freebsd-skq/sys/mips/cavium/octopci.c
Pedro F. Giffuni 19d3b47b92 sys/mips: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 15:07:26 +00:00

995 lines
25 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2010-2011 Juli Mallett <jmallett@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/interrupt.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <contrib/octeon-sdk/cvmx.h>
#include <mips/cavium/octeon_irq.h>
#include <contrib/octeon-sdk/cvmx-pcie.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcib_private.h>
#include <mips/cavium/octopcireg.h>
#include <mips/cavium/octopcivar.h>
#include "pcib_if.h"
#define NPI_WRITE(addr, value) cvmx_write64_uint32((addr) ^ 4, (value))
#define NPI_READ(addr) cvmx_read64_uint32((addr) ^ 4)
struct octopci_softc {
device_t sc_dev;
unsigned sc_domain;
unsigned sc_bus;
bus_addr_t sc_io_base;
unsigned sc_io_next;
struct rman sc_io;
bus_addr_t sc_mem1_base;
unsigned sc_mem1_next;
struct rman sc_mem1;
};
static void octopci_identify(driver_t *, device_t);
static int octopci_probe(device_t);
static int octopci_attach(device_t);
static int octopci_read_ivar(device_t, device_t, int,
uintptr_t *);
static struct resource *octopci_alloc_resource(device_t, device_t, int, int *,
rman_res_t, rman_res_t,
rman_res_t, u_int);
static int octopci_activate_resource(device_t, device_t, int, int,
struct resource *);
static int octopci_maxslots(device_t);
static uint32_t octopci_read_config(device_t, u_int, u_int, u_int, u_int, int);
static void octopci_write_config(device_t, u_int, u_int, u_int, u_int,
uint32_t, int);
static int octopci_route_interrupt(device_t, device_t, int);
static unsigned octopci_init_bar(device_t, unsigned, unsigned, unsigned, unsigned, uint8_t *);
static unsigned octopci_init_device(device_t, unsigned, unsigned, unsigned, unsigned);
static unsigned octopci_init_bus(device_t, unsigned);
static void octopci_init_pci(device_t);
static uint64_t octopci_cs_addr(unsigned, unsigned, unsigned, unsigned);
static void
octopci_identify(driver_t *drv, device_t parent)
{
BUS_ADD_CHILD(parent, 0, "pcib", 0);
if (octeon_has_feature(OCTEON_FEATURE_PCIE))
BUS_ADD_CHILD(parent, 0, "pcib", 1);
}
static int
octopci_probe(device_t dev)
{
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
device_set_desc(dev, "Cavium Octeon PCIe bridge");
return (0);
}
/* Check whether we are a PCI host. */
if ((cvmx_sysinfo_get()->bootloader_config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST) == 0)
return (ENXIO);
if (device_get_unit(dev) != 0)
return (ENXIO);
device_set_desc(dev, "Cavium Octeon PCI bridge");
return (0);
}
static int
octopci_attach(device_t dev)
{
struct octopci_softc *sc;
unsigned subbus;
int error;
sc = device_get_softc(dev);
sc->sc_dev = dev;
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
sc->sc_domain = device_get_unit(dev);
error = cvmx_pcie_rc_initialize(sc->sc_domain);
if (error != 0) {
device_printf(dev, "Failed to put PCIe bus in host mode.\n");
return (ENXIO);
}
/*
* In RC mode, the Simple Executive programs the first bus to
* be numbered as bus 1, because some IDT bridges used in
* Octeon systems object to being attached to bus 0.
