dfd1f7fd50
Bump __FreeBSD_version accordingly.
542 lines
15 KiB
C
542 lines
15 KiB
C
/*
|
|
* Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/devicestat.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/conf.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#include <machine/atomic.h>
|
|
|
|
static int devstat_num_devs;
|
|
static long devstat_generation = 1;
|
|
static int devstat_version = DEVSTAT_VERSION;
|
|
static int devstat_current_devnumber;
|
|
static struct mtx devstat_mutex;
|
|
|
|
static struct devstatlist device_statq;
|
|
static struct devstat *devstat_alloc(void);
|
|
static void devstat_free(struct devstat *);
|
|
static void devstat_add_entry(struct devstat *ds, const void *dev_name,
|
|
int unit_number, u_int32_t block_size,
|
|
devstat_support_flags flags,
|
|
devstat_type_flags device_type,
|
|
devstat_priority priority);
|
|
|
|
/*
|
|
* Allocate a devstat and initialize it
|
|
*/
|
|
struct devstat *
|
|
devstat_new_entry(const void *dev_name,
|
|
int unit_number, u_int32_t block_size,
|
|
devstat_support_flags flags,
|
|
devstat_type_flags device_type,
|
|
devstat_priority priority)
|
|
{
|
|
struct devstat *ds;
|
|
static int once;
|
|
|
|
if (!once) {
|
|
STAILQ_INIT(&device_statq);
|
|
mtx_init(&devstat_mutex, "devstat", NULL, MTX_DEF);
|
|
once = 1;
|
|
}
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
|
|
ds = devstat_alloc();
|
|
mtx_lock(&devstat_mutex);
|
|
if (unit_number == -1) {
|
|
ds->id = dev_name;
|
|
binuptime(&ds->creation_time);
|
|
devstat_generation++;
|
|
} else {
|
|
devstat_add_entry(ds, dev_name, unit_number, block_size,
|
|
flags, device_type, priority);
|
|
}
|
|
mtx_unlock(&devstat_mutex);
|
|
return (ds);
|
|
}
|
|
|
|
/*
|
|
* Take a malloced and zeroed devstat structure given to us, fill it in
|
|
* and add it to the queue of devices.
|
|
*/
|
|
static void
|
|
devstat_add_entry(struct devstat *ds, const void *dev_name,
|
|
int unit_number, u_int32_t block_size,
|
|
devstat_support_flags flags,
|
|
devstat_type_flags device_type,
|
|
devstat_priority priority)
|
|
{
|
|
struct devstatlist *devstat_head;
|
|
struct devstat *ds_tmp;
|
|
|
|
mtx_assert(&devstat_mutex, MA_OWNED);
|
|
devstat_num_devs++;
|
|
|
|
devstat_head = &device_statq;
|
|
|
|
/*
|
|
* Priority sort. Each driver passes in its priority when it adds
|
|
* its devstat entry. Drivers are sorted first by priority, and
|
|
* then by probe order.
|
|
*
|
|
* For the first device, we just insert it, since the priority
|
|
* doesn't really matter yet. Subsequent devices are inserted into
|
|
* the list using the order outlined above.
|
|
*/
|
|
if (devstat_num_devs == 1)
|
|
STAILQ_INSERT_TAIL(devstat_head, ds, dev_links);
|
|
else {
|
|
STAILQ_FOREACH(ds_tmp, devstat_head, dev_links) {
|
|
struct devstat *ds_next;
|
|
|
|
ds_next = STAILQ_NEXT(ds_tmp, dev_links);
|
|
|
|
/*
|
|
* If we find a break between higher and lower
|
|
* priority items, and if this item fits in the
|
|
* break, insert it. This also applies if the
|
|
* "lower priority item" is the end of the list.
|
|
*/
|
|
if ((priority <= ds_tmp->priority)
|
|
&& ((ds_next == NULL)
|
|
|| (priority > ds_next->priority))) {
|
|
STAILQ_INSERT_AFTER(devstat_head, ds_tmp, ds,
|
|
dev_links);
|
|
break;
|
|
} else if (priority > ds_tmp->priority) {
|
|
/*
|
|
* If this is the case, we should be able
|
|
* to insert ourselves at the head of the
|
|
* list. If we can't, something is wrong.
