freebsd-skq/sys/geom/raid/md_nvidia.c
mav a43d540d9e Add basic BIO_DELETE support to GEOM RAID class for all RAID levels.
If at least one subdisk in the volume supports it, BIO_DELETE requests
will be propagated down.  Unfortunatelly, for RAID levels with redundancy
unmapped blocks will be mapped back during first rebuild/resync process.

Sponsored by:	iXsystems, Inc.
MFC after:	1 month
2012-10-29 18:04:38 +00:00

1582 lines
44 KiB
C

/*-
* Copyright (c) 2011 Alexander Motin <mav@FreeBSD.org>
* Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <geom/geom.h>
#include "geom/raid/g_raid.h"
#include "g_raid_md_if.h"
static MALLOC_DEFINE(M_MD_NVIDIA, "md_nvidia_data", "GEOM_RAID NVIDIA metadata");
struct nvidia_raid_conf {
uint8_t nvidia_id[8];
#define NVIDIA_MAGIC "NVIDIA "
uint32_t config_size;
uint32_t checksum;
uint16_t version;
uint8_t disk_number;
uint8_t dummy_0;
uint32_t total_sectors;
uint32_t sector_size;
uint8_t name[16];
uint8_t revision[4];
uint32_t disk_status;
uint32_t magic_0;
#define NVIDIA_MAGIC0 0x00640044
uint64_t volume_id[2];
uint8_t state;
#define NVIDIA_S_IDLE 0
#define NVIDIA_S_INIT 2
#define NVIDIA_S_REBUILD 3
#define NVIDIA_S_UPGRADE 4
#define NVIDIA_S_SYNC 5
uint8_t array_width;
uint8_t total_disks;
uint8_t orig_array_width;
uint16_t type;
#define NVIDIA_T_RAID0 0x0080
#define NVIDIA_T_RAID1 0x0081
#define NVIDIA_T_RAID3 0x0083
#define NVIDIA_T_RAID5 0x0085 /* RLQ = 00/02? */
#define NVIDIA_T_RAID5_SYM 0x0095 /* RLQ = 03 */
#define NVIDIA_T_RAID10 0x008a
#define NVIDIA_T_RAID01 0x8180
#define NVIDIA_T_CONCAT 0x00ff
uint16_t dummy_3;
uint32_t strip_sectors;
uint32_t strip_bytes;
uint32_t strip_shift;
uint32_t strip_mask;
uint32_t stripe_sectors;
uint32_t stripe_bytes;
uint32_t rebuild_lba;
uint32_t orig_type;
uint32_t orig_total_sectors;
uint32_t status;
#define NVIDIA_S_BOOTABLE 0x00000001
#define NVIDIA_S_DEGRADED 0x00000002
uint32_t filler[98];
} __packed;
struct g_raid_md_nvidia_perdisk {
struct nvidia_raid_conf *pd_meta;
int pd_disk_pos;
off_t pd_disk_size;
};
struct g_raid_md_nvidia_object {
struct g_raid_md_object mdio_base;
uint64_t mdio_volume_id[2];
struct nvidia_raid_conf *mdio_meta;
struct callout mdio_start_co; /* STARTING state timer. */
int mdio_total_disks;
int mdio_disks_present;
int mdio_started;
int mdio_incomplete;
struct root_hold_token *mdio_rootmount; /* Root mount delay token. */
};
static g_raid_md_create_t g_raid_md_create_nvidia;
static g_raid_md_taste_t g_raid_md_taste_nvidia;
static g_raid_md_event_t g_raid_md_event_nvidia;
static g_raid_md_ctl_t g_raid_md_ctl_nvidia;
static g_raid_md_write_t g_raid_md_write_nvidia;
static g_raid_md_fail_disk_t g_raid_md_fail_disk_nvidia;
static g_raid_md_free_disk_t g_raid_md_free_disk_nvidia;
static g_raid_md_free_t g_raid_md_free_nvidia;
static kobj_method_t g_raid_md_nvidia_methods[] = {
KOBJMETHOD(g_raid_md_create, g_raid_md_create_nvidia),
KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_nvidia),
KOBJMETHOD(g_raid_md_event, g_raid_md_event_nvidia),
KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_nvidia),
KOBJMETHOD(g_raid_md_write, g_raid_md_write_nvidia),
KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_nvidia),
KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_nvidia),
KOBJMETHOD(g_raid_md_free, g_raid_md_free_nvidia),
{ 0, 0 }
};
static struct g_raid_md_class g_raid_md_nvidia_class = {
"NVIDIA",
g_raid_md_nvidia_methods,
sizeof(struct g_raid_md_nvidia_object),
.mdc_enable = 1,
.mdc_priority = 100
};
static int NVIDIANodeID = 1;
static void
g_raid_md_nvidia_print(struct nvidia_raid_conf *meta)
{
if (g_raid_debug < 1)
return;
printf("********* ATA NVIDIA RAID Metadata *********\n");
printf("nvidia_id <%.8s>\n", meta->nvidia_id);
printf("config_size %u\n", meta->config_size);
printf("checksum 0x%08x\n", meta->checksum);
printf("version 0x%04x\n", meta->version);
printf("disk_number %d\n", meta->disk_number);
printf("dummy_0 0x%02x\n", meta->dummy_0);
printf("total_sectors %u\n", meta->total_sectors);
printf("sector_size %u\n", meta->sector_size);
printf("name <%.16s>\n", meta->name);
printf("revision 0x%02x%02x%02x%02x\n",
meta->revision[0], meta->revision[1],
meta->revision[2], meta->revision[3]);
printf("disk_status 0x%08x\n", meta->disk_status);
printf("magic_0 0x%08x\n", meta->magic_0);
printf("volume_id 0x%016jx%016jx\n",
meta->volume_id[1], meta->volume_id[0]);
printf("state 0x%02x\n", meta->state);
printf("array_width %u\n", meta->array_width);
printf("total_disks %u\n", meta->total_disks);