*/
sc->sc_bus = 1;
sc->sc_io_base = CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address(sc->sc_domain));
sc->sc_io.rm_descr = "Cavium Octeon PCIe I/O Ports";
sc->sc_mem1_base = CVMX_ADD_IO_SEG(cvmx_pcie_get_mem_base_address(sc->sc_domain));
sc->sc_mem1.rm_descr = "Cavium Octeon PCIe Memory";
} else {
octopci_init_pci(dev);
sc->sc_domain = 0;
sc->sc_bus = 0;
sc->sc_io_base = CVMX_ADDR_DID(CVMX_FULL_DID(CVMX_OCT_DID_PCI, CVMX_OCT_SUBDID_PCI_IO));
sc->sc_io.rm_descr = "Cavium Octeon PCI I/O Ports";
sc->sc_mem1_base = CVMX_ADDR_DID(CVMX_FULL_DID(CVMX_OCT_DID_PCI, CVMX_OCT_SUBDID_PCI_MEM1));
sc->sc_mem1.rm_descr = "Cavium Octeon PCI Memory";
}
sc->sc_io.rm_type = RMAN_ARRAY;
error = rman_init(&sc->sc_io);
if (error != 0)
return (error);
error = rman_manage_region(&sc->sc_io, CVMX_OCT_PCI_IO_BASE,
CVMX_OCT_PCI_IO_BASE + CVMX_OCT_PCI_IO_SIZE);
if (error != 0)
return (error);
sc->sc_mem1.rm_type = RMAN_ARRAY;
error = rman_init(&sc->sc_mem1);
if (error != 0)
return (error);
error = rman_manage_region(&sc->sc_mem1, CVMX_OCT_PCI_MEM1_BASE,
CVMX_OCT_PCI_MEM1_BASE + CVMX_OCT_PCI_MEM1_SIZE);
if (error != 0)
return (error);
/*
* Next offsets for resource allocation in octopci_init_bar.
*/
sc->sc_io_next = 0;
sc->sc_mem1_next = 0;
/*
* Configure devices.
*/
octopci_write_config(dev, sc->sc_bus, 0, 0, PCIR_SUBBUS_1, 0xff, 1);
subbus = octopci_init_bus(dev, sc->sc_bus);
octopci_write_config(dev, sc->sc_bus, 0, 0, PCIR_SUBBUS_1, subbus, 1);
device_add_child(dev, "pci", -1);
return (bus_generic_attach(dev));
}
static int
octopci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct octopci_softc *sc;
sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_DOMAIN:
*result = sc->sc_domain;
return (0);
case PCIB_IVAR_BUS:
*result = sc->sc_bus;
return (0);
}
return (ENOENT);
}
static struct resource *
octopci_alloc_resource(device_t bus, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct octopci_softc *sc;
struct resource *res;
struct rman *rm;
int error;
sc = device_get_softc(bus);
switch (type) {
case SYS_RES_IRQ:
res = bus_generic_alloc_resource(bus, child, type, rid, start,
end, count, flags);
if (res != NULL)
return (res);
return (NULL);
case SYS_RES_MEMORY:
rm = &sc->sc_mem1;
break;
case SYS_RES_IOPORT:
rm = &sc->sc_io;
break;
default:
return (NULL);
}
res = rman_reserve_resource(rm, start, end, count, flags, child);
if (res == NULL)
return (NULL);
rman_set_rid(res, *rid);
rman_set_bustag(res, octopci_bus_space);
switch (type) {
case SYS_RES_MEMORY:
rman_set_bushandle(res, sc->sc_mem1_base + rman_get_start(res));
break;
case SYS_RES_IOPORT:
rman_set_bushandle(res, sc->sc_io_base + rman_get_start(res));
#if __mips_n64
rman_set_virtual(res, (void *)rman_get_bushandle(res));
#else
/*
* XXX
* We can't access ports via a 32-bit pointer.
