47a42cf8e5
from the original author of math.sed. Submitted by: K S Braunsdorf <sed@ksb.npcguild.org>
440 lines
6.7 KiB
Sed
440 lines
6.7 KiB
Sed
# This is ksb's infamous sed calculator. (ksb@sa.fedex.com)
|
|
#
|
|
# $FreeBSD$
|
|
#
|
|
# $Id: math.sed,v 2.5 1998/08/02 13:23:34 ksb Exp ksb $
|
|
# expr ::= (expr) | expr! |
|
|
# expr ^ expr |
|
|
# -expr | expr * expr | expr / expr | expr % expr |
|
|
# expr + expr | expr - expr |
|
|
# [0-9][0-9]* ;
|
|
# Bugs: some sign combinations don't work, and I got sick of added cases
|
|
# for unary +. Don't depend on signed math working all the time. -- ksb
|
|
#
|
|
# $Compile: echo "4+7*3+2^7/3" | sed -f %f
|
|
|
|
# make sure the expression is well formed
|
|
s/[ ]//g
|
|
/[*\/^%+-]$/{
|
|
a\
|
|
poorly formed expression, dyadic operator on the end
|
|
q
|
|
}
|
|
/^[*\/^%]/{
|
|
a\
|
|
poorly formed expression, leading dyadic operator
|
|
q
|
|
}
|
|
|
|
# fill hold space with done token
|
|
x
|
|
s/^.*/done/
|
|
x
|
|
|
|
# main loop, process operators ((), !, *, /, %, +, and -)
|
|
: loop
|
|
# uncomment the print below to follow the "logic" -- ksb
|
|
#p
|
|
/^[+]/{
|
|
s///
|
|
b loop
|
|
}
|
|
/^--/{
|
|
s///
|
|
b loop
|
|
}
|
|
# eval parenthesised sub expressions first
|
|
/^\(.*\)(\([^)]*\))\(.*\)$/{
|
|
H
|
|
s//\2/
|
|
x
|
|
s/^\(.*\)\n\(.*\)(\([^()]*\))\(.*\)$/()\2@\4@\1/
|
|
x
|
|
b loop
|
|
}
|
|
# reduce a^b^c -> a^(b^c)
|
|
/\([0-9][0-9]*^\)\([0-9][0-9]*^[0-9][0-9^]*\)/{
|
|
s//\1(\2)/
|
|
b loop
|
|
}
|
|
# pull any burried exponents
|
|
/^\(.*[^0-9]\)\([0-9][0-9]*^[0-9][0-9]*\)$/{
|
|
s//\1(\2)/
|
|
b loop
|
|
}
|
|
/^\(.*[^0-9]\)\([0-9][0-9]*^[0-9][0-9]*\)\([^0-9].*\)$/{
|
|
s//\1(\2)\3/
|
|
b loop
|
|
}
|
|
/^\([0-9][0-9]*^[0-9][0-9]*\)\([^0-9].*\)$/{
|
|
s//(\1)\2/
|
|
b loop
|
|
}
|
|
/^\([-]*[0-9]*\)^0*$/{
|
|
s//1/
|
|
b loop
|
|
}
|
|
/^\([-]*[0-9]*\)^0*1$/{
|
|
s//\1/
|
|
b loop
|
|
}
|
|
/^\([-]*[0-9]*\)^-[0-9]*$/{
|
|
s//0/
|
|
b loop
|
|
}
|
|
/^\([-]*\)\([0-9]*\)^\([0-9][0-9]*[13579]\)$/{
|
|
s//\1\2*((\2*\2)^(\3\/2))/
|
|
b loop
|
|
}
|
|
/^[-]*\([0-9]*\)^\([0-9][0-9]*[02468]\)$/{
|
|
s//(\1*\1)^(\2\/2)/
|
|
b loop
|
|
}
|
|