|
|
*/
|
|
if (ds_tmp == STAILQ_FIRST(devstat_head)) {
|
|
STAILQ_INSERT_HEAD(devstat_head,
|
|
ds, dev_links);
|
|
break;
|
|
} else {
|
|
STAILQ_INSERT_TAIL(devstat_head,
|
|
ds, dev_links);
|
|
printf("devstat_add_entry: HELP! "
|
|
"sorting problem detected "
|
|
"for name %p unit %d\n",
|
|
dev_name, unit_number);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ds->device_number = devstat_current_devnumber++;
|
|
ds->unit_number = unit_number;
|
|
strlcpy(ds->device_name, dev_name, DEVSTAT_NAME_LEN);
|
|
ds->block_size = block_size;
|
|
ds->flags = flags;
|
|
ds->device_type = device_type;
|
|
ds->priority = priority;
|
|
binuptime(&ds->creation_time);
|
|
devstat_generation++;
|
|
}
|
|
|
|
/*
|
|
* Remove a devstat structure from the list of devices.
|
|
*/
|
|
void
|
|
devstat_remove_entry(struct devstat *ds)
|
|
{
|
|
struct devstatlist *devstat_head;
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
if (ds == NULL)
|
|
return;
|
|
|
|
mtx_lock(&devstat_mutex);
|
|
|
|
devstat_head = &device_statq;
|
|
|
|
/* Remove this entry from the devstat queue */
|
|
atomic_add_acq_int(&ds->sequence1, 1);
|
|
if (ds->id == NULL) {
|
|
devstat_num_devs--;
|
|
STAILQ_REMOVE(devstat_head, ds, devstat, dev_links);
|
|
}
|
|
devstat_free(ds);
|
|
devstat_generation++;
|
|
mtx_unlock(&devstat_mutex);
|
|
}
|
|
|
|
/*
|
|
* Record a transaction start.
|
|
*
|
|
* See comments for devstat_end_transaction(). Ordering is very important
|
|
* here.
|
|
*/
|
|
void
|
|
devstat_start_transaction(struct devstat *ds, struct bintime *now)
|
|
{
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
|
|
/* sanity check */
|
|
if (ds == NULL)
|
|
return;
|
|
|
|
atomic_add_acq_int(&ds->sequence1, 1);
|
|
/*
|
|
* We only want to set the start time when we are going from idle
|
|
* to busy. The start time is really the start of the latest busy
|
|
* period.
|
|
*/
|
|
if (ds->start_count == ds->end_count) {
|
|
if (now != NULL)
|
|
ds->busy_from = *now;
|
|
else
|
|
binuptime(&ds->busy_from);
|
|
}
|
|
ds->start_count++;
|
|
atomic_add_rel_int(&ds->sequence0, 1);
|
|
}
|
|
|
|
void
|
|
devstat_start_transaction_bio(struct devstat *ds, struct bio *bp)
|
|
{
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
|
|
/* sanity check */
|
|
if (ds == NULL)
|
|
return;
|
|
|
|
binuptime(&bp->bio_t0);
|
|
devstat_start_transaction(ds, &bp->bio_t0);
|
|
}
|
|
|
|
/*
|
|
* Record the ending of a transaction, and incrment the various counters.
|
|
*
|
|
* Ordering in this function, and in devstat_start_transaction() is VERY
|
|
* important. The idea here is to run without locks, so we are very
|
|
* careful to only modify some fields on the way "down" (i.e. at
|
|
* transaction start) and some fields on the way "up" (i.e. at transaction
|
|
* completion). One exception is busy_from, which we only modify in
|
|
* devstat_start_transaction() when there are no outstanding transactions,
|
|
* and thus it can't be modified in devstat_end_transaction()
|
|
* simultaneously.
|
|
*
|
|
* The sequence0 and sequence1 fields are provided to enable an application
|
|
* spying on the structures with mmap(2) to tell when a structure is in a
|
|
* consistent state or not.
|
|
*
|
|
* For this to work 100% reliably, it is important that the two fields
|
|
* are at opposite ends of the structure and that they are incremented
|
|
* in the opposite order of how a memcpy(3) in userland would copy them.
|
|
* We assume that the copying happens front to back, but there is actually
|
|
* no way short of writing your own memcpy(3) replacement to guarantee
|
|
* this will be the case.
|
|
*
|
|
* In addition to this, being a kind of locks, they must be updated with
|
|
* atomic instructions using appropriate memory barriers.
|
|
*/
|
|
void
|
|
devstat_end_transaction(struct devstat *ds, u_int32_t bytes,
|
|
devstat_tag_type tag_type, devstat_trans_flags flags,
|
|
struct bintime *now, struct bintime *then)
|
|
{
|
|
struct bintime dt, lnow;
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
|
|
/* sanity check */
|
|
if (ds == NULL)
|
|
return;
|
|
|
|
if (now == NULL) {
|
|
now = &lnow;
|
|
binuptime(now);
|
|
}
|
|
|
|
atomic_add_acq_int(&ds->sequence1, 1);
|
|
/* Update byte and operations counts */
|
|
ds->bytes[flags] += bytes;
|
|
ds->operations[flags]++;
|
|
|
|
/*
|
|
* Keep a count of the various tag types sent.