*/
rman_set_virtual(res, NULL);
#endif
break;
}
if ((flags & RF_ACTIVE) != 0) {
error = bus_activate_resource(child, type, *rid, res);
if (error != 0) {
rman_release_resource(res);
return (NULL);
}
}
return (res);
}
static int
octopci_activate_resource(device_t bus, device_t child, int type, int rid,
struct resource *res)
{
bus_space_handle_t bh;
int error;
switch (type) {
case SYS_RES_IRQ:
error = bus_generic_activate_resource(bus, child, type, rid,
res);
if (error != 0)
return (error);
return (0);
case SYS_RES_MEMORY:
case SYS_RES_IOPORT:
error = bus_space_map(rman_get_bustag(res),
rman_get_bushandle(res), rman_get_size(res), 0, &bh);
if (error != 0)
return (error);
rman_set_bushandle(res, bh);
break;
default:
return (ENXIO);
}
error = rman_activate_resource(res);
if (error != 0)
return (error);
return (0);
}
static int
octopci_maxslots(device_t dev)
{
return (PCI_SLOTMAX);
}
static uint32_t
octopci_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg,
int bytes)
{
struct octopci_softc *sc;
uint64_t addr;
uint32_t data;
sc = device_get_softc(dev);
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
if (bus == 0 && slot == 0 && func == 0)
return ((uint32_t)-1);
switch (bytes) {
case 4:
return (cvmx_pcie_config_read32(sc->sc_domain, bus, slot, func, reg));
case 2:
return (cvmx_pcie_config_read16(sc->sc_domain, bus, slot, func, reg));
case 1:
return (cvmx_pcie_config_read8(sc->sc_domain, bus, slot, func, reg));
default:
return ((uint32_t)-1);
}
}
addr = octopci_cs_addr(bus, slot, func, reg);
switch (bytes) {
case 4:
data = le32toh(cvmx_read64_uint32(addr));
return (data);
case 2:
data = le16toh(cvmx_read64_uint16(addr));
return (data);
case 1:
data = cvmx_read64_uint8(addr);
return (data);
default:
return ((uint32_t)-1);
}
}
static void
octopci_write_config(device_t dev, u_int bus, u_int slot, u_int func,
u_int reg, uint32_t data, int bytes)
{
struct octopci_softc *sc;
uint64_t addr;
sc = device_get_softc(dev);
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
switch (bytes) {
case 4:
cvmx_pcie_config_write32(sc->sc_domain, bus, slot, func, reg, data);
return;
case 2:
cvmx_pcie_config_write16(sc->sc_domain, bus, slot, func, reg, data);
return;
case 1:
cvmx_pcie_config_write8(sc->sc_domain, bus, slot, func, reg, data);
return;
default:
return;
}
}
addr = octopci_cs_addr(bus, slot, func, reg);
switch (bytes) {
case 4:
cvmx_write64_uint32(addr, htole32(data));
return;
case 2:
cvmx_write64_uint16(addr, htole16(data));
return;
case 1:
cvmx_write64_uint8(addr, data);
return;
default:
return;
}
}
static int
octopci_route_interrupt(device_t dev, device_t child, int pin)
{
struct octopci_softc *sc;
unsigned bus, slot, func;
unsigned irq;
sc = device_get_softc(dev);
if (octeon_has_feature(OCTEON_FEATURE_PCIE))
return (OCTEON_IRQ_PCI_INT0 + pin - 1);
bus = pci_get_bus(child);
slot = pci_get_slot(child);
func = pci_get_function(child);
/*
* Board types we have to know at compile-time.
*/
#if defined(OCTEON_BOARD_CAPK_0100ND)
if (bus == 0 && slot == 12 && func == 0)
return (OCTEON_IRQ_PCI_INT2);
#endif
/*
* For board types we can determine at runtime.