printf("orig_array_width %u\n", meta->orig_array_width);
printf("type 0x%04x\n", meta->type);
printf("dummy_3 0x%04x\n", meta->dummy_3);
printf("strip_sectors %u\n", meta->strip_sectors);
printf("strip_bytes %u\n", meta->strip_bytes);
printf("strip_shift %u\n", meta->strip_shift);
printf("strip_mask 0x%08x\n", meta->strip_mask);
printf("stripe_sectors %u\n", meta->stripe_sectors);
printf("stripe_bytes %u\n", meta->stripe_bytes);
printf("rebuild_lba %u\n", meta->rebuild_lba);
printf("orig_type 0x%04x\n", meta->orig_type);
printf("orig_total_sectors %u\n", meta->orig_total_sectors);
printf("status 0x%08x\n", meta->status);
printf("=================================================\n");
}
static struct nvidia_raid_conf *
nvidia_meta_copy(struct nvidia_raid_conf *meta)
{
struct nvidia_raid_conf *nmeta;
nmeta = malloc(sizeof(*meta), M_MD_NVIDIA, M_WAITOK);
memcpy(nmeta, meta, sizeof(*meta));
return (nmeta);
}
static int
nvidia_meta_translate_disk(struct nvidia_raid_conf *meta, int md_disk_pos)
{
int disk_pos;
if (md_disk_pos >= 0 && meta->type == NVIDIA_T_RAID01) {
disk_pos = (md_disk_pos / meta->array_width) +
(md_disk_pos % meta->array_width) * meta->array_width;
} else
disk_pos = md_disk_pos;
return (disk_pos);
}
static void
nvidia_meta_get_name(struct nvidia_raid_conf *meta, char *buf)
{
int i;
strncpy(buf, meta->name, 16);
buf[16] = 0;
for (i = 15; i >= 0; i--) {
if (buf[i] > 0x20)
break;
buf[i] = 0;
}
}
static void
nvidia_meta_put_name(struct nvidia_raid_conf *meta, char *buf)
{
memset(meta->name, 0x20, 16);
memcpy(meta->name, buf, MIN(strlen(buf), 16));
}
static struct nvidia_raid_conf *
nvidia_meta_read(struct g_consumer *cp)
{
struct g_provider *pp;
struct nvidia_raid_conf *meta;
char *buf;
int error, i;
uint32_t checksum, *ptr;
pp = cp->provider;
/* Read the anchor sector. */
buf = g_read_data(cp,
pp->mediasize - 2 * pp->sectorsize, pp->sectorsize, &error);
if (buf == NULL) {
G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
pp->name, error);
return (NULL);
}
meta = malloc(sizeof(*meta), M_MD_NVIDIA, M_WAITOK);
memcpy(meta, buf, min(sizeof(*meta), pp->sectorsize));
g_free(buf);
/* Check if this is an NVIDIA RAID struct */
if (strncmp(meta->nvidia_id, NVIDIA_MAGIC, strlen(NVIDIA_MAGIC))) {
G_RAID_DEBUG(1, "NVIDIA signature check failed on %s", pp->name);
free(meta, M_MD_NVIDIA);
return (NULL);
}
if (meta->config_size > 128 ||
meta->config_size < 30) {
G_RAID_DEBUG(1, "NVIDIA metadata size looks wrong: %d",
meta->config_size);
free(meta, M_MD_NVIDIA);
return (NULL);
}
/* Check metadata checksum. */
for (checksum = 0, ptr = (uint32_t *)meta,
i = 0; i < meta->config_size; i++)
checksum += *ptr++;
if (checksum != 0) {
G_RAID_DEBUG(1, "NVIDIA checksum check failed on %s", pp->name);
free(meta, M_MD_NVIDIA);
return (NULL);
}
/* Check volume state. */
if (meta->state != NVIDIA_S_IDLE && meta->state != NVIDIA_S_INIT &&
meta->state != NVIDIA_S_REBUILD && meta->state != NVIDIA_S_SYNC) {
G_RAID_DEBUG(1, "NVIDIA unknown state on %s (0x%02x)",
pp->name, meta->state);
free(meta, M_MD_NVIDIA);
return (NULL);
}
/* Check raid type. */
if (meta->type != NVIDIA_T_RAID0 && meta->type != NVIDIA_T_RAID1 &&
meta->type != NVIDIA_T_RAID3 && meta->type != NVIDIA_T_RAID5 &&
meta->type != NVIDIA_T_RAID5_SYM &&
meta->type != NVIDIA_T_RAID01 && meta->type != NVIDIA_T_CONCAT) {
G_RAID_DEBUG(1, "NVIDIA unknown RAID level on %s (0x%02x)",
pp->name, meta->type);
free(meta, M_MD_NVIDIA);
return (NULL);
}
return (meta);
}
static int
nvidia_meta_write(struct g_consumer *cp, struct nvidia_raid_conf *meta)
{
struct g_provider *pp;
char *buf;
int error, i;
uint32_t checksum, *ptr;
pp = cp->provider;
/* Recalculate checksum for case if metadata were changed. */
meta->checksum = 0;
for (checksum = 0, ptr = (uint32_t *)meta,
i = 0; i < meta->config_size; i++)
checksum += *ptr++;
meta->checksum -= checksum;
/* Create and fill buffer. */
buf = malloc(pp->sectorsize, M_MD_NVIDIA, M_WAITOK | M_ZERO);
memcpy(buf, meta, sizeof(*meta));
/* Write metadata. */
error = g_write_data(cp,
pp->mediasize - 2 * pp->sectorsize, buf, pp->sectorsize);
if (error != 0) {
G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
pp->name, error);
}
free(buf, M_MD_NVIDIA);
return (error);
}
static int
nvidia_meta_erase(struct g_consumer *cp)
{
struct g_provider *pp;
char *buf;
int error;
pp = cp->provider;
buf = malloc(pp->sectorsize, M_MD_NVIDIA, M_WAITOK | M_ZERO);
error = g_write_data(cp,
pp->mediasize - 2 * pp->sectorsize, buf, pp->sectorsize);
if (error != 0) {
G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