|
|
*/
|
|
if ((ds->flags & DEVSTAT_NO_ORDERED_TAGS) == 0 &&
|
|
tag_type != DEVSTAT_TAG_NONE)
|
|
ds->tag_types[tag_type]++;
|
|
|
|
if (then != NULL) {
|
|
/* Update duration of operations */
|
|
dt = *now;
|
|
bintime_sub(&dt, then);
|
|
bintime_add(&ds->duration[flags], &dt);
|
|
}
|
|
|
|
/* Accumulate busy time */
|
|
dt = *now;
|
|
bintime_sub(&dt, &ds->busy_from);
|
|
bintime_add(&ds->busy_time, &dt);
|
|
ds->busy_from = *now;
|
|
|
|
ds->end_count++;
|
|
atomic_add_rel_int(&ds->sequence0, 1);
|
|
}
|
|
|
|
void
|
|
devstat_end_transaction_bio(struct devstat *ds, struct bio *bp)
|
|
{
|
|
devstat_trans_flags flg;
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
|
|
/* sanity check */
|
|
if (ds == NULL)
|
|
return;
|
|
|
|
if (bp->bio_cmd == BIO_DELETE)
|
|
flg = DEVSTAT_FREE;
|
|
else if (bp->bio_cmd == BIO_READ)
|
|
flg = DEVSTAT_READ;
|
|
else if (bp->bio_cmd == BIO_WRITE)
|
|
flg = DEVSTAT_WRITE;
|
|
else
|
|
flg = DEVSTAT_NO_DATA;
|
|
|
|
devstat_end_transaction(ds, bp->bio_bcount - bp->bio_resid,
|
|
DEVSTAT_TAG_SIMPLE, flg, NULL, &bp->bio_t0);
|
|
}
|
|
|
|
/*
|
|
* This is the sysctl handler for the devstat package. The data pushed out
|
|
* on the kern.devstat.all sysctl variable consists of the current devstat
|
|
* generation number, and then an array of devstat structures, one for each
|
|
* device in the system.
|
|
*
|
|
* This is more cryptic that obvious, but basically we neither can nor
|
|
* want to hold the devstat_mutex for any amount of time, so we grab it
|
|
* only when we need to and keep an eye on devstat_generation all the time.
|
|
*/
|
|
static int
|
|
sysctl_devstat(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
long mygen;
|
|
struct devstat *nds;
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
|
|
/*
|
|
* XXX devstat_generation should really be "volatile" but that
|
|
* XXX freaks out the sysctl macro below. The places where we
|
|
* XXX change it and inspect it are bracketed in the mutex which
|
|
* XXX guarantees us proper write barriers. I don't belive the
|
|
* XXX compiler is allowed to optimize mygen away across calls
|
|
* XXX to other functions, so the following is belived to be safe.
|
|
*/
|
|
mygen = devstat_generation;
|
|
|
|
error = SYSCTL_OUT(req, &mygen, sizeof(mygen));
|
|
|
|
if (devstat_num_devs == 0)
|
|
return(0);
|
|
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
mtx_lock(&devstat_mutex);
|
|
nds = STAILQ_FIRST(&device_statq);
|
|
if (mygen != devstat_generation)
|
|
error = EBUSY;
|
|
mtx_unlock(&devstat_mutex);
|
|
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
for (;nds != NULL;) {
|
|
error = SYSCTL_OUT(req, nds, sizeof(struct devstat));
|
|
if (error != 0)
|
|
return (error);
|
|
mtx_lock(&devstat_mutex);
|
|
if (mygen != devstat_generation)
|
|
error = EBUSY;
|
|
else
|
|
nds = STAILQ_NEXT(nds, dev_links);
|
|
mtx_unlock(&devstat_mutex);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Sysctl entries for devstat. The first one is a node that all the rest
|
|
* hang off of.
|
|
*/
|
|
SYSCTL_NODE(_kern, OID_AUTO, devstat, CTLFLAG_RD, 0, "Device Statistics");
|
|
|
|
SYSCTL_PROC(_kern_devstat, OID_AUTO, all, CTLFLAG_RD|CTLTYPE_OPAQUE,
|
|
0, 0, sysctl_devstat, "S,devstat", "All devices in the devstat list");
|
|
/*
|
|
* Export the number of devices in the system so that userland utilities
|
|
* can determine how much memory to allocate to hold all the devices.