*/
switch (cvmx_sysinfo_get()->board_type) {
#if defined(OCTEON_VENDOR_LANNER)
case CVMX_BOARD_TYPE_CUST_LANNER_MR955:
return (OCTEON_IRQ_PCI_INT0 + pin - 1);
case CVMX_BOARD_TYPE_CUST_LANNER_MR320:
if (slot < 32) {
if (slot == 3 || slot == 9)
irq = pin;
else
irq = pin - 1;
return (OCTEON_IRQ_PCI_INT0 + (irq & 3));
}
break;
#endif
default:
break;
}
irq = slot + pin - 3;
return (OCTEON_IRQ_PCI_INT0 + (irq & 3));
}
static unsigned
octopci_init_bar(device_t dev, unsigned b, unsigned s, unsigned f, unsigned barnum, uint8_t *commandp)
{
struct octopci_softc *sc;
uint64_t bar;
unsigned size;
int barsize;
sc = device_get_softc(dev);
octopci_write_config(dev, b, s, f, PCIR_BAR(barnum), 0xffffffff, 4);
bar = octopci_read_config(dev, b, s, f, PCIR_BAR(barnum), 4);
if (bar == 0) {
/* Bar not implemented; got to next bar. */
return (barnum + 1);
}
if (PCI_BAR_IO(bar)) {
size = ~(bar & PCIM_BAR_IO_BASE) + 1;
sc->sc_io_next = roundup2(sc->sc_io_next, size);
if (sc->sc_io_next + size > CVMX_OCT_PCI_IO_SIZE) {
device_printf(dev, "%02x.%02x:%02x: no ports for BAR%u.\n",
b, s, f, barnum);
return (barnum + 1);
}
octopci_write_config(dev, b, s, f, PCIR_BAR(barnum),
CVMX_OCT_PCI_IO_BASE + sc->sc_io_next, 4);
sc->sc_io_next += size;
/*
* Enable I/O ports.
*/
*commandp |= PCIM_CMD_PORTEN;
return (barnum + 1);
} else {
if (PCIR_BAR(barnum) == PCIR_BIOS) {
/*
* ROM BAR is always 32-bit.
*/
barsize = 1;
} else {
switch (bar & PCIM_BAR_MEM_TYPE) {
case PCIM_BAR_MEM_64:
/*
* XXX
* High 32 bits are all zeroes for now.
*/
octopci_write_config(dev, b, s, f, PCIR_BAR(barnum + 1), 0, 4);
barsize = 2;
break;
default:
barsize = 1;
break;
}
}
size = ~(bar & (uint32_t)PCIM_BAR_MEM_BASE) + 1;
sc->sc_mem1_next = roundup2(sc->sc_mem1_next, size);
if (sc->sc_mem1_next + size > CVMX_OCT_PCI_MEM1_SIZE) {
device_printf(dev, "%02x.%02x:%02x: no memory for BAR%u.\n",
b, s, f, barnum);
return (barnum + barsize);
}
octopci_write_config(dev, b, s, f, PCIR_BAR(barnum),
CVMX_OCT_PCI_MEM1_BASE + sc->sc_mem1_next, 4);
sc->sc_mem1_next += size;
/*
* Enable memory access.
*/
*commandp |= PCIM_CMD_MEMEN;
return (barnum + barsize);
}
}
static unsigned
octopci_init_device(device_t dev, unsigned b, unsigned s, unsigned f, unsigned secbus)
{
unsigned barnum, bars;
uint8_t brctl;
uint8_t class, subclass;
uint8_t command;
uint8_t hdrtype;
/* Read header type (again.) */
hdrtype = octopci_read_config(dev, b, s, f, PCIR_HDRTYPE, 1);
/*
* Disable memory and I/O while programming BARs.
*/
command = octopci_read_config(dev, b, s, f, PCIR_COMMAND, 1);
command &= ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN);
octopci_write_config(dev, b, s, f, PCIR_COMMAND, command, 1);
DELAY(10000);
/* Program BARs. */
switch (hdrtype & PCIM_HDRTYPE) {
case PCIM_HDRTYPE_NORMAL:
bars = 6;
break;
case PCIM_HDRTYPE_BRIDGE:
bars = 2;
break;
case PCIM_HDRTYPE_CARDBUS:
bars = 0;
break;
default:
device_printf(dev, "%02x.%02x:%02x: invalid header type %#x\n",
b, s, f, hdrtype);
return (secbus);
}
barnum = 0;
while (barnum < bars)
barnum = octopci_init_bar(dev, b, s, f, barnum, &command);
/* Enable bus mastering. */
command |= PCIM_CMD_BUSMASTEREN;
/* Enable whatever facilities the BARs require. */
octopci_write_config(dev, b, s, f, PCIR_COMMAND, command, 1);
DELAY(10000);
/*
* Set cache line size. On Octeon it should be 128 bytes,
* but according to Linux some Intel bridges have trouble
* with values over 64 bytes, so use 64 bytes.