pp->name, error);
}
free(buf, M_MD_NVIDIA);
return (error);
}
static struct g_raid_disk *
g_raid_md_nvidia_get_disk(struct g_raid_softc *sc, int id)
{
struct g_raid_disk *disk;
struct g_raid_md_nvidia_perdisk *pd;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data;
if (pd->pd_disk_pos == id)
break;
}
return (disk);
}
static int
g_raid_md_nvidia_supported(int level, int qual, int disks, int force)
{
switch (level) {
case G_RAID_VOLUME_RL_RAID0:
if (disks < 1)
return (0);
if (!force && (disks < 2 || disks > 6))
return (0);
break;
case G_RAID_VOLUME_RL_RAID1:
if (disks < 1)
return (0);
if (!force && (disks != 2))
return (0);
break;
case G_RAID_VOLUME_RL_RAID1E:
if (disks < 2)
return (0);
if (disks % 2 != 0)
return (0);
if (!force && (disks < 4))
return (0);
break;
case G_RAID_VOLUME_RL_SINGLE:
if (disks != 1)
return (0);
break;
case G_RAID_VOLUME_RL_CONCAT:
if (disks < 2)
return (0);
break;
case G_RAID_VOLUME_RL_RAID5:
if (disks < 3)
return (0);
if (qual != G_RAID_VOLUME_RLQ_R5LA &&
qual != G_RAID_VOLUME_RLQ_R5LS)
return (0);
break;
default:
return (0);
}
if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE)
return (0);
return (1);
}
static int
g_raid_md_nvidia_start_disk(struct g_raid_disk *disk)
{
struct g_raid_softc *sc;
struct g_raid_subdisk *sd, *tmpsd;
struct g_raid_disk *olddisk, *tmpdisk;
struct g_raid_md_object *md;
struct g_raid_md_nvidia_object *mdi;
struct g_raid_md_nvidia_perdisk *pd, *oldpd;
struct nvidia_raid_conf *meta;
int disk_pos, resurrection = 0;
sc = disk->d_softc;
md = sc->sc_md;
mdi = (struct g_raid_md_nvidia_object *)md;
meta = mdi->mdio_meta;
pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data;
olddisk = NULL;
/* Find disk position in metadata by it's serial. */
if (pd->pd_meta != NULL) {
disk_pos = pd->pd_meta->disk_number;
if (disk_pos >= meta->total_disks || mdi->mdio_started)
disk_pos = -3;
} else
disk_pos = -3;
/* For RAID0+1 we need to translate order. */
disk_pos = nvidia_meta_translate_disk(meta, disk_pos);
if (disk_pos < 0) {
G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk");
/* If we are in the start process, that's all for now. */
if (!mdi->mdio_started)
goto nofit;
/*
* If we have already started - try to get use of the disk.
* Try to replace OFFLINE disks first, then FAILED.
*/
TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) {
if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE &&
tmpdisk->d_state != G_RAID_DISK_S_FAILED)
continue;
/* Make sure this disk is big enough. */
TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) {
if (sd->sd_offset + sd->sd_size + 2 * 512 >
pd->pd_disk_size) {
G_RAID_DEBUG1(1, sc,
"Disk too small (%ju < %ju)",
pd->pd_disk_size,
sd->sd_offset + sd->sd_size + 512);
break;
}
}
if (sd != NULL)
continue;
if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) {
olddisk = tmpdisk;
break;
} else if (olddisk == NULL)
olddisk = tmpdisk;
}
if (olddisk == NULL) {
nofit:
g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
return (1);
}
oldpd = (struct g_raid_md_nvidia_perdisk *)olddisk->d_md_data;
disk_pos = oldpd->pd_disk_pos;
resurrection = 1;
}
if (olddisk == NULL) {
/* Find placeholder by position. */
olddisk = g_raid_md_nvidia_get_disk(sc, disk_pos);
if (olddisk == NULL)
panic("No disk at position %d!", disk_pos);
if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) {
G_RAID_DEBUG1(1, sc, "More then one disk for pos %d",
disk_pos);
g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE);
return (0);
}
oldpd = (struct g_raid_md_nvidia_perdisk *)olddisk->d_md_data;
}
/* Replace failed disk or placeholder with new disk. */
TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) {
TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next);
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
sd->sd_disk = disk;
}
oldpd->pd_disk_pos = -2;
pd->pd_disk_pos = disk_pos;
/* If it was placeholder -- destroy it. */
if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) {
g_raid_destroy_disk(olddisk);
} else {
/* Otherwise, make it STALE_FAILED. */
g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED);
}
/* Welcome the new disk. */
if (resurrection)
g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
else// if (pd->pd_meta->disk_status == NVIDIA_S_CURRENT ||
//pd->pd_meta->disk_status == NVIDIA_S_REBUILD)
g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
// else
// g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
/*
* Different disks may have different sizes,
* in concat mode. Update from real disk size.