# single digit powers (2 3,9 4,6,8 5,7
|
|
/^[-]*\([0-9]*\)^0*2$/{
|
|
s//(\1*\1)/
|
|
b loop
|
|
}
|
|
/^\([-]*\)\([0-9]*\)^0*\([39]\)$/{
|
|
s//\1(\2*(\2*\2))^(\3\/3)/
|
|
b loop
|
|
}
|
|
/^[-]*\([0-9]*\)^0*\([468]\)$/{
|
|
s//(\1*\1)^(\2\/2)/
|
|
b loop
|
|
}
|
|
# 5 7
|
|
/^\([-]*[0-9]*\)^\([0-9]*\)$/{
|
|
s//\1*(\1^(\2-1))/
|
|
b loop
|
|
}
|
|
# reduce all number factorials
|
|
/^0*[01]!/{
|
|
s//1/
|
|
b loop
|
|
}
|
|
/\([*+-/%^]\)0*[01]!/{
|
|
s//\11/
|
|
b loop
|
|
}
|
|
/\([0-9]*\)!/{
|
|
s//(\1-1)!*\1/
|
|
b loop
|
|
}
|
|
# sign simplifications
|
|
/^-\([0-9]*\)\([*/%]\)-\([0-9]*\)$/{
|
|
s//\1\2\3/
|
|
b loop
|
|
}
|
|
/^\([0-9]*\)\([*/%]\)-\([0-9]*\)$/{
|
|
s//-\1\2\3/
|
|
b loop
|
|
}
|
|
/^-\([0-9][0-9]*\)[+]*-\([0-9][0-9]*\)$/{
|
|
s//\1+\2/
|
|
x
|
|
s/\(.*\)/()-@@\1/
|
|
x
|
|
b loop
|
|
}
|
|
/^-\([0-9]*\)[+]\([0-9]\)*$/{
|
|
s//\2-\1/
|
|
b loop
|
|
}
|
|
/^-.*[-+*/%].*/{
|
|
H
|
|
s/^-//
|
|
x
|
|
s/^\(.*\)\n-.*$/()-@@\1/
|
|
x
|
|
b loop
|
|
}
|
|
# can we simplify multiplications
|
|
/^\([0-9]*\)\([*][0-9]*[1-9]\)00*$/{
|
|
H
|
|
s//\1\2/
|
|
x
|
|
s/^\(.*\)\n[0-9]*[*][0-9]*[1-9]\(00*\)$/()@\2@\1/
|
|
x
|
|
b loop
|
|
}
|
|
/^\([0-9][1-9]*\)00*\([*][0-9]*\)$/{
|
|
H
|
|
s//\1\2/
|
|
x
|
|
s/^\(.*\)\n[0-9][1-9]*\(00*\)[*][0-9]*$/()@\2@\1/
|
|
x
|
|
b loop
|
|
}
|
|
# can we simplify division (20/30 -> 2/3)
|
|
/^\([0-9][0-9]*\)0\([/%]\)\([0-9][0-9]*\)0$/{
|
|
s//\1\2\3/
|
|
b loop
|
|
}
|
|
# n/1 -> n
|
|
/^0*\([0-9][0-9]*\)0[/]0*1$/{
|
|
s//\1/
|
|
b loop
|
|
}
|
|
# n%2 -> last_digit(n)%2 (same for 1, BTW) N.B. NO LOOP
|
|
/^[0-9]*\([0-9]\)%0*\([12]\)$/{
|
|
s//\1%\2/
|
|
}
|
|
# move any mul/divs to the front via parans
|
|
/^\([0-9+]*\)\([-+]\)\([0-9]*[*/][0-9*/]*\)/{
|
|
s//\1\2(\3)/
|
|
b loop
|
|
}
|
|
# can we div or mul
|
|
/^[0-9]*[*][0-9]*$/{
|
|
b mul
|
|
}
|
|
/^[0-9]*[/%]0*$/{
|
|
i\
|
|
divide by zero
|
|
d
|
|
}
|
|
/^[0-9]*[/%][0-9]*$/{
|
|
H
|
|
s/\([0-9]\).*[/%]/\1-/
|
|
x
|
|
s/^\(.*\)\n\([0-9]\)\([0-9]*\)\([/%]\)\([0-9]*\).*$/.\4\3q0r\2-\5@\1/
|
|
x
|
|
b loop
|
|
}
|
|
/^\([0-9]*[*/%][0-9]*\)\(.*\)/{
|
|
H
|
|
s//\1/
|
|
x
|
|
s/^\(.*\)\n\([0-9]*[*/][0-9]*\)\(.*\)$/()@\3@\1/
|
|