*/
octopci_write_config(dev, b, s, f, PCIR_CACHELNSZ, 16, 1);
/* Set latency timer. */
octopci_write_config(dev, b, s, f, PCIR_LATTIMER, 48, 1);
/* Board-specific or device-specific fixups and workarounds. */
switch (cvmx_sysinfo_get()->board_type) {
#if defined(OCTEON_VENDOR_LANNER)
case CVMX_BOARD_TYPE_CUST_LANNER_MR955:
if (b == 1 && s == 7 && f == 0) {
bus_addr_t busaddr, unitbusaddr;
uint32_t bar;
uint32_t tmp;
unsigned unit;
/*
* Set Tx DMA power.
*/
bar = octopci_read_config(dev, b, s, f,
PCIR_BAR(3), 4);
busaddr = CVMX_ADDR_DID(CVMX_FULL_DID(CVMX_OCT_DID_PCI,
CVMX_OCT_SUBDID_PCI_MEM1));
busaddr += (bar & (uint32_t)PCIM_BAR_MEM_BASE);
for (unit = 0; unit < 4; unit++) {
unitbusaddr = busaddr + 0x430 + (unit << 8);
tmp = le32toh(cvmx_read64_uint32(unitbusaddr));
tmp &= ~0x700;
tmp |= 0x300;
cvmx_write64_uint32(unitbusaddr, htole32(tmp));
}
}
break;
#endif
default:
break;
}
/* Configure PCI-PCI bridges. */
class = octopci_read_config(dev, b, s, f, PCIR_CLASS, 1);
if (class != PCIC_BRIDGE)
return (secbus);
subclass = octopci_read_config(dev, b, s, f, PCIR_SUBCLASS, 1);
if (subclass != PCIS_BRIDGE_PCI)
return (secbus);
/* Enable memory and I/O access. */
command |= PCIM_CMD_MEMEN | PCIM_CMD_PORTEN;
octopci_write_config(dev, b, s, f, PCIR_COMMAND, command, 1);
/* Enable errors and parity checking. Do a bus reset. */
brctl = octopci_read_config(dev, b, s, f, PCIR_BRIDGECTL_1, 1);
brctl |= PCIB_BCR_PERR_ENABLE | PCIB_BCR_SERR_ENABLE;
/* Perform a secondary bus reset. */
brctl |= PCIB_BCR_SECBUS_RESET;
octopci_write_config(dev, b, s, f, PCIR_BRIDGECTL_1, brctl, 1);
DELAY(100000);
brctl &= ~PCIB_BCR_SECBUS_RESET;
octopci_write_config(dev, b, s, f, PCIR_BRIDGECTL_1, brctl, 1);
secbus++;
/* Program memory and I/O ranges. */
octopci_write_config(dev, b, s, f, PCIR_MEMBASE_1,
CVMX_OCT_PCI_MEM1_BASE >> 16, 2);
octopci_write_config(dev, b, s, f, PCIR_MEMLIMIT_1,
(CVMX_OCT_PCI_MEM1_BASE + CVMX_OCT_PCI_MEM1_SIZE - 1) >> 16, 2);
octopci_write_config(dev, b, s, f, PCIR_IOBASEL_1,
CVMX_OCT_PCI_IO_BASE >> 8, 1);
octopci_write_config(dev, b, s, f, PCIR_IOBASEH_1,
CVMX_OCT_PCI_IO_BASE >> 16, 2);
octopci_write_config(dev, b, s, f, PCIR_IOLIMITL_1,
(CVMX_OCT_PCI_IO_BASE + CVMX_OCT_PCI_IO_SIZE - 1) >> 8, 1);
octopci_write_config(dev, b, s, f, PCIR_IOLIMITH_1,
(CVMX_OCT_PCI_IO_BASE + CVMX_OCT_PCI_IO_SIZE - 1) >> 16, 2);
/* Program prefetchable memory decoder. */
/* XXX */
/* Probe secondary/subordinate buses. */
octopci_write_config(dev, b, s, f, PCIR_PRIBUS_1, b, 1);
octopci_write_config(dev, b, s, f, PCIR_SECBUS_1, secbus, 1);