*/
if (meta->type == NVIDIA_T_CONCAT)
sd->sd_size = pd->pd_disk_size - 0x800 * 512;
if (resurrection) {
/* New or ex-spare disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NEW);
} else if (meta->state == NVIDIA_S_REBUILD &&
(pd->pd_meta->disk_status & 0x100)) {
/* Rebuilding disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_REBUILD);
sd->sd_rebuild_pos = (off_t)pd->pd_meta->rebuild_lba /
meta->array_width * pd->pd_meta->sector_size;
} else if (meta->state == NVIDIA_S_SYNC) {
/* Resyncing/dirty disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_RESYNC);
sd->sd_rebuild_pos = (off_t)pd->pd_meta->rebuild_lba /
meta->array_width * pd->pd_meta->sector_size;
} else {
/* Up to date disk. */
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
}
g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
G_RAID_EVENT_SUBDISK);
}
/* Update status of our need for spare. */
if (mdi->mdio_started) {
mdi->mdio_incomplete =
(g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) <
mdi->mdio_total_disks);
}
return (resurrection);
}
static void
g_disk_md_nvidia_retaste(void *arg, int pending)
{
G_RAID_DEBUG(1, "Array is not complete, trying to retaste.");
g_retaste(&g_raid_class);
free(arg, M_MD_NVIDIA);
}
static void
g_raid_md_nvidia_refill(struct g_raid_softc *sc)
{
struct g_raid_md_object *md;
struct g_raid_md_nvidia_object *mdi;
struct g_raid_disk *disk;
struct task *task;
int update, na;
md = sc->sc_md;
mdi = (struct g_raid_md_nvidia_object *)md;
update = 0;
do {
/* Make sure we miss anything. */
na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE);
if (na == mdi->mdio_total_disks)
break;
G_RAID_DEBUG1(1, md->mdo_softc,
"Array is not complete (%d of %d), "
"trying to refill.", na, mdi->mdio_total_disks);
/* Try to get use some of STALE disks. */
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_RAID_DISK_S_STALE) {
update += g_raid_md_nvidia_start_disk(disk);
if (disk->d_state == G_RAID_DISK_S_ACTIVE)
break;
}
}
if (disk != NULL)
continue;
/* Try to get use some of SPARE disks. */
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_RAID_DISK_S_SPARE) {
update += g_raid_md_nvidia_start_disk(disk);
if (disk->d_state == G_RAID_DISK_S_ACTIVE)
break;
}
}
} while (disk != NULL);
/* Write new metadata if we changed something. */
if (update)
g_raid_md_write_nvidia(md, NULL, NULL, NULL);
/* Update status of our need for spare. */
mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) <
mdi->mdio_total_disks);
/* Request retaste hoping to find spare. */
if (mdi->mdio_incomplete) {
task = malloc(sizeof(struct task),
M_MD_NVIDIA, M_WAITOK | M_ZERO);
TASK_INIT(task, 0, g_disk_md_nvidia_retaste, task);
taskqueue_enqueue(taskqueue_swi, task);
}
}
static void
g_raid_md_nvidia_start(struct g_raid_softc *sc)
{
struct g_raid_md_object *md;
struct g_raid_md_nvidia_object *mdi;
struct g_raid_md_nvidia_perdisk *pd;
struct nvidia_raid_conf *meta;
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
off_t size;
int j, disk_pos;
char buf[17];
md = sc->sc_md;
mdi = (struct g_raid_md_nvidia_object *)md;
meta = mdi->mdio_meta;
/* Create volumes and subdisks. */
nvidia_meta_get_name(meta, buf);
vol = g_raid_create_volume(sc, buf, -1);
vol->v_mediasize = (off_t)meta->total_sectors * 512;
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
if (meta->type == NVIDIA_T_RAID0) {
vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
size = vol->v_mediasize / mdi->mdio_total_disks;
} else if (meta->type == NVIDIA_T_RAID1) {
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
size = vol->v_mediasize;
} else if (meta->type == NVIDIA_T_RAID01) {
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
size = vol->v_mediasize / (mdi->mdio_total_disks / 2);
} else if (meta->type == NVIDIA_T_CONCAT) {
if (mdi->mdio_total_disks == 1)
vol->v_raid_level = G_RAID_VOLUME_RL_SINGLE;
else
vol->v_raid_level = G_RAID_VOLUME_RL_CONCAT;
size = 0;
} else if (meta->type == NVIDIA_T_RAID5) {
vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA;
size = vol->v_mediasize / (mdi->mdio_total_disks - 1);
} else if (meta->type == NVIDIA_T_RAID5_SYM) {
vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LS;
size = vol->v_mediasize / (mdi->mdio_total_disks - 1);
} else {
vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
size = 0;
}
vol->v_strip_size = meta->strip_sectors * 512; //ZZZ
vol->v_disks_count = mdi->mdio_total_disks;
vol->v_sectorsize = 512; //ZZZ
for (j = 0; j < vol->v_disks_count; j++) {
sd = &vol->v_subdisks[j];
sd->sd_offset = 0;
sd->sd_size = size;
}
g_raid_start_volume(vol);
/* Create disk placeholders to store data for later writing. */
for (disk_pos = 0; disk_pos < mdi->mdio_total_disks; disk_pos++) {
pd = malloc(sizeof(*pd), M_MD_NVIDIA, M_WAITOK | M_ZERO);
pd->pd_disk_pos = disk_pos;
disk = g_raid_create_disk(sc);
disk->d_md_data = (void *)pd;
disk->d_state = G_RAID_DISK_S_OFFLINE;
sd = &vol->v_subdisks[disk_pos];
sd->sd_disk = disk;
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
}
/* Make all disks found till the moment take their places. */
do {
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_state == G_RAID_DISK_S_NONE) {
g_raid_md_nvidia_start_disk(disk);
break;
}
}
} while (disk != NULL);
mdi->mdio_started = 1;
G_RAID_DEBUG1(0, sc, "Array started.");
g_raid_md_write_nvidia(md, NULL, NULL, NULL);
/* Pickup any STALE/SPARE disks to refill array if needed. */