x
|
|
b loop
|
|
}
|
|
# can we add or subtract -- note subtract hold expression for underflow
|
|
/^[0-9]*[+][0-9]*$/{
|
|
s/$/=/
|
|
b add
|
|
}
|
|
/^[0-9][0-9]*-[0-9]*$/{
|
|
H
|
|
s/$/=/
|
|
b sub
|
|
}
|
|
/^\([0-9][0-9]*[-+][0-9]*\)\(.*\)/{
|
|
H
|
|
s//\1/
|
|
x
|
|
s/^\(.*\)\n\([0-9]*[-+][0-9]*\)\(.*\)$/()@\3@\1/
|
|
x
|
|
b loop
|
|
}
|
|
# look in hold space for stack to reduce
|
|
x
|
|
/^done$/{
|
|
x
|
|
s/^0*\([0-9][0-9]*\)/\1/
|
|
p
|
|
d
|
|
}
|
|
# .[/%] numerator q quotient r remainder-divisor @stack
|
|
/^\./{
|
|
x
|
|
/^[^-]/{
|
|
H
|
|
x
|
|
s/.\(.\)\([0-9]*\)q\([^r]*\)r\([0-9]*\)-\([0-9]*\)@\(.*\)\n\(.*\)/.\1\2q\3+1r\7-\5@\6/
|
|
h
|
|
s/..[0-9]*q[^r]*r\([0-9]*-[0-9]*\)@.*/\1/
|
|
b loop
|
|
}
|
|
/^-/{
|
|
g
|
|
/.\(.\)\([0-9]\)\([0-9]*\)q\([^r]*\)r0*\([0-9]*\)-\([^@]*\)@.*/{
|
|
s//\5\2-\6/
|
|
x
|
|
s/.\(.\)\([0-9]\)\([0-9]*\)q\([^r]*\)r0*\([0-9]*\)-\([0-9]*\)@\(.*\)/.\1\3q(\4)*10r\5\2-\6@\7/
|
|
x
|
|
b loop
|
|
}
|
|
# no digits to shift on
|
|
s/^\.[/]q\([^r]*\)r[^@]*@.*/\1/
|
|
s/^\.[%]q[^r]*r0*\([0-9][0-9]*\)-[^@]*@.*/\1/
|
|
/^\./{
|
|
i\
|
|
divide error
|
|
q
|
|
}
|
|
x
|
|
s/^\.[/%]q[^r]*r[^@]*@\(.*\)/\1/
|
|
x
|
|
b loop
|
|
}
|
|
}
|
|
/^()/{
|
|
s///
|
|
x
|
|
G
|
|
s/\(.*\)\n\([^@]*\)@\([^@]*\)@\(.*\)/\2\1\3/
|
|
x
|
|
s/[^@]*@[^@]*@\(.*\)/\1/
|
|
x
|
|
b loop
|
|
}
|
|
i\
|
|
help, stack problem - the hold space
|
|
p
|
|
x
|
|
i\
|
|
and the pat space
|
|
p
|
|
i\
|
|
quit
|
|
q
|
|
|
|
# turn mul into add until 1*x -> x, 0*x -> 0
|
|
: mul
|
|
/^00*\*.*/{
|
|
s//0/
|
|
b loop
|
|
}
|
|
/^0*1\*/{
|
|
s///
|
|
: leading
|
|
s/^0*\([0-9][0-9]*\)/\1/
|
|
b loop
|
|
}
|
|
s/^\([0-9]*\)0\*\([0-9]*\)/\1*\20/
|
|
s/^\([0-9]*\)1\*\([0-9]*\)/\1*\20+\2/
|
|
s/^\([0-9]*\)2\*\([0-9]*\)/\1*\20+(\2+\2)/
|
|
s/^\([0-9]*\)3\*\([0-9]*\)/\1*\20+(\2+\2+\2)/
|
|
s/^\([0-9]*\)4\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2)/
|
|
s/^\([0-9]*\)5\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2)/
|
|
s/^\([0-9]*\)6\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2)/
|
|
s/^\([0-9]*\)7\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2+\2)/
|
|