octopci_write_config(dev, b, s, f, PCIR_SUBBUS_1, 0xff, 1);
/* Perform a secondary bus reset. */
brctl |= PCIB_BCR_SECBUS_RESET;
octopci_write_config(dev, b, s, f, PCIR_BRIDGECTL_1, brctl, 1);
DELAY(100000);
brctl &= ~PCIB_BCR_SECBUS_RESET;
octopci_write_config(dev, b, s, f, PCIR_BRIDGECTL_1, brctl, 1);
/* Give the bus time to settle now before reading configspace. */
DELAY(100000);
secbus = octopci_init_bus(dev, secbus);
octopci_write_config(dev, b, s, f, PCIR_SUBBUS_1, secbus, 1);
return (secbus);
}
static unsigned
octopci_init_bus(device_t dev, unsigned b)
{
unsigned s, f;
uint8_t hdrtype;
unsigned secbus;
secbus = b;
for (s = 0; s <= PCI_SLOTMAX; s++) {
for (f = 0; f <= PCI_FUNCMAX; f++) {
hdrtype = octopci_read_config(dev, b, s, f, PCIR_HDRTYPE, 1);
if (hdrtype == 0xff) {
if (f == 0)
break; /* Next slot. */
continue; /* Next function. */
}
secbus = octopci_init_device(dev, b, s, f, secbus);
if (f == 0 && (hdrtype & PCIM_MFDEV) == 0)
break; /* Next slot. */
}
}
return (secbus);
}
static uint64_t
octopci_cs_addr(unsigned bus, unsigned slot, unsigned func, unsigned reg)
{
octeon_pci_config_space_address_t pci_addr;
pci_addr.u64 = 0;
pci_addr.s.upper = 2;
pci_addr.s.io = 1;
pci_addr.s.did = 3;
pci_addr.s.subdid = CVMX_OCT_SUBDID_PCI_CFG;
pci_addr.s.endian_swap = 1;
pci_addr.s.bus = bus;
pci_addr.s.dev = slot;
pci_addr.s.func = func;
pci_addr.s.reg = reg;
return (pci_addr.u64);
}
static void
octopci_init_pci(device_t dev)
{
cvmx_npi_mem_access_subid_t npi_mem_access_subid;
cvmx_npi_pci_int_arb_cfg_t npi_pci_int_arb_cfg;
cvmx_npi_ctl_status_t npi_ctl_status;
cvmx_pci_ctl_status_2_t pci_ctl_status_2;
cvmx_pci_cfg56_t pci_cfg56;
cvmx_pci_cfg22_t pci_cfg22;
cvmx_pci_cfg16_t pci_cfg16;
cvmx_pci_cfg19_t pci_cfg19;
cvmx_pci_cfg01_t pci_cfg01;
unsigned i;
/*
* Reset the PCI bus.
*/
cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
cvmx_read_csr(CVMX_CIU_SOFT_PRST);
DELAY(2000);
npi_ctl_status.u64 = 0;
npi_ctl_status.s.max_word = 1;
npi_ctl_status.s.timer = 1;
cvmx_write_csr(CVMX_NPI_CTL_STATUS, npi_ctl_status.u64);
/*
* Set host mode.
*/
switch (cvmx_sysinfo_get()->board_type) {
#if defined(OCTEON_VENDOR_LANNER)
case CVMX_BOARD_TYPE_CUST_LANNER_MR320:
case CVMX_BOARD_TYPE_CUST_LANNER_MR955:
/* 32-bit PCI-X */
cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x0);
break;
#endif
default:
/* 64-bit PCI-X */
cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
break;
}
cvmx_read_csr(CVMX_CIU_SOFT_PRST);
DELAY(2000);
/*
* Enable BARs and configure big BAR mode.