g_raid_md_nvidia_refill(sc);
g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME);
callout_stop(&mdi->mdio_start_co);
G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount);
root_mount_rel(mdi->mdio_rootmount);
mdi->mdio_rootmount = NULL;
}
static void
g_raid_md_nvidia_new_disk(struct g_raid_disk *disk)
{
struct g_raid_softc *sc;
struct g_raid_md_object *md;
struct g_raid_md_nvidia_object *mdi;
struct nvidia_raid_conf *pdmeta;
struct g_raid_md_nvidia_perdisk *pd;
sc = disk->d_softc;
md = sc->sc_md;
mdi = (struct g_raid_md_nvidia_object *)md;
pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data;
pdmeta = pd->pd_meta;
if (mdi->mdio_started) {
if (g_raid_md_nvidia_start_disk(disk))
g_raid_md_write_nvidia(md, NULL, NULL, NULL);
} else {
if (mdi->mdio_meta == NULL ||
mdi->mdio_meta->disk_number >= mdi->mdio_meta->total_disks) {
G_RAID_DEBUG1(1, sc, "Newer disk");
if (mdi->mdio_meta != NULL)
free(mdi->mdio_meta, M_MD_NVIDIA);
mdi->mdio_meta = nvidia_meta_copy(pdmeta);
mdi->mdio_total_disks = pdmeta->total_disks;
mdi->mdio_disks_present = 1;
} else if (pdmeta->disk_number < mdi->mdio_meta->total_disks) {
mdi->mdio_disks_present++;
G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
mdi->mdio_disks_present,
mdi->mdio_total_disks);
} else
G_RAID_DEBUG1(1, sc, "Spare disk");
/* If we collected all needed disks - start array. */
if (mdi->mdio_disks_present == mdi->mdio_total_disks)
g_raid_md_nvidia_start(sc);
}
}
static void
g_raid_nvidia_go(void *arg)
{
struct g_raid_softc *sc;
struct g_raid_md_object *md;
struct g_raid_md_nvidia_object *mdi;
sc = arg;
md = sc->sc_md;
mdi = (struct g_raid_md_nvidia_object *)md;
if (!mdi->mdio_started) {
G_RAID_DEBUG1(0, sc, "Force array start due to timeout.");
g_raid_event_send(sc, G_RAID_NODE_E_START, 0);
}
}
static int
g_raid_md_create_nvidia(struct g_raid_md_object *md, struct g_class *mp,
struct g_geom **gp)
{
struct g_raid_softc *sc;
struct g_raid_md_nvidia_object *mdi;
char name[32];
mdi = (struct g_raid_md_nvidia_object *)md;
arc4rand(&mdi->mdio_volume_id, 16, 0);
snprintf(name, sizeof(name), "NVIDIA-%d",
atomic_fetchadd_int(&NVIDIANodeID, 1));
sc = g_raid_create_node(mp, name, md);
if (sc == NULL)
return (G_RAID_MD_TASTE_FAIL);
md->mdo_softc = sc;
*gp = sc->sc_geom;
return (G_RAID_MD_TASTE_NEW);
}
static int
g_raid_md_taste_nvidia(struct g_raid_md_object *md, struct g_class *mp,
struct g_consumer *cp, struct g_geom **gp)
{
struct g_consumer *rcp;
struct g_provider *pp;
struct g_raid_md_nvidia_object *mdi, *mdi1;
struct g_raid_softc *sc;
struct g_raid_disk *disk;
struct nvidia_raid_conf *meta;
struct g_raid_md_nvidia_perdisk *pd;
struct g_geom *geom;
int result, spare, len;
char name[32];
uint16_t vendor;
G_RAID_DEBUG(1, "Tasting NVIDIA on %s", cp->provider->name);
mdi = (struct g_raid_md_nvidia_object *)md;
pp = cp->provider;
/* Read metadata from device. */
meta = NULL;
vendor = 0xffff;
if (g_access(cp, 1, 0, 0) != 0)
return (G_RAID_MD_TASTE_FAIL);
g_topology_unlock();
len = 2;
if (pp->geom->rank == 1)
g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
meta = nvidia_meta_read(cp);
g_topology_lock();
g_access(cp, -1, 0, 0);
if (meta == NULL) {
if (g_raid_aggressive_spare) {
if (vendor == 0x10de) {
G_RAID_DEBUG(1,
"No NVIDIA metadata, forcing spare.");
spare = 2;
goto search;
} else {
G_RAID_DEBUG(1,
"NVIDIA vendor mismatch 0x%04x != 0x10de",
vendor);
}
}
return (G_RAID_MD_TASTE_FAIL);
}
/* Metadata valid. Print it. */
g_raid_md_nvidia_print(meta);
G_RAID_DEBUG(1, "NVIDIA disk position %d", meta->disk_number);
spare = 0;//(meta->type == NVIDIA_T_SPARE) ? 1 : 0;
search:
/* Search for matching node. */
sc = NULL;
mdi1 = NULL;
LIST_FOREACH(geom, &mp->geom, geom) {
sc = geom->softc;
if (sc == NULL)
continue;
if (sc->sc_stopping != 0)
continue;
if (sc->sc_md->mdo_class != md->mdo_class)
continue;
mdi1 = (struct g_raid_md_nvidia_object *)sc->sc_md;
if (spare) {
if (mdi1->mdio_incomplete)
break;
} else {
if (memcmp(&mdi1->mdio_volume_id,
&meta->volume_id, 16) == 0)
break;
}
}
/* Found matching node. */
if (geom != NULL) {
G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
result = G_RAID_MD_TASTE_EXISTING;
} else if (spare) { /* Not found needy node -- left for later. */
G_RAID_DEBUG(1, "Spare is not needed at this time");
goto fail1;
} else { /* Not found matching node -- create one. */
result = G_RAID_MD_TASTE_NEW;
memcpy(&mdi->mdio_volume_id, &meta->volume_id, 16);
snprintf(name, sizeof(name), "NVIDIA-%d",
atomic_fetchadd_int(&NVIDIANodeID, 1));
sc = g_raid_create_node(mp, name, md);
md->mdo_softc = sc;
geom = sc->sc_geom;
callout_init(&mdi->mdio_start_co, 1);
callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz,
g_raid_nvidia_go, sc);
mdi->mdio_rootmount = root_mount_hold("GRAID-NVIDIA");
G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount);
}
rcp = g_new_consumer(geom);
g_attach(rcp, pp);
if (g_access(rcp, 1, 1, 1) != 0)
; //goto fail1;
g_topology_unlock();
sx_xlock(&sc->sc_lock);
pd = malloc(sizeof(*pd), M_MD_NVIDIA, M_WAITOK | M_ZERO);
pd->pd_meta = meta;
if (spare == 2) {
pd->pd_disk_pos = -3;
} else {
pd->pd_disk_pos = -1;
}
pd->pd_disk_size = pp->mediasize;
disk = g_raid_create_disk(sc);
disk->d_md_data = (void *)pd;
disk->d_consumer = rcp;
rcp->private = disk;
g_raid_get_disk_info(disk);
g_raid_md_nvidia_new_disk(disk);
sx_xunlock(&sc->sc_lock);
g_topology_lock();
*gp = geom;
return (result);
fail1:
free(meta, M_MD_NVIDIA);
return (G_RAID_MD_TASTE_FAIL);
}
static int
g_raid_md_event_nvidia(struct g_raid_md_object *md,
struct g_raid_disk *disk, u_int event)
{
struct g_raid_softc *sc;
struct g_raid_subdisk *sd;
struct g_raid_md_nvidia_object *mdi;
struct g_raid_md_nvidia_perdisk *pd;
sc = md->mdo_softc;
mdi = (struct g_raid_md_nvidia_object *)md;
if (disk == NULL) {
switch (event) {
case G_RAID_NODE_E_START:
if (!mdi->mdio_started) {
/* Bump volume ID to drop missing disks. */
arc4rand(&mdi->mdio_volume_id, 16, 0);
g_raid_md_nvidia_start(sc);
}
return (0);
}
return (-1);
}
pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data;
switch (event) {
case G_RAID_DISK_E_DISCONNECTED:
/* If disk was assigned, just update statuses. */
if (pd->pd_disk_pos >= 0) {
g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
if (disk->d_consumer) {
g_raid_kill_consumer(sc, disk->d_consumer);
disk->d_consumer = NULL;
}
TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NONE);
g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
G_RAID_EVENT_SUBDISK);
}
} else {
/* Otherwise -- delete. */
g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
g_raid_destroy_disk(disk);
}
if (mdi->mdio_started) {
/* Bump volume ID to prevent disk resurrection. */
if (pd->pd_disk_pos >= 0)
arc4rand(&mdi->mdio_volume_id, 16, 0);
/* Write updated metadata to all disks. */
g_raid_md_write_nvidia(md, NULL, NULL, NULL);
}
/* Check if anything left except placeholders. */
if (g_raid_ndisks(sc, -1) ==
g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
g_raid_destroy_node(sc, 0);
else
g_raid_md_nvidia_refill(sc);
return (0);
}
return (-2);
}
static int
g_raid_md_ctl_nvidia(struct g_raid_md_object *md,
struct gctl_req *req)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
struct g_raid_md_nvidia_object *mdi;
struct g_raid_md_nvidia_perdisk *pd;
struct g_consumer *cp;
struct g_provider *pp;
char arg[16];
const char *verb, *volname, *levelname, *diskname;
int *nargs, *force;
off_t size, sectorsize, strip, volsize;
intmax_t *sizearg, *striparg;
int numdisks, i, len, level, qual, update;
int error;
sc = md->mdo_softc;
mdi = (struct g_raid_md_nvidia_object *)md;
verb = gctl_get_param(req, "verb", NULL);
nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
error = 0;
if (strcmp(verb, "label") == 0) {
if (*nargs < 4) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
volname = gctl_get_asciiparam(req, "arg1");
if (volname == NULL) {
gctl_error(req, "No volume name.");
return (-2);
}
levelname = gctl_get_asciiparam(req, "arg2");
if (levelname == NULL) {
gctl_error(req, "No RAID level.");
return (-3);
}
if (strcasecmp(levelname, "RAID5") == 0)
levelname = "RAID5-LS";
if (g_raid_volume_str2level(levelname, &level, &qual)) {
gctl_error(req, "Unknown RAID level '%s'.", levelname);
return (-4);
}
numdisks = *nargs - 3;
force = gctl_get_paraml(req, "force", sizeof(*force));
if (!g_raid_md_nvidia_supported(level, qual, numdisks,
force ? *force : 0)) {
gctl_error(req, "Unsupported RAID level "
"(0x%02x/0x%02x), or number of disks (%d).",
level, qual, numdisks);
return (-5);
}
/* Search for disks, connect them and probe. */
size = 0x7fffffffffffffffllu;
sectorsize = 0;
for (i = 0; i < numdisks; i++) {
snprintf(arg, sizeof(arg), "arg%d", i + 3);
diskname = gctl_get_asciiparam(req, arg);
if (diskname == NULL) {
gctl_error(req, "No disk name (%s).", arg);
error = -6;
break;
}
if (strcmp(diskname, "NONE") == 0) {
cp = NULL;
pp = NULL;
} else {
g_topology_lock();
cp = g_raid_open_consumer(sc, diskname);
if (cp == NULL) {
gctl_error(req, "Can't open '%s'.",
diskname);
g_topology_unlock();
error = -7;
break;
}
pp = cp->provider;
}
pd = malloc(sizeof(*pd), M_MD_NVIDIA, M_WAITOK | M_ZERO);
pd->pd_disk_pos = i;
disk = g_raid_create_disk(sc);
disk->d_md_data = (void *)pd;
disk->d_consumer = cp;
if (cp == NULL)
continue;
cp->private = disk;
g_topology_unlock();
g_raid_get_disk_info(disk);
pd->pd_disk_size = pp->mediasize;
if (size > pp->mediasize)
size = pp->mediasize;
if (sectorsize < pp->sectorsize)
sectorsize = pp->sectorsize;
}
if (error != 0)
return (error);
if (sectorsize <= 0) {
gctl_error(req, "Can't get sector size.");
return (-8);
}
/* Reserve space for metadata. */
size -= 2 * sectorsize;
/* Handle size argument. */
len = sizeof(*sizearg);
sizearg = gctl_get_param(req, "size", &len);
if (sizearg != NULL && len == sizeof(*sizearg) &&
*sizearg > 0) {
if (*sizearg > size) {
gctl_error(req, "Size too big %lld > %lld.",
(long long)*sizearg, (long long)size);
return (-9);
}
size = *sizearg;
}
/* Handle strip argument. */
strip = 131072;
len = sizeof(*striparg);
striparg = gctl_get_param(req, "strip", &len);
if (striparg != NULL && len == sizeof(*striparg) &&
*striparg > 0) {
if (*striparg < sectorsize) {
gctl_error(req, "Strip size too small.");
return (-10);
}
if (*striparg % sectorsize != 0) {
gctl_error(req, "Incorrect strip size.");
return (-11);
}
if (strip > 65535 * sectorsize) {
gctl_error(req, "Strip size too big.");
return (-12);
}
strip = *striparg;
}
/* Round size down to strip or sector. */
if (level == G_RAID_VOLUME_RL_RAID1)
size -= (size % sectorsize);
else if (level == G_RAID_VOLUME_RL_RAID1E &&
(numdisks & 1) != 0)
size -= (size % (2 * strip));
else
size -= (size % strip);
if (size <= 0) {
gctl_error(req, "Size too small.");
return (-13);
}
if (level == G_RAID_VOLUME_RL_RAID0 ||
level == G_RAID_VOLUME_RL_CONCAT ||
