
|
|
{
|
|
struct ctl_var *k;
|
|
const char *s;
|
|
const char *t;
|
|
char *td;
|
|
|
|
if (NULL == data || !size)
|
|
return;
|
|
|
|
k = *kv;
|
|
if (k != NULL) {
|
|
while (!(EOV & k->flags)) {
|
|
if (NULL == k->text) {
|
|
td = emalloc(size);
|
|
memcpy(td, data, size);
|
|
k->text = td;
|
|
k->flags = def;
|
|
return;
|
|
} else {
|
|
s = data;
|
|
t = k->text;
|
|
while (*t != '=' && *s == *t) {
|
|
s++;
|
|
t++;
|
|
}
|
|
if (*s == *t && ((*t == '=') || !*t)) {
|
|
td = erealloc((void *)(intptr_t)k->text, size);
|
|
memcpy(td, data, size);
|
|
k->text = td;
|
|
k->flags = def;
|
|
return;
|
|
}
|
|
}
|
|
k++;
|
|
}
|
|
}
|
|
td = add_var(kv, size, def);
|
|
memcpy(td, data, size);
|
|
}
|
|
|
|
|
|
void
|
|
set_sys_var(
|
|
const char *data,
|
|
u_long size,
|
|
u_short def
|
|
)
|
|
{
|
|
set_var(&ext_sys_var, data, size, def);
|
|
}
|
|
|
|
|
|
/*
|
|
* get_ext_sys_var() retrieves the value of a user-defined variable or
|
|
* NULL if the variable has not been setvar'd.
|
|
*/
|
|
const char *
|
|
get_ext_sys_var(const char *tag)
|
|
{
|
|
struct ctl_var * v;
|
|
size_t c;
|
|
const char * val;
|
|
|
|
val = NULL;
|
|
c = strlen(tag);
|
|
for (v = ext_sys_var; !(EOV & v->flags); v++) {
|
|
if (NULL != v->text && !memcmp(tag, v->text, c)) {
|
|
if ('=' == v->text[c]) {
|
|
val = v->text + c + 1;
|
|
break;
|
|
} else if ('\0' == v->text[c]) {
|
|
val = "";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
|
|
void
|
|
free_varlist(
|
|
struct ctl_var *kv
|
|
)
|
|
{
|
|
struct ctl_var *k;
|
|
if (kv) {
|
|
for (k = kv; !(k->flags & EOV); k++)
|
|
free((void *)(intptr_t)k->text);
|
|
free((void *)kv);
|
|
}
|
|
}
|