*/
pci_ctl_status_2.u32 = 0;
pci_ctl_status_2.s.bb1_hole = 5; /* 256MB hole in BAR1 */
pci_ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
pci_ctl_status_2.s.bb_ca = 1; /* Bypass cache for big BAR */
pci_ctl_status_2.s.bb_es = 1; /* Do big BAR byte-swapping */
pci_ctl_status_2.s.bb1 = 1; /* BAR1 is big */
pci_ctl_status_2.s.bb0 = 1; /* BAR0 is big */
pci_ctl_status_2.s.bar2pres = 1; /* BAR2 present */
pci_ctl_status_2.s.pmo_amod = 1; /* Round-robin priority */
pci_ctl_status_2.s.tsr_hwm = 1;
pci_ctl_status_2.s.bar2_enb = 1; /* Enable BAR2 */
pci_ctl_status_2.s.bar2_esx = 1; /* Do BAR2 byte-swapping */
pci_ctl_status_2.s.bar2_cax = 1; /* Bypass cache for BAR2 */
NPI_WRITE(CVMX_NPI_PCI_CTL_STATUS_2, pci_ctl_status_2.u32);
DELAY(2000);
pci_ctl_status_2.u32 = NPI_READ(CVMX_NPI_PCI_CTL_STATUS_2);
device_printf(dev, "%u-bit PCI%s bus.\n",
pci_ctl_status_2.s.ap_64ad ? 64 : 32,
pci_ctl_status_2.s.ap_pcix ? "-X" : "");
/*
* Set up transaction splitting, etc., parameters.
*/
pci_cfg19.u32 = 0;
pci_cfg19.s.mrbcm = 1;
if (pci_ctl_status_2.s.ap_pcix) {
pci_cfg19.s.mdrrmc = 0;
pci_cfg19.s.tdomc = 4;
} else {
pci_cfg19.s.mdrrmc = 2;
pci_cfg19.s.tdomc = 1;
}
NPI_WRITE(CVMX_NPI_PCI_CFG19, pci_cfg19.u32);
NPI_READ(CVMX_NPI_PCI_CFG19);
/*
* Set up PCI error handling and memory access.
*/
pci_cfg01.u32 = 0;
pci_cfg01.s.fbbe = 1;
pci_cfg01.s.see = 1;
pci_cfg01.s.pee = 1;
pci_cfg01.s.me = 1;
pci_cfg01.s.msae = 1;
if (pci_ctl_status_2.s.ap_pcix) {
pci_cfg01.s.fbb = 0;
} else {
pci_cfg01.s.fbb = 1;
}
NPI_WRITE(CVMX_NPI_PCI_CFG01, pci_cfg01.u32);
NPI_READ(CVMX_NPI_PCI_CFG01);
/*
* Enable the Octeon bus arbiter.
*/
npi_pci_int_arb_cfg.u64 = 0;
npi_pci_int_arb_cfg.s.en = 1;
cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, npi_pci_int_arb_cfg.u64);
/*
* Disable master latency timer.
*/
pci_cfg16.u32 = 0;
pci_cfg16.s.mltd = 1;
NPI_WRITE(CVMX_NPI_PCI_CFG16, pci_cfg16.u32);
NPI_READ(CVMX_NPI_PCI_CFG16);
/*
* Configure master arbiter.
*/
pci_cfg22.u32 = 0;
pci_cfg22.s.flush = 1;
pci_cfg22.s.mrv = 255;
NPI_WRITE(CVMX_NPI_PCI_CFG22, pci_cfg22.u32);
NPI_READ(CVMX_NPI_PCI_CFG22);
/*
* Set up PCI-X capabilities.