level == G_RAID_VOLUME_RL_SINGLE)
volsize = size * numdisks;
else if (level == G_RAID_VOLUME_RL_RAID1)
volsize = size;
else if (level == G_RAID_VOLUME_RL_RAID5)
volsize = size * (numdisks - 1);
else { /* RAID1E */
volsize = ((size * numdisks) / strip / 2) *
strip;
}
if (volsize > 0xffffffffllu * sectorsize) {
gctl_error(req, "Size too big.");
return (-14);
}
/* We have all we need, create things: volume, ... */
mdi->mdio_total_disks = numdisks;
mdi->mdio_started = 1;
vol = g_raid_create_volume(sc, volname, -1);
vol->v_md_data = (void *)(intptr_t)0;
vol->v_raid_level = level;
vol->v_raid_level_qualifier = qual;
vol->v_strip_size = strip;
vol->v_disks_count = numdisks;
vol->v_mediasize = volsize;
vol->v_sectorsize = sectorsize;
g_raid_start_volume(vol);
/* , and subdisks. */
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data;
sd = &vol->v_subdisks[pd->pd_disk_pos];
sd->sd_disk = disk;
sd->sd_offset = 0;
sd->sd_size = size;
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
if (sd->sd_disk->d_consumer != NULL) {
g_raid_change_disk_state(disk,
G_RAID_DISK_S_ACTIVE);
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_ACTIVE);
g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
G_RAID_EVENT_SUBDISK);
} else {
g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
}
}
/* Write metadata based on created entities. */
G_RAID_DEBUG1(0, sc, "Array started.");
g_raid_md_write_nvidia(md, NULL, NULL, NULL);
/* Pickup any STALE/SPARE disks to refill array if needed. */
g_raid_md_nvidia_refill(sc);
g_raid_event_send(vol, G_RAID_VOLUME_E_START,
G_RAID_EVENT_VOLUME);
return (0);
}
if (strcmp(verb, "delete") == 0) {
/* Check if some volume is still open. */
force = gctl_get_paraml(req, "force", sizeof(*force));
if (force != NULL && *force == 0 &&
g_raid_nopens(sc) != 0) {
gctl_error(req, "Some volume is still open.");
return (-4);
}
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer)
nvidia_meta_erase(disk->d_consumer);
}
g_raid_destroy_node(sc, 0);
return (0);
}
if (strcmp(verb, "remove") == 0 ||
strcmp(verb, "fail") == 0) {
if (*nargs < 2) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
for (i = 1; i < *nargs; i++) {
snprintf(arg, sizeof(arg), "arg%d", i);
diskname = gctl_get_asciiparam(req, arg);
if (diskname == NULL) {
gctl_error(req, "No disk name (%s).", arg);
error = -2;
break;
}
if (strncmp(diskname, "/dev/", 5) == 0)
diskname += 5;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
if (disk->d_consumer != NULL &&
disk->d_consumer->provider != NULL &&
strcmp(disk->d_consumer->provider->name,
diskname) == 0)
break;
}
if (disk == NULL) {
gctl_error(req, "Disk '%s' not found.",
diskname);
error = -3;
break;
}
if (strcmp(verb, "fail") == 0) {
g_raid_md_fail_disk_nvidia(md, NULL, disk);
continue;
}
pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data;
/* Erase metadata on deleting disk. */
nvidia_meta_erase(disk->d_consumer);
/* If disk was assigned, just update statuses. */
if (pd->pd_disk_pos >= 0) {
g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
g_raid_kill_consumer(sc, disk->d_consumer);
disk->d_consumer = NULL;
TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_NONE);
g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
G_RAID_EVENT_SUBDISK);
}
} else {
/* Otherwise -- delete. */
g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
g_raid_destroy_disk(disk);
}
}
/* Write updated metadata to remaining disks. */
g_raid_md_write_nvidia(md, NULL, NULL, NULL);
/* Check if anything left except placeholders. */
if (g_raid_ndisks(sc, -1) ==
g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
g_raid_destroy_node(sc, 0);
else
g_raid_md_nvidia_refill(sc);
return (error);
}
if (strcmp(verb, "insert") == 0) {
if (*nargs < 2) {
gctl_error(req, "Invalid number of arguments.");
return (-1);
}
update = 0;
for (i = 1; i < *nargs; i++) {
/* Get disk name. */
snprintf(arg, sizeof(arg), "arg%d", i);
diskname = gctl_get_asciiparam(req, arg);
if (diskname == NULL) {
gctl_error(req, "No disk name (%s).", arg);
error = -3;
break;
}
/* Try to find provider with specified name. */
g_topology_lock();
cp = g_raid_open_consumer(sc, diskname);
if (cp == NULL) {
gctl_error(req, "Can't open disk '%s'.",
diskname);
g_topology_unlock();
error = -4;
break;
}
pp = cp->provider;
pd = malloc(sizeof(*pd), M_MD_NVIDIA, M_WAITOK | M_ZERO);
pd->pd_disk_pos = -3;
pd->pd_disk_size = pp->mediasize;
disk = g_raid_create_disk(sc);
disk->d_consumer = cp;
disk->d_md_data = (void *)pd;
cp->private = disk;
g_topology_unlock();
g_raid_get_disk_info(disk);
/* Welcome the "new" disk. */
update += g_raid_md_nvidia_start_disk(disk);
if (disk->d_state != G_RAID_DISK_S_SPARE &&
disk->d_state != G_RAID_DISK_S_ACTIVE) {
gctl_error(req, "Disk '%s' doesn't fit.",
diskname);
g_raid_destroy_disk(disk);
error = -8;
break;
}
}
/* Write new metadata if we changed something. */
if (update)
g_raid_md_write_nvidia(md, NULL, NULL, NULL);
return (error);
}
gctl_error(req, "Command '%s' is not supported.", verb);
return (-100);
}
static int
g_raid_md_write_nvidia(struct g_raid_md_object *md, struct g_raid_volume *tvol,
struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
{
struct g_raid_softc *sc;
struct g_raid_volume *vol;
struct g_raid_subdisk *sd;
struct g_raid_disk *disk;
struct g_raid_md_nvidia_object *mdi;
struct g_raid_md_nvidia_perdisk *pd;
struct nvidia_raid_conf *meta;
int i, spares;