|
|
*/
|
|
SYSCTL_INT(_kern_devstat, OID_AUTO, numdevs, CTLFLAG_RD,
|
|
&devstat_num_devs, 0, "Number of devices in the devstat list");
|
|
SYSCTL_LONG(_kern_devstat, OID_AUTO, generation, CTLFLAG_RD,
|
|
&devstat_generation, 0, "Devstat list generation");
|
|
SYSCTL_INT(_kern_devstat, OID_AUTO, version, CTLFLAG_RD,
|
|
&devstat_version, 0, "Devstat list version number");
|
|
|
|
/*
|
|
* Allocator for struct devstat structures. We sub-allocate these from pages
|
|
* which we get from malloc. These pages are exported for mmap(2)'ing through
|
|
* a miniature device driver
|
|
*/
|
|
|
|
#define statsperpage (PAGE_SIZE / sizeof(struct devstat))
|
|
|
|
static d_mmap_t devstat_mmap;
|
|
|
|
static struct cdevsw devstat_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_flags = D_NEEDGIANT,
|
|
.d_mmap = devstat_mmap,
|
|
.d_name = "devstat",
|
|
};
|
|
|
|
struct statspage {
|
|
TAILQ_ENTRY(statspage) list;
|
|
struct devstat *stat;
|
|
u_int nfree;
|
|
};
|
|
|
|
static TAILQ_HEAD(, statspage) pagelist = TAILQ_HEAD_INITIALIZER(pagelist);
|
|
static MALLOC_DEFINE(M_DEVSTAT, "devstat", "Device statistics");
|
|
|
|
static int
|
|
devstat_mmap(struct cdev *dev, vm_offset_t offset, vm_paddr_t *paddr, int nprot)
|
|
{
|
|
struct statspage *spp;
|
|
|
|
if (nprot != VM_PROT_READ)
|
|
return (-1);
|
|
TAILQ_FOREACH(spp, &pagelist, list) {
|
|
if (offset == 0) {
|
|
*paddr = vtophys(spp->stat);
|
|
return (0);
|
|
}
|
|
offset -= PAGE_SIZE;
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
static struct devstat *
|
|
devstat_alloc(void)
|
|
{
|
|
struct devstat *dsp;
|
|
struct statspage *spp;
|
|
u_int u;
|
|
static int once;
|
|
|
|
mtx_assert(&devstat_mutex, MA_NOTOWNED);
|
|
if (!once) {
|
|
make_dev(&devstat_cdevsw, 0,
|
|
UID_ROOT, GID_WHEEL, 0400, DEVSTAT_DEVICE_NAME);
|
|
once = 1;
|
|
}
|
|
mtx_lock(&devstat_mutex);
|
|
for (;;) {
|
|
TAILQ_FOREACH(spp, &pagelist, list) {
|
|
if (spp->nfree > 0)
|
|
break;
|
|
}
|
|
if (spp != NULL)
|
|
break;
|
|
/*
|
|
* We had no free slot in any of our pages, drop the mutex
|
|
* and get another page. In theory we could have more than
|
|
* one process doing this at the same time and consequently
|
|
* we may allocate more pages than we will need. That is
|
|
* Just Too Bad[tm], we can live with that.
|
|
*/
|
|
mtx_unlock(&devstat_mutex);
|
|
spp = malloc(sizeof *spp, M_DEVSTAT, M_ZERO | M_WAITOK);
|
|
spp->stat = malloc(PAGE_SIZE, M_DEVSTAT, M_ZERO | M_WAITOK);
|
|
spp->nfree = statsperpage;
|
|
mtx_lock(&devstat_mutex);
|
|
/*
|
|
* It would make more sense to add the new page at the head
|
|
* but the order on the list determine the sequence of the
|
|
* mapping so we can't do that.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&pagelist, spp, list);
|
|
}
|
|
dsp = spp->stat;
|
|
for (u = 0; u < statsperpage; u++) {
|
|
if (dsp->allocated == 0)
|
|
break;
|
|
dsp++;
|
|
}
|
|
spp->nfree--;
|
|
dsp->allocated = 1;
|
|
mtx_unlock(&devstat_mutex);
|
|
return (dsp);
|
|
}
|
|
|
|
static void
|
|
devstat_free(struct devstat *dsp)
|
|
{
|
|
struct statspage *spp;
|
|
|
|
mtx_assert(&devstat_mutex, MA_OWNED);
|
|
bzero(dsp, sizeof *dsp);
|
|
TAILQ_FOREACH(spp, &pagelist, list) {
|
|
if (dsp >= spp->stat && dsp < (spp->stat + statsperpage)) {
|
|
spp->nfree++;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
SYSCTL_INT(_debug_sizeof, OID_AUTO, devstat, CTLFLAG_RD,
|
|
0, sizeof(struct devstat), "sizeof(struct devstat)");
|