*/
if (pci_ctl_status_2.s.ap_pcix) {
pci_cfg56.u32 = 0;
pci_cfg56.s.most = 3;
pci_cfg56.s.roe = 1; /* Enable relaxed ordering */
pci_cfg56.s.dpere = 1;
pci_cfg56.s.ncp = 0xe8;
pci_cfg56.s.pxcid = 7;
NPI_WRITE(CVMX_NPI_PCI_CFG56, pci_cfg56.u32);
NPI_READ(CVMX_NPI_PCI_CFG56);
}
NPI_WRITE(CVMX_NPI_PCI_READ_CMD_6, 0x22);
NPI_READ(CVMX_NPI_PCI_READ_CMD_6);
NPI_WRITE(CVMX_NPI_PCI_READ_CMD_C, 0x33);
NPI_READ(CVMX_NPI_PCI_READ_CMD_C);
NPI_WRITE(CVMX_NPI_PCI_READ_CMD_E, 0x33);
NPI_READ(CVMX_NPI_PCI_READ_CMD_E);
/*
* Configure MEM1 sub-DID access.
*/
npi_mem_access_subid.u64 = 0;
npi_mem_access_subid.s.esr = 1; /* Byte-swap on read */
npi_mem_access_subid.s.esw = 1; /* Byte-swap on write */
switch (cvmx_sysinfo_get()->board_type) {
#if defined(OCTEON_VENDOR_LANNER)
case CVMX_BOARD_TYPE_CUST_LANNER_MR955:
npi_mem_access_subid.s.shortl = 1;
break;
#endif
default:
break;
}
cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, npi_mem_access_subid.u64);
/*
* Configure BAR2. Linux says this has to come first.
*/
NPI_WRITE(CVMX_NPI_PCI_CFG08, 0x00000000);
NPI_READ(CVMX_NPI_PCI_CFG08);
NPI_WRITE(CVMX_NPI_PCI_CFG09, 0x00000080);
NPI_READ(CVMX_NPI_PCI_CFG09);
/*
* Disable BAR1 IndexX.
*/
for (i = 0; i < 32; i++) {
NPI_WRITE(CVMX_NPI_PCI_BAR1_INDEXX(i), 0);
NPI_READ(CVMX_NPI_PCI_BAR1_INDEXX(i));
}
/*
* Configure BAR0 and BAR1.
*/
NPI_WRITE(CVMX_NPI_PCI_CFG04, 0x00000000);
NPI_READ(CVMX_NPI_PCI_CFG04);
NPI_WRITE(CVMX_NPI_PCI_CFG05, 0x00000000);
NPI_READ(CVMX_NPI_PCI_CFG05);
NPI_WRITE(CVMX_NPI_PCI_CFG06, 0x80000000);
NPI_READ(CVMX_NPI_PCI_CFG06);
NPI_WRITE(CVMX_NPI_PCI_CFG07, 0x00000000);
NPI_READ(CVMX_NPI_PCI_CFG07);
/*
* Clear PCI interrupts.
*/
cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, 0xffffffffffffffffull);
}
static device_method_t octopci_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, octopci_identify),
DEVMETHOD(device_probe, octopci_probe),
DEVMETHOD(device_attach, octopci_attach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, octopci_read_ivar),
DEVMETHOD(bus_alloc_resource, octopci_alloc_resource),
DEVMETHOD(bus_release_resource, bus_generic_release_resource),
DEVMETHOD(bus_activate_resource,octopci_activate_resource),
DEVMETHOD(bus_deactivate_resource,bus_generic_deactivate_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
DEVMETHOD(bus_add_child, bus_generic_add_child),
/* pcib interface */
DEVMETHOD(pcib_maxslots, octopci_maxslots),
DEVMETHOD(pcib_read_config, octopci_read_config),
DEVMETHOD(pcib_write_config, octopci_write_config),
DEVMETHOD(pcib_route_interrupt, octopci_route_interrupt),
DEVMETHOD(pcib_request_feature, pcib_request_feature_allow),
DEVMETHOD_END
};
static driver_t octopci_driver = {
"pcib",
octopci_methods,
sizeof(struct octopci_softc),
};
static devclass_t octopci_devclass;
DRIVER_MODULE(octopci, ciu, octopci_driver, octopci_devclass, 0, 0);