sc = md->mdo_softc;
mdi = (struct g_raid_md_nvidia_object *)md;
if (sc->sc_stopping == G_RAID_DESTROY_HARD)
return (0);
/* There is only one volume. */
vol = TAILQ_FIRST(&sc->sc_volumes);
/* Fill global fields. */
meta = malloc(sizeof(*meta), M_MD_NVIDIA, M_WAITOK | M_ZERO);
if (mdi->mdio_meta)
memcpy(meta, mdi->mdio_meta, sizeof(*meta));
memcpy(meta->nvidia_id, NVIDIA_MAGIC, sizeof(NVIDIA_MAGIC) - 1);
meta->config_size = 30;
meta->version = 0x0064;
meta->total_sectors = vol->v_mediasize / vol->v_sectorsize;
meta->sector_size = vol->v_sectorsize;
nvidia_meta_put_name(meta, vol->v_name);
meta->magic_0 = NVIDIA_MAGIC0;
memcpy(&meta->volume_id, &mdi->mdio_volume_id, 16);
meta->state = NVIDIA_S_IDLE;
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
meta->array_width = 1;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
meta->array_width = vol->v_disks_count / 2;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
meta->array_width = vol->v_disks_count - 1;
else
meta->array_width = vol->v_disks_count;
meta->total_disks = vol->v_disks_count;
meta->orig_array_width = meta->array_width;
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
meta->type = NVIDIA_T_RAID0;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
meta->type = NVIDIA_T_RAID1;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
meta->type = NVIDIA_T_RAID01;
else if (vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT ||
vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE)
meta->type = NVIDIA_T_CONCAT;
else if (vol->v_raid_level_qualifier == G_RAID_VOLUME_RLQ_R5LA)
meta->type = NVIDIA_T_RAID5;
else
meta->type = NVIDIA_T_RAID5_SYM;
meta->strip_sectors = vol->v_strip_size / vol->v_sectorsize;
meta->strip_bytes = vol->v_strip_size;
meta->strip_shift = ffs(meta->strip_sectors) - 1;
meta->strip_mask = meta->strip_sectors - 1;
meta->stripe_sectors = meta->strip_sectors * meta->orig_array_width;
meta->stripe_bytes = meta->stripe_sectors * vol->v_sectorsize;
meta->rebuild_lba = 0;
meta->orig_type = meta->type;
meta->orig_total_sectors = meta->total_sectors;
meta->status = 0;
for (i = 0; i < vol->v_disks_count; i++) {
sd = &vol->v_subdisks[i];
if ((sd->sd_state == G_RAID_SUBDISK_S_STALE ||
sd->sd_state == G_RAID_SUBDISK_S_RESYNC ||
vol->v_dirty) &&
meta->state != NVIDIA_S_REBUILD)
meta->state = NVIDIA_S_SYNC;
else if (sd->sd_state == G_RAID_SUBDISK_S_NEW ||
sd->sd_state == G_RAID_SUBDISK_S_REBUILD)
meta->state = NVIDIA_S_REBUILD;
}
/* We are done. Print meta data and store them to disks. */
if (mdi->mdio_meta != NULL)
free(mdi->mdio_meta, M_MD_NVIDIA);
mdi->mdio_meta = meta;
spares = 0;
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data;
if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
disk->d_state != G_RAID_DISK_S_SPARE)
continue;
if (pd->pd_meta != NULL) {
free(pd->pd_meta, M_MD_NVIDIA);
pd->pd_meta = NULL;
}
pd->pd_meta = nvidia_meta_copy(meta);
if ((sd = TAILQ_FIRST(&disk->d_subdisks)) != NULL) {
/* For RAID0+1 we need to translate order. */
pd->pd_meta->disk_number =
nvidia_meta_translate_disk(meta, sd->sd_pos);
if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE) {
pd->pd_meta->disk_status = 0x100;
pd->pd_meta->rebuild_lba =
sd->sd_rebuild_pos / vol->v_sectorsize *
meta->array_width;
}
} else
pd->pd_meta->disk_number = meta->total_disks + spares++;
G_RAID_DEBUG(1, "Writing NVIDIA metadata to %s",
g_raid_get_diskname(disk));
g_raid_md_nvidia_print(pd->pd_meta);
nvidia_meta_write(disk->d_consumer, pd->pd_meta);
}
return (0);
}
static int
g_raid_md_fail_disk_nvidia(struct g_raid_md_object *md,
struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
{
struct g_raid_softc *sc;
struct g_raid_md_nvidia_perdisk *pd;
struct g_raid_subdisk *sd;
sc = md->mdo_softc;
pd = (struct g_raid_md_nvidia_perdisk *)tdisk->d_md_data;
/* We can't fail disk that is not a part of array now. */
if (pd->pd_disk_pos < 0)
return (-1);
/* Erase metadata to prevent disks's later resurrection. */
if (tdisk->d_consumer)
nvidia_meta_erase(tdisk->d_consumer);
/* Change states. */
g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
g_raid_change_subdisk_state(sd,
G_RAID_SUBDISK_S_FAILED);
g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
G_RAID_EVENT_SUBDISK);
}
/* Write updated metadata to remaining disks. */
g_raid_md_write_nvidia(md, NULL, NULL, tdisk);
/* Check if anything left except placeholders. */
if (g_raid_ndisks(sc, -1) ==
g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
g_raid_destroy_node(sc, 0);
else
g_raid_md_nvidia_refill(sc);
return (0);
}
static int
g_raid_md_free_disk_nvidia(struct g_raid_md_object *md,
struct g_raid_disk *disk)
{
struct g_raid_md_nvidia_perdisk *pd;
pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data;
if (pd->pd_meta != NULL) {
free(pd->pd_meta, M_MD_NVIDIA);
pd->pd_meta = NULL;
}
free(pd, M_MD_NVIDIA);
disk->d_md_data = NULL;
return (0);
}
static int
g_raid_md_free_nvidia(struct g_raid_md_object *md)
{
struct g_raid_md_nvidia_object *mdi;
mdi = (struct g_raid_md_nvidia_object *)md;
if (!mdi->mdio_started) {
mdi->mdio_started = 0;
callout_stop(&mdi->mdio_start_co);
G_RAID_DEBUG1(1, md->mdo_softc,
"root_mount_rel %p", mdi->mdio_rootmount);
root_mount_rel(mdi->mdio_rootmount);
mdi->mdio_rootmount = NULL;
}
if (mdi->mdio_meta != NULL) {
free(mdi->mdio_meta, M_MD_NVIDIA);
mdi->mdio_meta = NULL;
}
return (0);
}
G_RAID_MD_DECLARE(nvidia, "NVIDIA");