s/^\([0-9]*\)8\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2+\2+\2)/
|
|
s/^\([0-9]*\)9\*\([0-9]*\)/\1*\20+(\2+\2+\2+\2+\2+\2+\2+\2+\2)/
|
|
/^0*\*[0-9]*[+]*\(.*\)/{
|
|
s//\1/
|
|
b loop
|
|
}
|
|
b mul
|
|
|
|
# get rid of a plus term until 0+x -> x
|
|
: add
|
|
/^[+]\([0-9+*]*\)=/{
|
|
s//\1/
|
|
b leading
|
|
}
|
|
/^\([0-9*]*\)[+]=/{
|
|
s//\1/
|
|
b loop
|
|
}
|
|
/^\([0-9]*\)0[+]\([0-9]*\)\([0-9]\)=/{
|
|
s//\1+\2=\3/
|
|
b add
|
|
}
|
|
/^\([0-9]*\)\([0-9]\)[+]\([0-9]*\)0=/{
|
|
s//\1+\3=\2/
|
|
b add
|
|
}
|
|
s/^\([0-9]*\)1[+]/\10+/
|
|
s/^\([0-9]*\)2[+]/\11+/
|
|
s/^\([0-9]*\)3[+]/\12+/
|
|
s/^\([0-9]*\)4[+]/\13+/
|
|
s/^\([0-9]*\)5[+]/\14+/
|
|
s/^\([0-9]*\)6[+]/\15+/
|
|
s/^\([0-9]*\)7[+]/\16+/
|
|
s/^\([0-9]*\)8[+]/\17+/
|
|
s/^\([0-9]*\)9[+]/\18+/
|
|
|
|
s/9=\([0-9]*\)$/_=\1/
|
|
s/8=\([0-9]*\)$/9=\1/
|
|
s/7=\([0-9]*\)$/8=\1/
|
|
s/6=\([0-9]*\)$/7=\1/
|
|
s/5=\([0-9]*\)$/6=\1/
|
|
s/4=\([0-9]*\)$/5=\1/
|
|
s/3=\([0-9]*\)$/4=\1/
|
|
s/2=\([0-9]*\)$/3=\1/
|
|
s/1=\([0-9]*\)$/2=\1/
|
|
/_/{
|
|
s//_0/
|
|
: inc
|
|
s/9_/_0/
|
|
s/8_/9/
|
|
s/7_/8/
|
|
s/6_/7/
|
|
s/5_/6/
|
|
s/4_/5/
|
|
s/3_/4/
|
|
s/2_/3/
|
|
s/1_/2/
|
|
s/0_/1/
|
|
s/[+]_/+1/
|
|
/_/b inc
|
|
}
|
|
b add
|
|
|
|
# get rid of a sub term until /-0*=/ or underflow
|
|
: sub
|
|
/^\([0-9]*\)-0*=/{
|
|
s//\1/
|
|
x
|
|
s/\(.*\)\n.*$/\1/
|
|
x
|
|
b leading
|
|
}
|
|
/^-\([0-9].*\)=/{
|
|
: under
|
|
g
|
|
s/.*\n\([0-9]*\)-\([0-9]*\).*/-(\2-\1)/
|
|
x
|
|
s/\(.*\)\n.*/\1/
|
|
x
|
|
b loop
|
|
}
|
|
/^\([0-9]*\)\([0-9]\)-\([0-9]*\)0=/{
|
|
s//\1-\3=\2/
|
|
b sub
|
|
}
|
|
s/1=/0=/
|
|
s/2=/1=/
|
|
s/3=/2=/
|
|
s/4=/3=/
|
|
s/5=/4=/
|
|
s/6=/5=/
|
|
s/7=/6=/
|
|
s/8=/7=/
|
|
s/9=/8=/
|
|
|
|
s/^\([0-9]*\)1-/\1_-/
|
|
s/^\([0-9]*\)2-/\11-/
|
|
s/^\([0-9]*\)3-/\12-/
|
|
s/^\([0-9]*\)4-/\13-/
|
|
s/^\([0-9]*\)5-/\14-/
|
|
s/^\([0-9]*\)6-/\15-/
|
|
s/^\([0-9]*\)7-/\16-/
|
|
s/^\([0-9]*\)8-/\17-/
|
|
s/^\([0-9]*\)9-/\18-/
|
|
s/^\([0-9]*\)0-/\1'9-/
|
|
s/_/0/
|
|
|
|
: scarry
|
|
/0'/{
|
|
s//'9/
|
|
b scarry
|
|
}
|
|
/^'/{
|
|
b under
|
|
}
|
|
s/1'/0/
|
|
s/2'/1/
|
|
s/3'/2/
|
|
s/4'/3/
|
|
s/5'/4/
|
|
s/6'/5/
|
|
s/7'/6/
|
|
s/8'/7/
|
|
s/9'/8/
|
|
|
|
b sub
|